
Pinball Project 
 
 Place a disc of radius r at the corners of an equilateral triangle of side s, where r is 
less than s/2.  Our ball is going to be a point particle, for mathematical simplicity.  The 
game is to shoot the particle with unit speed in some direction from a specified point, and 
see how long it takes to escape; the particle will bounce around the discs some number of 
times before escaping, depending on the initial position and direction.  We assume that 
the reflections are perfectly elastic, so no energy is lost and the speed remains 1 
throughout. 
 This is an example of what is called a chaotic dynamical system: very small 
changes in the initial position or direction of the ball can produce a trajectory that soon 
looks nothing like the original trajectory.  Each bounce causes small differences to be 
magnified, so that after a few bounces the originally close trajectories are bouncing off 
different balls, or one is missing the balls altogether while the other is still captured. 
 We are not going to study the theory of such systems; we are just going to 
simulate this one with the computer, as an exercise in the geometry of reflections which 
we studied in chapter 0, and in intersecting lines in parametric form with circles.   
 
 Here is the algebra involved for finding the intersection.  Suppose a particle is 
moving with constant velocity v, having started at time zero at point x.  Then its location 
at time t is y = x + tv, which is a parametric form of a line as you recognize.  We want to 
find when (and if) the particle hits the circle with center c and radius r, and we are only 
interested in solutions for positive t (going forward in time), and we are only interested in 
cases where the particle starts outside the circle (we don’t want to start inside the circle 
and bounce around inside the circle).  The condition for the line intersecting the circle at 
time t is  2( ) ( )t t r+ − + − =x v c x v ci , which says that the distance from the point on the 
line to the center of the circle is r. Let’s assume from now on that v vi =1 (that is, the 
speed is 1) to make the algebra look a little simpler. Using the algebra of the dot product, 
you get this equation for t: 2 22 ( ) ( ) ( ) 0.t t r− − + − − − =v c x c x c xi i  As every Georgia 
Tech student knows (but I once saw a classroom interview at UGA where the quadratic 
formula was incorrectly written!), this has solutions 
 ( ) ,t D= − ±v c xi where 2 2( ( )) ( ) ( )D r= − − − − +v c x c x c xi i . 
Since we are assuming that x0 is outside the circle, the term 2( ) ( ) r− − − +c x c xi is 
negative.  So we come to the following conclusions: 
(1) If D < 0, there is no intersection of the line with the circle (because there is no real 
solution for t). 
(2) If D = 0, the line is tangent to the circle (there is just one intersection point).  With 
probability one this is not going to happen, and even if it did, the particle would just 
continue on the straight line anyway.  So this is just like (1). 
(3) If D > 0 and ( )−v c xi  < 0, then both solutions for t are negative (because 

| ( ) |D < −v c xi  from our observation above about x being outside the circle).   So the 
intersections of the line with the circle are behind us in time, and we are not interested. 
(4) If D > 0 and ( )−v c xi  > 0, then both solutions for t are positive.  We want the first 
time that the line hits the circle, so we take the smaller solution. 



 As good computer programmers, you are always interested in efficiency, right?  
So if you have a function t = intersect(c, r, x, v) whose job is to return the smallest 
positive t for which the particle with velocity v (assumed to be a unit vector) and initial 
location x hits the circle with center c and radius r, and you are willing to assume that you 
will only call the function with the initial point outside the circle, then you might do it in 
this order: 
(i) Compute ( )−v c xi .  If this is less than or equal zero, return no solution.  
(ii)  Compute D (using the value of  ( )−v c xi  that you already computed to save work).  
If D ≤ 0, return no solution. 
(iii) If D > 0, return the solution ( ) D− −v c xi , as this will be the smallest positive 
solution. 

This way, we exit sometimes with just a single dot product computed.  And we only 
compute a square root when there really is a solution.  Of course if you lied and had the 
initial point inside the circle, this could return a negative t, so this would only be a good 
idea if you intend to use this function only in this application! 

 The algebra for finding the reflection of the particle off the circle at the point of 
intersection is just like what we did in chapter 0.  Suppose the particle with velocity v hits 
the circle with center c at point x.  The simple geometric fact to notice is that the vector 
c - x from x to the center of the circle is perpendicular to the tangent to the circle at point 
x.  So reflecting the particle off this tangent using the methods from chapter 0, we get for 
the velocity vector w of the reflected particle  
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A moment’s “reflection” (sorry for the pun) will convince you that w has the same length 
as v, it is just pointing in a different direction. 
 Note how simple this is, nothing but rational arithmetic.  Perhaps if you had 
decided to work out the reflection before having read chapter 0, you might have tried to 
compute some angles or something, with the idea that the angle of reflection equals angle 
of incidence.  It is much better to use the vector algebra methods! 
 
 
 So, here is the plan.  To keep things simple, let’s put the centers of our circles at 
the points ( / 2, 3 / 6), ( / 2, 3 / 6), (0, 3 / 3)s s s s and s− − − .  These are the centers of 
an equilateral triangle with side s and centroid at the origin.  Let’s always start the 
particle off from the origin, with unit speed, so the only choice we have is the choice of 
direction.  As we said, the radius of our circles will be required to be less than s/2, so the 
particle can escape (we are not closed off by the circles). 
 You will write two functions t = intersect(c, r, x, v)  and w = reflect(c, x, v) as 
described above that do the work  Start the particle off from the origin in some direction 
with unit speed (how to do this will be described in a moment).   So x0 = (0, 0) and v0 = 
whatever, as long as it has length 1.  Call the function  t = intersect(c, r, x0, v0 ) using the 
three centers c1, c2, c3 in succession, to see if you get an intersection with one of the 



circles (you could indicate that you got no intersection in any way you want, such as 
returning –1 if no intersection, or have another variable that is a flag if that method 
offends you).  If you do get an intersection, let t0 be the value returned.  Then let x1 = x0 + 
t0v0, which will be a point on the circle c it hits (this is one of the three circles c1, c2, c3).  
Now call v1 = reflect(c, x1, v0).  Now you are at the point x1 traveling away from the 
circle you just hit, now with velocity v1.  So you are ready to repeat!  Except unlike the 
initial call, you will only check two circles for intersection.  Do not check the circle you 
are sitting on; that won’t get you anywhere and also might cause problems with your 
program since intesect() might assume that you are starting outside the circle in question.  
So in your loop you will also need to keep track of what circle you hit last, so as to not 
check for that one. 
  Do you need to try to intersect both of the other circles when going away from a 
circle?  If the circles have small enough radius, you can see that you can’t possibly hit 
more than one other circle going away from a circle, but if the circles have radius near the 
maximum of s/2, then it is possible to hit both other circles.  To keep it simple, let’s just 
check both other circles, and if you happen to get a solution for both, take the one with 
the smallest t, of course, because you will reflect off of that one.  
 
 In this way you will produce a sequence of points and velocities xn = xn-1 + tn-1vn-1 
and vn = reflect(c, xn, vn-1), until you get no intersection.  Count how many hits you get 
before you escape from the circles. 
 
 What initial velocities should you use? Lets make the game to find the most hits 
that you can before escaping.  Choosing an initial velocity with unit speed amounts to 
choosing an initial angle θ, and then letting v = (cos θ, sin θ). 
 
 Method 1: randomly choose a lot of different angles θ between 0 and 2π using a random 
number generator.  How many you can try in a reasonable time will depend on how fast 
your code runs.  My program did billions in just a couple of seconds for the case s = 6 
and r = 1, but my program was in c and your java program that you will probably write 
will probably be slower (of course you can use any language you like). 
Method 2:  choose a lot of angles equally spaced between 0 and 2π. 
Method 3: make inspired guesses, if you think you have an idea how to get a lot of hits 
before escaping. Good luck. 
Method 4: take a course in the physics department and learn some tricks for coming very 
close to a long periodic orbit (none of those start at the origin, so you won’t actually get 
infinitely many hits no matter what you try).  OK, just kidding. 
 
 
 
 Let’s do it with just these two choices for machine setup:  s = 6 and r = 1, and 
then s = 6 and r = 2.  Keep a frequency count of how many of your orbits got  0 hits, how 
many got 1 hit, 2 hits, ...etc before escaping.  Here’s how to do that: make an array 
freq[1000] which you initialize to zeroes, and each time you get 3 hits, for example, you 
will increment freq[3], so at the end, freq[3] will contain the number of orbits that yielded 
exactly three hits before escaping. Don’t worry, you will not get anywhere near 1000 hits; 



I just now ran 100 million randomly chosen angles with s = 6 and r = 1 and the most hits 
I got before escaping was 13.  You can do better than that with more trials, and with r = 2 
you will get more hits of course.  In any case you can have your program check to see if 
the number of hits exceeds your freq array size if you are worried about it crashing. 
 
  What to Report 
 
 So here is what you can report: 
(1) The relative frequency (that is, frequency divided by number of trials) of num hits you 
got in the two cases mentioned, and how many trials it was based on (You will notice that 
the frequency drops off geometrically fast with the number of hits).  Do that both for the 
random method and the systematic method of choosing the initial angle.  For the same 
number of trials, which method came up with the longest orbit, the random way or the 
systematic way?   
(2) For the top 10 number of hits you got, give the initial angle and give the sequence of 
circles that were hit in the orbit before escaping.  If you found your best orbit by some 
other method than just brute force as described above, tell us how you did it. 
(3) If you are quick at making graphics displays, make a display that shows the orbit for a 
given starting angle as a ball dynamically moving around from one circle to the next, and 
use this to display some of your orbits. 
        (3) might be too time-consuming, so it is not required for the project. 
 
Report your longest orbit for the case r = 1, s = 6.   Let’s see who is the winner for that 
case! 
 
 (Programming considerations:  (1) Be sure to use double-precision arithmetic in 
your calculations to minimize the damage of roundoff error.  (2) Be sure to step through 
your code in a debugger for a few bounces to verify that it seems to really be bouncing 
off the circles as you expect; it is easy to make little mistakes and you should always step 
through your code in a debugger as a sanity check.  If you do the visual display of the ball 
bouncing around, that would make it easy to see if it is making sense!) 
 
 
  


