
Programming Project for Math 2605

This project is aimed at developing a understanding of low rank approximation using
the singular value decomposition. The matrices we will work with come from images.

Consider an image that consists of a rectangle of 200 by 300 pixels. This is a total of
60, 000 pixels. If the image is a standard grayscale image, each pixel will be assigned an
integer value between 0 (representing black) and 255 (representing white). The image file
represents a large – 200× 300 – matrix with integer values in this range.

Images – at least ones we would want to look at – have a lot of structure to them.
Because of the structure, the information in them can often be conveyed very accurately
by specifying far fewer numbers that the values for each and every pixel. Here is one way
to do this: Let A = V DU t be a singular value decomposition of an m × n A. As usual,
put

V = [v1,v2, . . . ,vr] and U = [u1,u2, . . . ,ur] .

For any integer k with 0 < k < r, put

A(k) =
k∑

j=1

σjvjut
j . (∗)

Although A(k) is an m × n matrix, just like A, the data needed to specify A is just
the data needed to specify the k numbers, the k vectors in Rm, and the k vectors in Rn

that show up in (*). This would be k(1 + m + n), which is much less than m× n if m and
n are large.

As we have seen in class, for every pair of indices i and j,∣∣∣Ai,j −A
(k)
i,j

∣∣∣ < σk+1 .

Therefore, if we choose k large enough that σk+1 < 1, the entries of A(k) will be within
one grayscale value of the entries of A, and so the images that the two matrices represent
will be very close. Even if σk+1 is not so small, this will often be the case.

In any case, the fact that the matrix A comes from a visually interesting image, and
is not just a random matrix, gives it interesting structure that results in a rapid drop off in
size of the singular values. Most of the information in an image matrix is contained in the
few largest singular values, and their corresponding left and right singular vectors. This
project explores these ideas.

(1) Write a program that read in in an image file, and converts it into a matrix; i.e., an
array of arrays. There is information on standard image file formats, and suggestions for
how to do this on the main projects page.

Also write a program that takes a given m×n matrix with floating point entries, and
converts it to an image file (using whatever format you chose in the first part). Be sure you
round of and truncate the values properly! For example, if your file format requires each
pixel to be assigned a integer value in the range from 0 to 255, make sure your program
does the something reasonable with entries that are negative or too large!

1



If you work in color, you will need one matrix per channel. But each will be handled
the same way, so this is not much of a complication.

These steps are not so mathematical, so you are free to collaborate and seek expert
advice on this part, if you wish. As long as you indicate and credit this, you will not loose
any points.

(2) Write a program that takes as input an integer k, and an m×n matrix A, and returns
A(k), σ1, and σk+1. You may use packages, such as JAMA, for doing the basic linear
algebra here.

(3) Put you programs to work: Choose an image file or two in the right format, and convert
the image to a matrix. Find the best rank k approximation for k = 2, k = 5, k = 10.
Convert these back into images, and print them out, together with the original image.
Beside each image, give the values of σ1 and σk. Try this for a few more images. (Once
you have coded it up, you may as well use it!).
Question: To get a good easily recognizable image, do you need to have σk+1 small
compares to 255, or just small compared to σ1, or is there some other criterion of smallness
that is even more relevant?

Try this compression with portraits of faces. How small can you make k, and still
keep the portrait recognizable? In other words (roughly), what is the rank of a human
face?

Extra Credit: Organize your programs into a codec; that is a compression–decompression
package. Invent a file format for storing the k numbers, the k vectors in Rm, and the k
vectors in Rn that show up in (*). For example, with whitespace separation, the first three
entries could be k, m, and n. The next k could be the singular values, and so forth. Have
your program read in an image file and a specified number k, and write out a file in your
format. This will be the compressed file.

Then write a program that reads in one of your compressed files, and writes it back
to a standard image format. This is the decompression part.

For even more extra credit, after experimenting with how the relative sizes of the
various singular values determine a “good” value of k, write a program that chooses k
itself, depending on the image.

2


