
Algorithms in computational algebraic analysis

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Anton Leykin

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Gennady Lyubeznik, Adviser

September 2003

Anton Leykin

194 words

ABSTRACT

This thesis studies algorithms for symbolic computation of systems of linear partial differ-

ential equations using the corresponding ring of linear differential operators with polynomial

coefficients, which is called the Weyl algebra An.

Bernstein-Sato polynomials, one of the central notions in the algebraic analysis of D-modules,

is the topic of the first part of this work. We consider the question of constructibility of the stra-

tum of polynomials of bounded number of variables and degree that produce a fixed Bernstein-

Sato polynomial. Not only do we give a positive answer, but we construct an algorithm for

computing these strata.

Another theme of this thesis is two theorems of Stafford that say that every (left) ideal of

An can be generated by two elements, and every holonomic An-module is cyclic, i.e. generated

by one element. We reprove these results in an effective way that leads to algorithms for

computation of these generators.

The main engine of all our algorithms is Gröbner bases computations in the Weyl algebra.

In order to speed these up we developed a parallel version of a Buchberger algorithm, which has

been implemented and tested out using supercomputers and has delivered impressive speedups

on several important examples.

Gennady Lyubeznik

(Faculty Adviser)

Acknowledgments

First and foremost, I would like to thank my adviser Gennady Lyubeznik, who introduced

me to the area of my research and provided so much needed encouragement and every kind of

support over my years in the graduate school. I am grateful to Mike Stillman for organizing a

couple of summer visits to Cornell and introducing me to Macaulay 2, Harry Tsai for writing

the toughest bits of the D-modules package, Bernd Sturmfels for fruitful ideas and help during

my stay at Berkeley, as well as the other people that made the mathematical environment lively.

Last, but not least, I thank my friends and family for love and understanding and not insisting

on a detailed answer to the question: “So what is it that you do exactly?”

iii

Contents

1 Introduction 1

1.1 History . 2

1.2 Thesis preview . 2

1.3 Conventions and Preliminaries . 3

2 Stratification by Bernstein-Sato polynomials 5

2.1 Preliminaries . 6

2.1.1 Constructible Sets . 7

2.1.2 Parametric Gröbner Bases . 8

2.1.3 Oaku’s Algorithm . 10

2.1.4 Properties of the Bernstein-Sato polynomial 11

2.2 The Main Results . 12

2.3 Examples . 16

3 On minimal generation of holonomic D-modules and Weyl algebra ideals 25

3.1 Preliminaries . 26

3.1.1 An is simple . 26

3.1.2 An is an Ore domain . 27

3.1.3 More rings . 27

3.2 Holonomic modules are cyclic . 28

3.3 Ideals are 2-generated . 30

3.3.1 Lemmas for S . 31

3.3.2 Lemmas for Rr . 33

3.3.3 Final chords . 36

3.4 Conclusion . 37

iv

4 Parallel computation of Gröbner bases 39

4.1 Introduction . 39

4.2 Preliminaries . 40

4.3 Parallel Buchberger algorithm . 42

4.4 Experimental results . 44

Bibliography 49

v

Chapter 1

Introduction

There is an algebraic way to look at a system of partial differential equations with polynomial

coefficients. Namely, one may view it as a module over a ring of differential operators and explore

its properties via algebraic analysis, in other words, by understanding the algebraic structure

of this associated module. The founding fathers of this area – Sato, Kashiwara, Malgrange,

Kawai, Bernstein, Beilinson – called it D-module theory. The theory of D-modules has proved

to be useful to many areas of modern mathematics such as differential equations, mathematical

physics, singularity theory, etc.

In the recent years the computational side of D-modules was an area of active development

and led to interesting and diverse applications. For computational purposes, the main focus of

attention has been the Weyl algebra

An = An(k) = k 〈x1, ..., xn, ∂1, ..., ∂n〉 ,

which is an associative k-algebra generated by x’s and ∂’s with the relations

xixj = xjxi, ∂i∂j = ∂j∂i, ∂jxi − xi∂j = δij.

The Weyl algebra may be thought of as the algebra of linear differential operators with polyno-

mial coefficients. In this thesis, we say D-modules – we mean An-modules.

1

1.1 History

The algorithmic aspects of the Weyl algebra were first explored by Galligo [12], Takayama [35]

and others in mid-80’s. They laid out the theory of Gröbner bases in this slightly noncommu-

tative setting. In general, Gröbner bases play the central role in modern computational algebra

providing not only a theoretical but a practical tool for constructing such objects of commutative

algebra as Hilbert functions, free resolutions, homological functors, etc. In the field of computa-

tional D-modules a similar set of effective constructions for modules over the Weyl algebra has

been made available for by Oaku and Takayama [29]. One of many important D-algorithms is

described in Chapter 2 of this thesis: the algorithm for computing the Bernstein-Sato polyno-

mial by Oaku [28]. All of the results described in this work are either on Gröbner bases or use

Gröbner bases as a computational engine.

The algorithmic development of D-modules has also been accompanied by implementation of

the Weyl algebra in computer algebra systems. Let us list the software that we know: Takayama

pioneered this area implementing many D-algorithms in his specialized system kan/sm1 [34].

Chyzak wrote a package for Maple called Mgfun [10]. Together with Harry Tsai we produced

the D-modules for Macaulay 2 package [24] using the general purpose computer algebra

system Macaulay 2 [15]; for an introduction to the package see [23]. At the moment of writing,

the system Plural (a part of Singular [16] in the future) developed by Levandovskyy contains

an implementation of Weyl algebra.

1.2 Thesis preview

Let us announce the topics covered by this thesis. In Chapter 2 after a brief introduction to

the basic concepts of the theory of D-modules we describe a solution to the problem of con-

structibility of the stratum of polynomials corresponding to a given Bernstein-Sato polynomial.

Indeed, such strata turn out to be constructible, moreover, we provide an algorithm to compute

them. The main results of this chapter were published in [22].

The subject of Chapter 3 is rather ring-theoretic: we solve the problem of minimal generation

of an ideal in Weyl algebra, as well as the problem of finding a cyclic generator for a holonomic D-

module. Again, our answer is given in an effective form: the algorithm to construct a generating

set of two elements for any ideal of An is laid out, and a simple algorithm to determine a cyclic

generator for any holonomic D-module is developed.

The topic of Chapter 4 is parallelization of reduction algorithms for noncommutative asso-

2

ciative algebras. We describe our parallel software implemented for the Weyl algebra and the

so-called PBW-algebra, as well as (commutative) ring of polynomials. Since this part of the

thesis belongs to computer science at least as much as to mathematics, it is written in a form

of a technical report, i.e. contains more tables and figures than theoretical results.

1.3 Conventions and Preliminaries

Throughout the thesis k shall denote a field of characteristic zero; the most popular algebras

shall be Rn(k) = k[x̄] = k[x1, . . . , xn], the ring of polynomials over k in n variables, and

An(k) = k〈x̄, ∂̄〉 = k〈x1, ∂1, . . . , xn, ∂n〉, the Weyl algebra over k in n variables. When k is

specified, we abbreviate Rn = Rn(k) and An = An(k). All ideals of the Weyl algebra and all

An modules are assumed to be left ideals and modules respectively.

We shall use multi-index notation as follows. For example, we will write a monomial in Rn

as aαxα and mean aαxα1
1 . . . xαn

n .

Where necessary we will include output from Macaulay 2 sessions in the following typical

format:

i1 : statement 1;

i2 : statement 2

o2 = output

Here i1, i2, i3, ... are input lines with corresponding output lines o1, o2, o3, The

output of a statement followed by a semicolon, for instance, statement 1, is suppressed.

A good introduction to D-modules is the book by Björk [5]. Another good source is a book by

Sato, Sturmfels and Takayama [31] that describes applications of D-modules to hypergeometric

differential equations. Algebraic geometry basics one may look up in Hartshorne [17].

Weyl algebra. It is easy to see that monomials xα∂β ∈ An(k), α, β ∈ Zn
≥0 form a k-basis

of An. Thus, every element of Q ∈ An may be presented in the right normal form

Q =
∑

aαβxα∂β ,

where all but finitely many of aαβ are zeros.

The Weyl algebra is simple, i.e. the only two-sided ideals are 0 and the whole of An. The are

more left/right ideals; in what follows we will encounter only left ideals. Obviously, the Weyl

algebra is noetherian, moreover, in Chapter 3 we show that every ideal of it can be generated

by two elements.

3

D-modules. For our purposes a D-module is a left An-module. It is shown that the Gelfand-

Kirillov dimension of the algebra An equals 2n, moreover, if M is a nontrivial D-module, then

n ≤ dim M ≤ 2n. The modules of dimension n (minimal possible dimension) constitute the

Bernstein class.

One of the distinctive properties of the modules in the Bernstein class, which are also called

holonomic D-modules, is their finite length. It also may be shown that every holonomic module

is cyclic. Moreover, in Chapter 3 we develop an algorithm that constructs a cyclic generator

of a holonomic D-module. From the homological point of view a holonomic D-module M is a

D-module for which Extj
An

(M, An) vanishes unless j = n.

The simplest example of a holonomic D-module is Rn, which is the quotient of An by the

left ideal An · (∂1, ..., ∂n). Also if f ∈ Rn, then the Rn-module Rn[f−1] has a structure of a

An-module:

xi(
g

fk
) =

xig

fk
, ∂i(

g

fk
) =

∂i(g)f − k∂i(f)g
fk+1

.

Gröbner bases. The notion of Gröbner basis of a (left) ideal can be defined for Weyl

algebras in the same way as it is defined in the case of polynomials. The Buchberger algorithm

for computing Gröbner bases works, leading to algorithms for computing intersections of ideals,

kernels of maps, syzygy modules, resolutions, etc.

A good reference on Gröbner bases for the Weyl algebra is [31], also see [19] for Gröbner

techniques for algebras of solvable type, a.k.a. Gröbner-ready. We make some remarks on

parametric Gröbner bases in Chapter 2 and study a possible parallelization of the Buchberger

algorithm in Chapter 4.

4

Chapter 2

Stratification by Bernstein-Sato

polynomials

For every polynomial f∈ Rn(k) there are b(s) ∈ k[s] and Q(x, ∂, s) ∈ An(k)[s] such that

b(s)fs = Q(x, ∂, s) · fs+1. (2.0)

For the proof of existence of such b(s) 6= 0 see [5], for example. The polynomials b(s) for which

equation (2) exists form an ideal in k[s]. The monic generator of this ideal is denoted by bf (s)

and called the Bernstein-Sato polynomial of f , which was first introduced by Bernstein in [4]

and is also called the global b-function of f (e.g. in [31]).

The simplest characteristics of a polynomial f are its degree d and its number of variables

n. This paper is motivated by the following natural question: what can one say about bf (s)

in terms of n and d? We give what may be regarded as a complete answer to this question.

Namely, we describe an algorithm that for fixed n and d gives a complete list of all possible

Bernstein-Sato polynomials and, for each polynomial b(s) in this list, a complete description of

the polynomials f such that bf (s) = b(s).

Let P(n, d; k) be the set of all the non-zero polynomials of degree at most d in n variables with

coefficients in k and let P (n, d; k) be P(n, d; k) modulo the equivalence relation f ∼ g ⇔ f = c·g
for some 0 6= c ∈ k. Note that bf (s) = bg(s) if f ∼ g. We view P (n, d; k) as the set of the k-

rational points of the projective space P(n, d; k) ∼= PN−1
k where N is the number of monomials in

n variables of degree at most d. Lyubeznik in [25] defined B(n, d) as the set of all the Bernstein-

5

Sato polynomials of all the polynomials from P(n, d; k) as k varies over all fields of characteristic

0 and proved that B(n, d) is a finite set. He also asked if the subset of P(n, d; k) corresponding

to a given element of B(n, d) is constructible. We will show that the corresponding subset of

P(n, d; k) is indeed constructible thus giving an affirmative answer to Lyubeznik’s question. It

turns out that these constructible sets can be defined over Q, i.e. their defining equations and

inequalities are the same for all fields k.

A crucial ingredient in our proof is an algorithm discovered by Oaku [28] that given a polyno-

mial f returns its Bernstein-Sato polynomial bf (s). Using Oaku’s algorithm we have developed

an algorithm that computes the complete set of the Bernstein-Sato polynomials B(n, d) for

each pair (n, d) and for each b(s) ∈ B(n, d) constructs a finite number of locally closed sets

Vi = V ′
i \ V ′′

i , where V ′
i and V ′′

i are Zariski closed subsets of P(n, d;Q) defined by explicit poly-

nomial equations with rational coefficients, such that for every field k of characteristic 0, the

subset of P (n, d; k) having b(s) as the Bernstein-Sato polynomial is the set of k-rational points

of

S(b(s), k) = (∪iVi)⊗SpecQ Speck ⊂ P(n, d;Q)⊗SpecQ Speck = P(n, d; k).

A similar approach applies also to computing the Bernstein-Sato polynomial of a polynomial

with parameters. Namely, one can prove that the number of different possible Bernstein-Sato

polynomials in this case is finite and the corresponding stratum for each of them is a constructible

set in the space of parameters.

Moreover, using a similar technique we develop an algorithm for computing the annihilator

of 1
fs in An(k), which, provided such s is known that 1

fs generates Rn(k)f , gives a presentation

of Rn(k)f as an An(k)-module (see Example 28). This algorithm is particularly important for

Walther’s algorithmic computation of local cohomology modules [37].

These applications are discussed in Section 2.3.

A different approach to the question of constructibility was laid out recently in [6].

2.1 Preliminaries

In this section we have collected the ingredients for the main algorithm of this chapter. We define

the canonical form of a constructible set, consider parametric Gröbner bases for Weyl algebras,

give a description of Oaku’s algorithm for computing the Bernstein-Sato polynomial, and finally

discuss some properties of the Bernstein-Sato polynomial, in particular, the rationality of the

roots of the Bernstein-Sato polynomial.

6

2.1.1 Constructible Sets

We recall that a set is constructible iff it is a finite union of locally closed sets and a set is locally

closed iff it is the difference of two closed sets.

Lemma 1 Let C be a constructible subset of a k-variety X. Then C may be presented uniquely

as a disjoint union
⋃m

i=1(V
′
i \ V ′′

i), where for all i the sets V ′
i and V ′′

i are closed, V ′
1 ⊃ V ′′

1 ⊃
V ′

2 ⊃ V ′′
2 ⊃ ... ⊃ V ′

m ⊃ V ′′
m and no two sets in this chain have an irreducible component in

common. We call it a canonical presentation of C as a union of locally closed subsets.

Proof. Let d(C) be the maximal dimension of an irreducible component in C̄. Let V ′
1 = C̄ and

V ′′
1 = V ′

1 \ C and let C ′ = C ∩ V ′′
1 . Note that d(C ′) < d(C) and we may assume by induction

on d that the chain V ′
2 ⊃ V ′′

2 ⊃ ... ⊃ V ′
m ⊃ V ′′

m such that C ′ =
⋃m

i=2(V
′
i \ V ′′

i) exists and is

unique. Then V ′
1 ⊃ V ′′

1 ⊃ V ′
2 ⊃ V ′′

2 ⊃ ... ⊃ V ′
m ⊃ V ′′

m is the unique chain for C, which satisfies

the condition in the statement.

Remark 2 There is an algorithmic way for constructing such a presentation, starting with C

presented as a union of nonempty sets Wα \ (W (1)
α ∪ ...∪W

(hα)
α), where Wα and W

(i)
α are closed

irreducible subsets and Wα ⊃ W
(i)
α for all i. Let d(C) = maxα dim Wα (which agrees with the

definition in the proof of the theorem).

Let V ′
1 be the union of all maximal elements in the set {Wα} and V ′′

1 be the union of all W
(i)
α

that are minimal with the following property: there is a set of pairs {(αj , ij)}l
j=1 such that Wα1

is a component of V ′
1 , W

(il)
αl = W

(i)
α and W

(ij)
αj ⊃ Wαj−1 for all j = 2, ..., l . Now d(C \(V ′

1 \V ′′
1))

is less than d(C), therefore, we may assume again by induction on d that we are able to construct

the rest of V ′
i and V ′′

i .

Lemma 3 Let X be a variety and f : X → Y a map into any finite set Y . Then f−1(y) is

constructible for every y ∈ Y iff for every closed irreducible subvariety X ′ ⊂ X there is an open

U ⊂ X ′ such that f |U is a constant function.

Proof. Assume the second part holds. Take any y ∈ Y and let us prove that Z = f−1(y) is

constructible. Let n = dim X and assume the lemma is proved for dimensions less then n. First

of all, since X is a finite union of its irreducible components, and a subset of X is constructible

iff its intersection with every irreducible component of X is, we may proceed assuming that X

is irreducible. Let U be an open subset of X such that f(u) = y′ for all u ∈ U . There are two

possibilities:

7

(i) if y′ 6= y then Z ⊂ X\U , which has dimension less than n and, therefore, Z is constructible

by the induction assumption applied to the map f |X\U : X \ U → Y .

(ii) in case y = y′ the set (Z \ U) ⊂ (X \ U) is constructible by the induction assumption

again, hence so is Z = U ∪ (Z \ U).

It remains to check the case dim X = 0, in which f−1(y) is a finite set of points and is

certainly constructible.

Conversely, assume that f−1(y) is constructible for every y ∈ Y . Let X ′ ⊂ X be a closed

irreducible subvariety. Then X ′ =
⋃

y∈Y X ′
y, where X ′

y = (f−1(y)∩X ′), and, since Y is a finite

set and X ′ is irreducible, there exist y such that the closure of X ′
y is equal to X ′. But X ′

y is

constructible, hence it contains a nonempty open subset of X ′.

2.1.2 Parametric Gröbner Bases

Here we describe an approach to computing parametric Gröbner bases in Weyl algebras. For

a discussion of parametric Gröbner bases, which leads to the notion of comprehensive Gröbner

bases, see [38] for the commutative case and [21] for the case of solvable algebras. However,

everything that is needed for our purposes is stated and proved in this section.

Let C = k[ā] (ā = {a1, ..., am}) be the ring of parameters and R = C
〈
ȳ, x̄, ∂̄

〉
be the ring

of non-commutative polynomials in ȳ = {y1, ..., yl}, x̄ = {x1, ..., xn} and ∂̄ = {∂1, ..., ∂n} with

coefficients in C, where x̄ and ∂̄ satisfy the same relations as in a Weyl algebra and ȳ is contained

in the center of R.

Definition 4 For a prime P in C, we shall call the natural map C → k(P) as well as the induced

map R = C
〈
ȳ, x̄, ∂̄

〉 → k(P)
〈
ȳ, x̄, ∂̄

〉
, where k(P) is the residue field at P , the specialization at

the point P and denote both maps by σP .

The next result is similar to Oaku’s Proposition 7 in [28].

Let < be an order on monomials in ā, ȳ, x̄ and ∂̄ such that every ai is << than any of xj ,

yj or ∂j (i.e. the order < eliminates xj , yj and ∂j). Assume G is a finite Gröbner basis of an

ideal I of R, then we claim that σP (G) = {σP (g) | g ∈ G} is a Gröbner basis of σP (I) in σP (R)

for “almost” every P ∈ Spec C.

In order to make this statement precise, we need to make some definitions. For a polynomial

f let inM(f) be the initial monomial, inC(f) the initial coefficient such that in(f) = inC(f) ·
inM(f) is the initial term of f . Also for f ∈ R let inM∗(f) ∈ 〈

ȳ, x̄, ∂̄
〉

and inC∗(f) ∈ C be the

8

initial monomial and the initial coefficient of f viewed as a polynomial in x, y, ∂ with coefficients

in C with respect to ≺, the restriction of < to
〈
ȳ, x̄, ∂̄

〉
.

One obvious observation is that a specialization σP : (R, <) → (σP (R),≺) preserves the

order.

Lemma 5 Let Q be an ideal contained in I and let h =
∏

g∈G\Q inC∗(g) ∈ C. Then σP (G \Q)

is a Gröbner basis of σP (I) for every prime P ⊃ Q not containing h.

Proof. Notice that if any g ∈ G \Q has inC∗(g) ∈ Q then the statement of the lemma becomes

trivial.

Assume inC∗(g) /∈ Q for all g ∈ G \ Q. Consider any prime P ⊃ Q not containing h.

Take a polynomial f ′ =
∑

g∈G\Q
[αg]
[βg] σP (g) in the ideal of σP (R) generated by σP (G), where

αg, βg ∈ C, βg /∈ P and [...] stands for an equivalence class in C/P . Set γ =
∏

g∈G βg then

(
∑

g∈G\Q
γαg

βg
g) is in the ideal I of R. Let f be the latter sum where all terms with coefficients

in Q are set to zero. Then f ′ = 1
[γ]σP (f) and inM∗(f) = inM(f ′). We have inM(g)|inM(f) for

some g ∈ G \ Q, which means that inM∗(g)|inM∗(f). Now, inM(σP (g)) = inM∗(g), because

inC∗(g) /∈ P . Thus inM(σP (g))|inM(σP (f)), which proves that σP (G) is a Gröbner basis.

Remark 6 (i) The statement of the lemma is true for reduced Gröbner bases as well. The proof

works almost verbatim.

(ii) Clearly, inC∗(g) /∈ Q for all g ∈ G \ Q. Thus if Q is prime, then h /∈ Q, hence the set

of primes containing Q but not containing h is nonempty.

The lemma leads to the following

Algorithm 7

Input: F ′: a finite set of generators for a prime ideal Q ⊂ C.

F : a finite set of generators of a left ideal I ⊂ R containing Q,

Output: G: a (reduced) Gröbner basis in R with respect to <,

h: an exceptional polynomial in C \Q,

such that for any P ∈ Spec(k[a1, ..., am]), P ⊃ Q and h /∈ P

the ideal σP (I) ⊂ σP (R) has a σP (G) as a (reduced) Gröbner

basis with respect to ≺.

9

1. Compute a Gröbner basis G of I + QR (which is generated by F ∪ F ′) .

2. Return G and h =
∏

g∈G\Q inC∗(g).

Remark 8 If all polynomials in F ′ and all C-coefficients of all elements of F are homogeneous,

then so is the exceptional polynomial h, because all operations preserve homogeneity.

2.1.3 Oaku’s Algorithm

The original algorithm of Oaku for computing the Bernstein-Sato polynomial appeared in [28].

However there exist several modifications of the algorithm (see [31] for example). For our needs

a version of the algorithm described in [37] will be utilized.

Let f ∈ Rn(k). Denote by Annfs the ideal of all elements in An(k)[s] annihilating fs. The

following algorithm is Algorithm 4.4. from [37] with L = (∂1, ..., ∂n).

Algorithm 9

Input: f : a polynomial in Rn(k) ,

Output: {P ′j}: generators of Annfs

1. Set Q = {∂i + df
dxi

∂t, t− f}.

2. Introduce new variables y1 and y2 and the weight w such that w(t) = w(y1) = 1, w(∂t) =

w(y2) = −1, w(xi) = w(∂i) = 0. Homogenize all qi ∈ Q (i = 1, ..., n + 1) using y1 with

respect to the weight w. Denote the homogenized elements qh
i .

3. Compute a Gröbner basis for the ideal generated by qh
1 , ... , qh

n+1, 1− y1y2 in An+1[y1, y2]

with respect to an order eliminating y1, y2.

4. Select the operators {Pj}b
1 in this basis which do not contain y1, y2.

5. For each Pj , if w(Pj) > 0 then replace Pj by P ′j = ∂
w(Pj)
t Pj else replace Pj by P ′j =

t−w(Pj)Pj .

6. Return the operators {P ′j}b
1.

The following is Algorithm 4.6 in [37].

Algorithm 10

10

Input: f : a polynomial in Rn(k),

Output: bf (s) the Bernstein-Sato polynomial of f .

1. Determine Annfs following Algorithm 9.

2. Find a reduced Gröbner basis for the ideal Annfs +An[s] ·f using an order that eliminates

x and ∂.

3. Return the unique element in the basis contained in k[s].

2.1.4 Properties of the Bernstein-Sato polynomial

As was mentioned above roots of the Bernstein-Sato polynomial are of particular importance for

computing localization, but also there is a connection of these roots with the local monodromy

operator established by Malgrange [26].

For isolated singularities Bernstein-Sato polynomial makes a stronger invariant than local

monodromy (see [39, §15]), on the other hand the classification of isolated singularities that

identifies two singularities if one is an analytical deformation of the other (see Arnol’d [1, 2]) is

finer than the one provided by Bernstein-Sato polynomials.

The first paper that discussed the rationality of the roots of the Bernstein-Sato polynomials

was [26] by B. Malgrange. Using resolution of singularities, Kashiwara in [20] proved that the

roots of local Bernstein-Sato polynomials are rational when k = C. In [27, Prop. 4.2.1] it is

proved that the Bernstein-Sato polynomial bf (s) is the lowest common multiple of the local

Bernstein-Sato polynomials. Hence the roots of bf (s) are rational if k = C.

In particular, it follows that bf (s) ∈ Q[s]. The fact that the roots are rational for every k is

well-known to experts, but we have not been able to find a published proof, so we prove it in

the next proposition.

Proposition 11 Let k be a field, char k = 0. Then for every f ∈ Rn(k) the roots of the

Bernstein-Sato polynomial bf (s) are rational.

Proof. The crucial fact is that if K ⊂ k is a subfield containing all the coefficients of f , then the

coefficients of bf (s) computed over k belong to K. This is because upon examining every step of

Oaku’s algorithm one sees that all calculations are done in K. Let K be a finite extension of Q

containing the coefficients of f . Since one can embed K into C, the Bernstein-Sato polynomial

11

of f over K is the same as over C. Now we are done by Kashiwara’s result in conjunction with

[27].

We can define the local Bernstein-Sato polynomial of a polynomial f at a point P by consid-

ering a functional equation similar to equation 2 in the definition of the (global) Bernstein-Sato

polynomial with the only difference that everything is tensored over Rn(k) with Rn(k)P , which

is our polynomial ring localized at the maximal ideal corresponding to the point P :

b(s)(fs ⊗ 1̄) = Q(x, ∂, s) · (f · fs ⊗ 1̄),

where 1̄ ∈ Rn(k)P .

It follows from the definition that the global Bernstein-Sato polynomial is the least common

multiple of the local ones for all points P .

Also, it is true that local Bernstein-Sato polynomial at P is invariant under an analytic

change of variables fixing P . This fact makes the local Bernstein-Sato polynomial an invariant

useful to study singularities of hypersurfaces.

2.2 The Main Results

Consider P(n, d; k) with the coordinate ring C = k[ā], where ā = {aα : |α| ≤ d}. Let f =
∑
|α|≤d aαxα.

Definition 12 Let b(s) ∈ B(n, d). The set S(b(s), k) ⊂ P(n, d; k) is defined as the set of all the

points P ∈ P(n, d; k) such that bσP (f)(s) = b(s). (We view points in P(n, d; k) as homogeneous

primes in C. See Definition 4 for σP (f).)

Lyubeznik’s proof that B(n, d) is finite can be summarized as follows. Let the space of pa-

rameters X = Spec A be an irreducible variety with A a quotient ring of Q[ā]. We consider

the Bernstein-Sato polynomial b(s) of polynomial f from the beginning of this section seen as

a polynomial over the field of fractions of A. Using the rationality of b(s) and clearing the

denominators, we obtain a functional equation

Q(a, x, ∂, s)fs+1 = h(a)b(s)fs.

This shows that outside the zeroes of h ∈ A, the Bernstein-Sato polynomial divides b(s). Hence

there are only finitely many possibilities for b(s) outside the zeros of h, while the set of zeros

12

of h has a smaller dimension than X. This allows an induction argument for the finiteness of

B(n, d). But to prove constructibility one needs to find such h that, outside its zeroes, the

Bernstein-Sato polynomial equals b(s). This is the idea of the proof.

Let Q be a homogeneous prime in C. Then σQ(f) is a polynomial with coefficients in a field,

hence bfQ
(s) may be computed. What would happen if we run Algorithm 10 trying to compute

bfQ
(s) “lifting from k(Q), the fraction field of C/Q, to C” at every single step of the algorithm?

Notice that σQ : C → k(Q) has C/Q as its image. Since the steps of the algorithm that do not

involve Gröbner bases computation do not involve division either, we have to worry only about

the two steps that deal with Gröbner bases. Suppose for these two steps we used Algorithm 7

with F ′ generating Q, in particular we obtained the exceptional polynomials h1 and h2, both in

C. Set h = h1h2 ∈ C, then the output, which is going to be bσQ(f)(s), is also the Bernstein-Sato

polynomial of σP (f) for every P ⊃ Q such that h /∈ P . Thus we have

Algorithm 13

Input: f : a polynomial in Rn(C),

F ′: generators of a homogeneous prime ideal Q,

Output: b(s): a polynomial in Q[s],

H: generators of a homogeneous ideal in C such that

b(s) = bσP (f)(s) for every point P ∈ V ′\V ′′ 6= 0,

where V ′ = V (Q) and V ′′ = V (H) (V ′′ ⊂ V ′ ⊂ P(n, d; k)).

1. Compute the polynomial b(s) and the exceptional polynomial h as described above.

2. Return b(s) and {h} ∪ F ′.

Proposition 14 If we consider C ′ = C ⊗k k′ and f ⊗k 1 ∈ Rn(C ′), where k′ is an extension

of k, then b(s) is the Bernstein-Sato polynomial for any point in the set (V ′ ⊗Spec k Spec k′) \
(V ′′ ⊗Spec k Spec k′).

Proof. Let Q be as above, then QC ′ may not be prime anymore. Nevertheless, assume the

computation above was done for f ⊗ 1 ∈ Rn(C ′) and QC ′ as input. This computation “stays

within k”, i.e. no operation introduces an element outside the old ring. The output of the

algorithm would be the same as before, and we claim that for every prime P ′ ⊃ QC ′ not

13

containing h ⊗ 1 the Bernstein-Sato polynomial of σP (f ⊗ 1) is equal to bσQ(f)(s). This is

guaranteed by Lemma 5.

Remark 15 One can prove easily that (V ′⊗Spec k Spec k′) \ (V ′′⊗Spec k Spec k′) is nonempty

(although we will not use this fact in the sequel) by showing that

(i) QC ′ is the intersection of its associated primes {Qi} ⊂ Spec C ′,

(ii) no Qi contains h⊗ 1, for otherwise Qi ∩ C = Q contains h.

The next theorem gives an affirmative answer to Lyubeznik’s question about the constructibility

of the set S(b(s), k) of Definition 12.

Theorem 16 The set S(b(s), k) is constructible for every b(s).

Proof. The proof follows from the algorithm. For the function φ : P(n, d; k) → B(n, d),

φ(P) = bσP (f)(s) the following is true. For every projective V ′ ⊂ P(n, d; k) there is an open set

U = V ′ \ V ′′ ⊂ V ′ such that f |U is a constant function. Therefore we may apply Lemma 3.

Algorithm 13 leads to the main algorithm of this chapter.

Algorithm 17 Input: n, d ∈ N.

Output: The set of pairs L = {(b(s), S(b(s)))| b(s) ∈ B(n, d)}, where S(b(s)) = S(b(s),Q) ⊂
P(n, d;Q).

1. Set L := ∅, f :=
∑
|α|≤d aαxα .

2. Define the recursive procedure BSP(Q), where Q ∈ Spec(Q[ā]).

14

BSP(Q) := {

Apply Algorithm 13 to V (Q) and f

to get an ideal I in C and b(s) ∈ Q[s];

IF there is a pair (b(s), S) ∈ L

THEN replace it by (b(s), S ∪ (V (Q) \ V (I)))

ELSE L := L ∪ {(b(s), V (Q) \ V (I))};

IF V (I) 6= ∅ THEN {

Find the minimal primes {Qi} associated to I;

FOR each Qi DO BSP(Qi) ;

}

}

3. Run BSP(0).

Remark 18 This algorithm returns some presentations for constructible sets S(b(s),Q), the

canonical presentations for which may be obtained by using the algorithm discussed in Remark

2.

Corollary 19 The set S(b(s), k) is defined over Q, i.e. there exist ideals Ii ⊂ Q[ā] and Ji ⊂ Q[ā]

(i = 1, ...,m) such that for any field k

S(b(s), k) =
⋃

i

(V ′
i \ V ′′

i),

where V ′
i = V (k[ā]Ii) is the zero set of the extension of Ii and V ′′

i = V (k[ā]Ji) is the zero set of

the extension of Ji.

Proof. Since the core part of algorithm above is Algorithm 13, the statement of the corollary

follows from Proposition 14 applied to the extension k of Q.

Remark 20 Given a polynomial with parameters one can use a similar approach to compute

the stratification of the parameter space corresponding to the set of all possible Bernstein-Sato

polynomials (see examples 24 and 25).

15

The annihilators Ann(fs) are computed using Algorithm 9 and the same technique as in the

algorithm above. The output is a set of pairs {(Ii, Vi)}, where Ii are the ideals in An(k)[ā][s] and

Vi are locally closed sets, such that for any polynomial f with coefficients in k that corresponds

to a point P ∈ Vi the ideal Ann(fs) equals σP (Ii), the ideal Ii specialized to P .

After doing the above steps, the real life algorithm that produces Example 28 compresses its

output in the following way. If (Ii, Vi) and (Ij , Vj) are two different pairs such that σP (Ii) =

σP (Ij) for all P ∈ Vj then these two are replaced by the pair (Ii, Vi ∪ Vj).

Remark 21 The stratification of the parameter space constructed by such computation is not

unique. This is so because the annihilators, as opposed to Bernstein-Sato polynomials, depend

on the parameters, making it possible to slice the space of parameters in many ways.

2.3 Examples

Our algorithms have been implemented as scripts written in the Macaulay 2 programming

language (see [15]). In this section we give some examples of actual computations and discuss

possible uses of the results of computation.

Example 22 If n = 2 and d = 2 then

f = a20x
2 + a11xy + a02y

2 + a10x + a01y + a00,

so P (2, 2; k) is the set of the k-rational points of the projective space P(2, 2; k) = P5
k with the

homogeneous coordinate ring k[aij], i, j = 0, 1, 2. In a matter of minutes our program produces

B(2, 2) = {1, s + 1, (s + 1)2, (s + 1)(s +
1
2
)}

and gives a description of the corresponding constructible sets of polynomials from B(2, 2) which

is essentially equivalent to the following:

• bf (s) = 1 iff f ∈ V1 = V ′
1 \V ′′

1 , where V ′
1 = V (a1,1, a0,1, a0,2, a1,0, a2,0), while V ′′

1 = V (a0,0),

• bf (s) = s + 1 iff f ∈ V2 = (V ′
2 \ V ′′

2) ∪ (V ′
3 \ V ′′

3), where V ′
2 = V (0), V ′′

2 = V (γ1),

V ′
3 = V (γ2, γ3, γ4), V ′′

3 = V (γ3, γ4, γ5, γ6, γ7, γ8),

• bf (s) = (s + 1)2 iff f ∈ V ′
4 \ V ′′

4 , where V ′
4 = V (γ1), V ′′

4 = V (γ2, γ3, γ4),

• bf (s) = (s + 1)(s + 1
2) iff f ∈ V ′

5 \ V ′′
5 , where V ′

5 = V (γ3, γ4, γ5, γ6, γ7, γ8), while V ′′
5 =

V (a1,1, a0,1, a0,2, a1,0, a2,0),

16

where γi may be looked up in this list:

γ1 = a0,2a
2
1,0 − a0,1a1,0a1,1 + a0,0a

2
1,1 + a2

0,1a2,0 − 4a0,0a0,2a2,0,

γ2 = 2a0,2a1,0 − a0,1a1,1,

γ3 = a1,0a1,1 − 2a0,1a2,0,

γ4 = a2
1,1 − 4a0,2a2,0,

γ5 = 2a0,2a1,0 − a0,1a1,1,

γ6 = a2
0,1 − 4a0,0a0,2,

γ7 = a0,1a1,0 − 2a0,0a1,1,

γ8 = a2
1,0 − 4a0,0a2,0.

It is not hard to see that this computation agrees with the well-known result that bf (s) = 1 iff

f is constant, bf (s) = s + 1 iff f is non-constant and non-singular, and bf (s) = (s + 1)2 (resp.

bf (s) = (s + 1)(s + 1
2)) iff f can be reduced to xy (resp. x2) by a linear change of variables.

Example 23 (Cubic polynomials in 2 variables) If n = 2 and d = 3 then

f = a3,0x
3 + a2,1x

2y + a1,2xy2 + a0,3y
3

+ a2,0x
2 + a1,1xy + a0,2y

2 + a1,0x + a0,1y + a0,0,

so P (2, 3; k) is the set of the k-rational points of P(2, 3; k) = P9
k with the homogeneous coordinate

ring that involves 10 variables. Our program exhausts all available memory, 128Mb, of the

computer after about 3 hours and stops without producing an answer. However, a somewhat

creative use of our program enables us to give a complete list of all the elements of B(2, 3) (but

not the explicit descriptions of the constructible sets corresponding to each element of B(2, 3)):

Since for any nonsingular polynomial its Bernstein-Sato polynomial is equal to s + 1, it remains

to consider the case where our f ∈ P(2, 3; k) possesses a singularity at some point (x0, y0).

Keeping in mind that the Bernstein-Sato polynomial is stable under any linear substitution of

variables, we may get rid of its linear part via the substitution x 7→ x − x0, y 7→ y − y0, i.e. f

takes the form

f = (ax3 + bx2y + cxy2 + dy3) + (a′x2 + b′xy + c′y2).

Now it is easy to see that by homogeneous linear transformation the quadratic part may be

shaped to one of the forms 0, xy, x2. Therefore it is enough to compute the Bernstein-Sato

17

polynomial for the following polynomials:

f1 = ax3 + bx2y + cxy2 + dy3,

f2 = (ax3 + bx2y + cxy2 + dy3) + xy,

f3 = (ax3 + bx2y + cxy2 + dy3) + x2.

In each of the three cases our program produces the set of possible Bernstein-Sato polynomi-

als and an explicit description of the corresponding constructible set in A4
k (each fi contains

4 indeterminate coefficients) for each element b(s) ∈ Bfi . We omit these and list only the

Bernstein-Sato polynomials:

Bf1 = { (s + 1)2(s +
2
3
)(s +

4
3
),

(s + 1)2(s +
1
2
),

(s + 1)(s +
2
3
)(s +

1
3
) };

Bf2 = { (s + 1)2 };
Bf3 = { (s + 1)(s +

7
6
)(s +

5
6
),

(s + 1)2(s +
3
4
)(s +

5
4
),

(s + 1)2(s +
1
2
),

(s + 1)(s +
1
2
) }.

Thus

18

B(2, 3) = { (s + 1)2(s +
2
3
)(s +

4
3
),

(s + 1)2(s +
1
2
),

(s + 1)(s +
2
3
)(s +

1
3
),

(s + 1)2,

(s + 1)(s +
7
6
)(s +

5
6
),

(s + 1)2(s +
3
4
)(s +

5
4
),

(s + 1)(s +
1
2
),

s + 1,

1 }.

The efficiency of the algorithm and the current efficiency of computer hardware and software

obstruct us from getting a complete description of the constructible sets that correspond to the

polynomials above.

Here are a couple of examples of the computation for polynomials with parameters.

Example 24 Let f = x3 + ax + b + cy4 + y2, then

• b(s) = (s + 1) for V (0) \ (V (a3c2 + 27
4 b2c2 − 27

8 bc + 27
64) ∪ V (4a3 + 27b2)) ,

• b(s) = (s+1)2 for (V (a3c2 + 27
4 b2c2− 27

8 bc+ 27
64)∪V (4a3 +27b2))\ (V (a, 4bc−1)∪V (a, b)),

• b(s) = (s + 1)(s + 5
6)(s + 7

6) for V (a, 4bc− 1) ∪ V (a, b).

Example 25 Let f = x2 + axy + by2 + z3 + cx4, then

• b(s) = (s + 1)(s + 4
3)(s + 5

3) for V (0) \ V (a2 − 4b),

• b(s) = (s + 1)(s + 4
3)(s + 5

3)(s + 13
12)(s + 17

12)(s + 19
12)(s + 23

12) for V (a2 − 4b) \ V (c, a2 − 4b),

• b(s) = (s + 1)(s + 5
6)(s + 7

6) for V (a, b) ∪ V (c, a2 − 4b).

Example 26 (Cubic polynomials in 3 variables) This example (studied in collaboration

with Josep Alvarez Montaner) generalizes Example 23, hence, there is even less hope for be-

ing able to compute B(3, 3) directly.

19

Normal form Type Bernstein-Sato polynomial(s)

x2 + y2 + z2 A1 (s + 1)(s + 3
2)

x2 + y2 + z3 A2 (s + 1)(s + 4
3)(s + 5

3)

x2 + y2 + z4 A3 (s + 1)(s + 5
4)(s + 3

2)(s + 7
4)

x2 + y2 + z5 A4 (s + 1)(s + 6
5)(s + 7

5)(s + 8
5)(s + 9

5)

x2 + y2 + z6 A5 (s + 1)(s + 7
6)(s + 4

3)(s + 3
2)(s + 5

3)(s + 11
6)

x2 + z(y2 + z2) D4 (s + 1)(s + 7
6)(s + 3

2)(s + 11
6)

x2 + z(y2 + z3) D5 (s + 1)(s + 9
8)(s + 11

8)(s + 3
2)(s + 13

8)(s + 15
8)

x2 + y3 + z4 E6 (s + 1)(s + 13
12)(s + 4

3)(s + 17
12)(s + 19

12)(s + 5
3)(s + 23

12)

x3 + y3 + z3 + 3λxyz, Ẽ6 (s + 1)2(s + 4
3)(s + 5

3)(s + 2), (s + 1)3

where λ3 6= −1

Table 2.1: Isolated singularities on cubic surfaces

Since the Bernstein-Sato polynomial (global b-function) of f ∈ R3 = k[x, y, z] is the least

common multiple of the local b-functions at singular points of the surface f = 0 and these do

not change under analytic transformations, in order to simplify the task of computing B(3, 3) it

would be helpful to classify all cubic surfaces by their singularities.

Since the end of 19th century such classification has been known. A modern treatise of this

problem from the point of view of the singularity theory can be found in [8]. It turns out that

there are 9 types of isolated singularities (up to a local analytic transformation of coordinates)

possible on cubic surfaces. The complete list of the normal forms of these singularities is in

Table 2.1.

It is also known which combinations of singularities are possible (see Cases A,B,C,D in [8]).

For each such combination the computation of the corresponding Bernstein-Sato polynomials

would amount to taking the least common multiple of the corresponding local Bernstein-Sato

polynomials in Table 2.1. All possible combinations of singularity types that may and do coexist

on one cubic surface together with the corresponding Bernstein-Sato polynomials are collected

in Table 2.2.

The remaining cases are surfaces with non-isolated singularities:

• Irreducible. This corresponds to Case E in [8], however, we have to be careful since there

the projective case is considered. Using affine transformations changes of coordinates and

technique similar to [8] we boil down this case to one of the polynomials in Table 2.3.

20

Combination(s) Bernstein-Sato polynomial(s)

A1 (s + 1)(s + 3
2)

A2 (s + 1)(s + 4
3)(s + 5

3)

A3 and A1A3 (s + 1)(s + 5
4)(s + 3

2)(s + 7
4)

A4 (s + 1)(s + 6
5)(s + 7

5)(s + 8
5)(s + 9

5)

A5 and A1A5 (s + 1)(s + 7
6)(s + 4

3)(s + 3
2)(s + 5

3)(s + 11
6)

D4 (s + 1)(s + 7
6)(s + 3

2)(s + 11
6)

D5 (s + 1)(s + 9
8)(s + 11

8)(s + 3
2)(s + 13

8)(s + 15
8)

E6 (s + 1)(s + 13
12)(s + 4

3)(s + 17
12)(s + 19

12)(s + 5
3)(s + 23

12)

Ẽ6 (s + 1)2(s + 4
3)(s + 5

3)(s + 2), (s + 1)3

A1A2 (s + 1)(s + 4
3)(s + 3

2)(s + 5
3)

A1A4 (s + 1)(s + 6
5)(s + 7

5)(s + 3
2)(s + 8

5)(s + 9
5)

Table 2.2: Possible combinations of isolated singularities on cubic surfaces

f bf (s)

xyz + x3 + y3 (s + 1)3(s + 4
3)(s + 5

3)

xyz + ax3 + y3 + x2 (s + 1)3(s + 4
3)(s + 3

2)(s + 5
3)

xyz + ax3 + by3 + x2 + y2 (s + 1)2(s + 3
2)

x2z + y3 (s + 1)(s + 5
6)(s + 7

6)(s + 4
3)(s + 5

3)

x2z + axy2 + by3 + y2 (s + 1)2(s + 3
2)

x2z + xy + y3 (s + 1)2

irreducible polynomials in two variables see Example 24

Table 2.3: Irreducible cubic surfaces

21

f possible bf (s)

x(x + y2 + z2 + x(ax + by + cz)) (s + 1)3(s + 3
2)

x(x + y2 + x(ax + by + cz)) (s + 1)2(s + 3
4)(s + 5

4)

x(x + x(ax + by + cz)) (s + 1)2(s + 1
2)

(s + 1)(s + 1
2)

x(y + z2 + ax2 + bxy + cy2) (s + 1)2

(s + 1)2(s + 3
2)

x(y + zx + y(ay + bz)) (s + 1)3(s + 3
2)

(s + 1)2

x3 (s + 1)(s + 2
3)(s + 1

3)

x(y2 + x(ax + by + cz)) (s + 1)2(s + 5
4)(s + 3

4), ,

(s + 1)2(s + 4
3)(s + 2

3)

(s + 1)2(s + 1
2)

x(yz + x(ax + by + cz)) (s + 1)3(s + 4
3)(s + 5

3)

(s + 1)3

Table 2.4: Reducible cubic surfaces

• Reducible. This corresponds to Case F in [8]. If the surface is reducible then at least

one of its irreducible components has to be a plane. Assume this plane is x = 0, then one

may subdivide reducible surfaces in five families each parameterized by three variables as

in Table 2.4.

In the latter case a finer stratification is possible, however, what we have is already fine

enough in order to be treated by our algorithm.

Remark 27 We covered all possible cubic surfaces in above discussion, therefore, B(3, 3) is

computed. Though we know that each strata in P(3, 3; k) corresponding to a fixed Bernstein-Sato

polynomial is constructible, it seems to be impossible (at least at the moment) to compute these

strata with our direct algorithm, since the coordinate ring of P(3, 3; k) is a polynomial ring in 20

variables.

Given a cubic polynomial a more practical approach would be to compute its singular locus

and try to classify its singularities. The former is computationally easy, the latter is doable at

least in case of isolated singularities via one of the Singular [16] packages.

22

Using a technique similar to that for computing Bernstein-Sato polynomials, we constructed

an algorithm for computing of Annfs, the annihilator ideal of fs in An(k)[s], for all f ∈
P (n, d; k). By this we mean an explicit subdivision of P(n, d; k) into a finite union of constructible

subsets and for each such subset V, an explicit finite set of elements β1, β2, ... ∈ An(k)[ai1...in][s]

with i1 + ... + in ≤ d, such that Ann(fs) = (β′1, β
′
2, ...) for every f ∈ V , where β′i is the image of

βi under the specialization of the ai1...in
to the corresponding coefficients of f .

Example 28 To make the results obtained for P (2, 2; k) compact we need the following polyno-

mials:

β1 = a1,1x1∂1 + 2a0,2x2∂1 − 2a2,0x1∂2 − a1,1x2∂2 + a0,1∂1 − a1,0∂2,

β2 = a1,1a2,0x
2
1∂1 + a2

1,1x1x2∂1 + a0,2a1,1x
2
2∂1 − 2a2

2,0x
2
1∂2 − 2a1,1a2,0x1x2∂2

−2a0,2a2,0x
2
2∂2 − a2

1,1sx2 + 4a0,2a2,0sx2 + a1,0a1,1x1∂1 + a0,1a1,1x2∂1

−2a1,0a2,0x1∂2 − 2a0,1a2,0x2∂2 − a1,0a1,1s + 2a0,1a2,0s + a0,0a1,1∂1 − 2a0,0a2,0∂2,

β3 = a2,0x
2
1∂2 + a1,1x1x2∂2 + a0,2x

2
2∂2 − a1,1sx1 − 2a0,2sx2 + a1,0x1∂2

+a0,1x2∂2 − a0,1s + a0,0∂2,

β4 = a2
1,1x1∂1 − 4a0,2a2,0x1∂1 + a2

1,1x2∂2 − 4a0,2a2,0x2∂2 − 2a2
1,1s

+8a0,2a2,0s− 2a0,2a1,0∂1 + a0,1a1,1∂1 + a1,0a1,1∂2 − 2a0,1a2,0∂2,

β5 = a1,1∂1 − 2a2,0∂2,

β6 = 2a2,0x1∂2 + a1,1x2∂2 − 2a1,1s + a1,0∂2,

β7 = ∂1,

β8 = 2a0,2x2∂2 − 4a0,2s + a0,1∂2,

β9 = ∂2,

β10 = 2a2,0x1∂1 − 4a2,0s + a1,0∂1,

β11 = a2,0x
2
1∂1 − 2a2,0sx1 + a1,0x1∂1 − a1,0s + a0,0∂1,

γ1 = a0,2a
2
1,0 − a0,1a1,0a1,1 + a0,0a

2
1,1 + a2

0,1a2,0 − 4a0,0a0,2a2,0,

γ2 = 2a0,2a1,0 − a0,1a1,1,

γ3 = a1,0a1,1 − 2a0,1a2,0,

γ4 = a2
1,1 − 4a0,2a2,0,

γ5 = a2
0,1 − 4a0,0a0,2,

γ6 = a0,1a1,0 − 2a0,0a1,1,

γ7 = a2
1,0 − 4a0,0a2,0.

Here are all the possible annihilators together with their strata:

• Ann(fs) = (β1, β2, β3) for f ∈ (V ′
1 \V ′′

1)∪(V ′
2 \(V ′′

2,1∪V ′′
2,2)), where V ′

1 = V (0), V ′′
1 = V (γ1),

V ′
2 = V (γ2, γ3, γ4), V ′′

2,1 = V (a1,1, a0,2, a0,1) and V ′′
2,2 = V (γ2, γ3, γ4, γ5, γ6, γ7);

23

• Ann(fs) = (β1, β4) for f ∈ V ′
3 \ V ′′

3 , where V ′
3 = V (γ1), while V ′′

3 = V (γ2, γ3, γ4);

• Ann(fs) = (β5, β6) for f ∈ V ′
4 \ (V ′′

4,1 ∪ V ′′
4,2) where V ′

4 = V (γ2, γ3, γ4, γ5, γ6, γ7), V ′′
4,1 =

V (a1,0, a2,0, a1,1, γ5) and V ′′
4,2 = (a1,1, a0,2, a0,1, γ7);

• Ann(fs) = (β7, β8) for f ∈ V ′
5 \ V ′′

5 , where V ′
5 = V (a1,0, a2,0, a1,1, γ5), while V ′′

5 =

V (a1,1, a0,1, a0,2, a1,0, a2,0);

• Ann(fs) = (β9, β10) for f ∈ V ′
6 \ V ′′

6 , where V ′
6 = V (a1,1, a0,2, a0,1, γ7), while V ′′

5 =

V (a1,1, a0,1, a0,2, a1,0, a2,0);

• Ann(fs) = (β9, β11) for f ∈ (V ′
7 \ V ′′

7) ∪ V ′
8 , where V ′

7 = V (a1,1, a0,2, a0,1), V ′′
7 =

V (a1,1, a0,2, a0,1, γ7) and V ′
8 = V (a1,1, a0,1, a0,2, a1,0, a2,0);

24

Chapter 3

On minimal generation of

holonomic D-modules and Weyl

algebra ideals

One of the distinctive properties of holonomic modules, is their finite length. Below we shall

show that this property implies that every holonomic module can be generated by one

element.

Another striking fact, which is very simple to state, but quite hard to prove, is that for

every left ideal of An there exist 2 elements that generate it.

Both statements were proved by Stafford in [33]; also these results appear in [5]. Unfortu-

nately, the arguments given by Stafford cannot be converted to algorithms straightforwardly.

There are several obstacles to this, many of which one can overcome with the theory of Gröbner

bases for Weyl algebras. However, the main difficulty is that both proofs contain an operation

of taking an irreducible submodule of an An-module. To our best knowledge, there does not

exist an algorithm for this; moreover, even if such algorithm is invented one should expect it to

be quite involved.

We were able to modify the original proofs in such a way that computations are possible and

implemented the corresponding algorithms in the computer algebra system Macaulay 2 [15].

We have to mention that in their recent paper [18] Hillebrand and Schmale construct another

effective modification of Stafford’s proof which leads to an algorithm. We shall discuss the

25

k is a (commutative) field of characteristic 0,

Ar = Ar(k) = k〈x1, ..., xr, ∂1, ..., ∂r〉,
A is a simple ring of infinite length as a left module over itself,
D is a skew field of characteristic 0,

K is a commutative subfield of D,

S = D(x)〈∂〉,
S(m) = Sε1 + ... + Sεm, a free S-module of rank m,

δ1, ..., δm is a finite set of K-linearly independent elements in K〈x, ∂〉,

σ(α, f) =
m∑

i=1

αδifεi ∈ S(m), (α ∈ S, f ∈ K〈x, ∂〉),

P (α, f) = Sσ(α, f), submodule of S(m),

Dr is the quotient ring of Ar,

Rr = Dr(xr+1, ..., xn)〈∂r+1, ..., ∂n〉,
Sr = Dr(xr+1, ..., xn)〈∂r+1〉.

Table 3.1: Notation table for Chapter 3

differences of their and our approaches in the last section.

For the convenience of the reader we provide the notation lookup table. All of the symbols

listed below show up sooner or later in this chapter along with more detailed definitions. With

exception of some minor changes we tried to stick to the notation in [5].

3.1 Preliminaries

Several useful properties of Weyl algebras are discussed in this section. Also, we introduce a few

rings that will come handy later on.

3.1.1 An is simple

To see that An is simple, i.e. has no nontrivial two-sided ideals, we notice that, for f =
∑

i xαi∂βi ∈ An \ {0} in the standard form, df/dxr = ∂rf − f∂r for r = 1, ..., n, where ∂f/∂xr

is the formal derivative of the above expression of f with respect to xr. Similarly, df/d∂r =

fxr − xrf for the formal derivative with respect to ∂r. Note that these formal derivatives as

well as all the multiple derivatives of f belong to the two-sided ideal AnfAn.

Now assume xα∂β is the leading term of f with respect to some total degree monomial

26

ordering. We are going to perform |α|+ |β| differentiations: for all i = 1, ..., n differentiate f αi

times with respect to xi and βi times with respect to ∂i. Under such operation the leading term

becomes equal to
∏n

i=1 αi!βi! and all the other terms vanish. Since the derivatives of f don’t

leave AnfAn, we showed that there is a simple algorithm to find such si, ri ∈ An that

m∑

i=1

sifri = 1.

Hence, AnfAn = An, so An is simple.

3.1.2 An is an Ore domain

Proposition 29 An is an Ore domain, i.e. Anf ∩ Ang 6= 0 and fAn ∩ gAn 6= 0 for every

f, g ∈ An \ {0}.

Proof. See the proof of Proposition 8.4 in Björk [5].

Let us point out that using Gröbner bases methods (see next subsection) we can find a

left(right) common multiple of f, g ∈ An \ {0}, in other words we can find a nontrivial solution

to the equations af = bg and fa = gb where a and b are unknowns.

3.1.3 More rings

There is a quotient ring D associated to every Ore domain A. The ring D is a skew field that

can be constructed both as the ring of left fractions a−1b and as the ring of right fractions cd−1,

where a, b, c, d ∈ A. There is a detailed treatment of this issue in [5].

Let D be a skew field, we will be interested in the ring S = D(x)〈∂〉, which is a ring of

differential operators with coefficients in D(x). It is easy to see that S is simple.

Since the Weyl algebra Ar is an Ore domain, we can form its quotient ring, which we denote

by Dr. The S we are going to play with is Sr = Dr(xr+2, ..., xn)(xr+1)〈∂r+1〉. Let us state

without proof a proposition which shall help us to compute Gröbner bases in Sr.

Proposition 30 Let F = {f1, ..., fk} ⊂ An is a generating set of left ideal I of Sr. Compute

a Gröbner basis G = {g1, ..., gm} of An · F with respect to any monomial ordering eliminating

∂r+1. Then G is contained in Sr ∩An and is a Gröbner basis of I.

27

3.2 Holonomic modules are cyclic

In this section we consider a simple ring A of infinite length as a left module over itself. Note

that An is such a ring.

Theorem 31 Every left A-module M of finite length is cyclic. In particular every holonomic

An module is cyclic.

Suppose we know how to compute a cyclic generator for every module M ′ of length less than

l. For length 0 such a generator would be 0.

Consider a module M of length l. Take 0 6= α ∈ M . If M = Aα then we are done. If not

then since l(M/Aα) < l by induction we can find β such that its image in M/Aα is a cyclic

generator. Now M = A · {α, β} and what we need to prove is

Lemma 32 Let M be a left A-module of finite length and α, β ∈ M . Then there exists γ ∈ M

such that Aγ = Aα + Aβ.

Proof. Define two functions l1 and l2 for pair (α, β).

l1(α, β) = length(Aβ)

l2(α, β) = length ((Aα + Aβ) /Aα) .

Let also introduce an order < on the set of pairs (α, β) ∈ M ×M :

(α′, β′) < (α, β) ⇔ (l1(α′, β′), l2(α′, β′)) <lex (l1(α, β), l2(α, β))

⇔ l1(α′, β′) < l1(α, β)

OR (l1(α′, β′) = l1(α, β) AND l2(α′, β′) < l2(α, β))

Suppose for any pair (α′, β′) < (α, β), we can find γ′ ∈ M such that Aγ′ = A · {α′, β′}.
Let the ideals L(α) and L(β) in A be the annihilators of α and β respectively. Since

length(A) = ∞, we know that L(α) 6= 0; pick any element 0 6= f ∈ L(α). Since A is sim-

ple we can find si, ri ∈ A, I = 1, ..., M such that

m∑

i=1

sifri = 1. (3.-5)

Consider two cases:

28

1. There is some r = ri such that L(β) + L(α)r = A.

2. The opposite is true.

Case 1. We can write 1 = Eαr + Eβ for some Eα, Eβ ∈ A such that Eαα = 0 and Eββ = 0.

Let γ = α + rβ.

Now we can get β from γ:

β = (Eαr + Eβ)β = Eαrβ = Eαα + Eαrβ = Eαγ.

Hence β ∈ Aγ and since α = γ − rβ the module M = Aα + Aβ is indeed generated by γ.

Case 2. From (3.2) it follows that
∑

L(β) + Afri = A, hence,
∑

A(friβ) = Aβ, so there is

r = ri such that

A(frβ) * Aα. (3.-5)

Since we are not in case 1, L(β) + Afr ⊂ L(β) + L(α)r 6= A. Take this modulo L(β) to get

A(frβ) ∼= (L(β) + Afr) /L(β) (A/L(β) ∼= Aβ, (3.-5)

so A(frβ) is proper in Aβ.

The last statement implies l1(α, frβ) < l1(α, β), hence, (α, frβ) < (α, β), so by induction

hypothesis we can find γ′ ∈ M such that Aγ′ = A(frβ) + Aα.

Now (3.2) guarantees that l2(γ′, β) < l2(α, β), and by induction we can find γ for which

Aγ = Aγ′ + Aβ = A(frβ) + Aα + Aβ = Aα + Aβ.

Remark 33 There is an algorithm that finds a cyclic generator for a holonomic left module

over a Weyl algebra, since every step in the proof of the Lemma 32 is computable. The most

non-trivial and time consuming operation is producing the annihilators L(α+rβ) and L(frβ) in

the proof of Lemma 32 provided L(α) and L(β). This is done using Gröbner bases techniques.

For computational purposes a finitely generated D-module is usually presented as a quotient

of a free module Am
n by the image of a D-matrix. Using such a presentation it is not hard to

compute the initial data, namely, the annihilators L(ei) for each element ei of the standard basis

of Am
n .

29

We have programmed the algorithm corresponding to the proof of Theorem 31 using

Macaulay 2.

Example. Let us view the ring of polynomials k[x] as an A1-module under the natural action of

differential operators. It has an irreducible module, because starting with a nonzero polynomial

f we can obtain a nonzero constant by differentiating it deg(f) times. The module M = k[x]3

is the direct sum of 3 copies of k[x], is holonomic (length(M) = 3) and is generated by the

vectors (1, 0, 0), (0, 1, 0), (0, 0, 1). Our algorithm produces a cyclic generator γ = (x2, x, 1) and

its A1-annihilator L(γ) = A1∂
3.

i1 : load "D-modules.m2";

i2 : R = QQ[x, dx, WeylAlgebra => {x=>dx}];

i3 : M = matrix {{dx, 0, 0}, {0, dx, 0}, {0, 0, dx}}

o3 = | dx 0 0 |
| 0 dx 0 |
| 0 0 dx |

3 3
o3 : Matrix R <--- R

i4 : -- find a cyclic presentation of coker M
h = makeCyclic M

3
o4 = HashTable{AnnG => ideal dx }

Generator => | x2 |
| x |
| 1 |

3.3 Ideals are 2-generated

In this section we give an effective proof of

Theorem 34 Every left ideal of the Weyl algebra An can be generated by two elements.

Proof for A1. In this case the theorem follows from the fact that module A1/J is holonomic

for any nonzero ideal J of A1.

Indeed, let I be a left ideal of A1. Pick f ∈ I and set J = A1f . Then I/J is a submodule

of the holonomic module A1/J , hence, is holonomic. By Theorem 31 there is ḡ ∈ I/J such that

A1ḡ = I/J . Find a lifting g ∈ A1 such that ḡ = g mod J . Elements f and g generate I.

Although the algorithm that follows from the proof seems to be simple, it inherits the

complexity of the algorithm for finding a cyclic generator. There is an easier approach to

finding 2 generators for an ideal in case of 1 variable suggested by Briançon [7, Prop. 5]. In

general, it is easy to show that for any monomial ordering the 2 elements of a Gröbner basis for

30

a given ideal I such that their leading monomials are at the ends of the staircase corresponding

to the initial ideal in(I), in fact, generate I.

Theorem 34 for n > 1 presents a significantly tougher challenge, which is met by the rest of

the paper.

3.3.1 Lemmas for S

Let us explore some properties of S = D(x)〈∂〉, the ring of linear differential operators with

coefficients in rational expressions in x over a skew field D.

Let K be a commutative subfield of D, let δ1, ..., δm be a finite set of K-linearly independent

elements in K〈x, ∂〉 ⊂ S, and let S(m) = Sε1 + ... + Sεm be a free S-module of rank m.

Also define σ(α, f) ∈ S(m) to be the following sum σ(α, f) =
∑m

i=1 αδifεi, and P (α, f) =

Sσ(α, f) the submodule of S(m) generated by σ(α, f). Note that σ(α, f) is S-linear in α and

respects addition in f .

Lemma 35 Let 0 6= α ∈ S and let M be an S-submodule of S(m) generated by {σ(α, f)|f ∈
K〈x, ∂〉}. Then M = S(m).

Proof. Without loss of generality let us assume that α ∈ D〈x, ∂〉: if not we can always find

such p ∈ D[x] that pα ∈ D〈x, ∂〉.
Fix a monomial ordering that respects the total degree in x and ∂. For vector v =

∑
viεi ∈

(D〈x, ∂〉)(m) denote by lm(v) the largest of the the leading monomials of the components vi of

v in this ordering and denote supp(v) := {i : vi 6= 0}.
Now start with vector v = v(0) = σ(α, 1); its components vi = αδi are D-linearly indepen-

dent. Note that computing expressions π(v) = ∂v − v∂ and χ(v) = vx − xv has an effect of

differentiating each component of v formally with respect to x and ∂ respectively. These oper-

ations lower the total degree of v by 1 if the differentiation is done with respect to a variable

that is present in lm(v). Also, it is not hard to see that they keep us in module M ; for example,

for v(0) we have π(v(0)) = ∂v(0) − v(0)∂ = ∂σ(α, 1)− σ(α, ∂).

Run the following algorithm: initialize v := v(0), while lm(v) contains an x set v := π(v),

then while lm(v) contains a ∂ we set v := χ(v). Since each step lowers the total degree of v by

1, this procedure terminates producing vector w ∈ M of total degree 0.

Hence, w = wi1εi1 + ...+witεit where 0 6= wij ∈ D for j = 1, ..., t where {i1, ..., ij} ⊂ supp(v).

Via multiplying on the left by the inverse of wi1 we can get the relation

εi1 = a2εi2 + ... + atεit mod M (3.-5)

31

with aj ∈ D for j = 2, ..., t.

Now take v(0) and reduce it using (3.3.1). We get vector v(1) whose i1-th component is 0,

therefore |supp(v(1))| < |supp(v(0))|, and the remaining components are D-linearly independent,

since the components of v(0) are.

Repeat the above algorithm for v = v(1) and so on. At the end we get a vector which is

a scalar multiple of εi for some i, hence ei ∈ M . Using relations (3.3.1) we see that all basis

vectors εj , for j = 1, ..., m, are in M .

Remark 36 From the proof it follows that given a submodule M of S(m) and α ∈ S one can

find f ∈ K〈x, ∂〉 such that σ(α, f) /∈ M algorithmically.

The next lemma is central in the proof of the result. Note that every step of the proof of the

lemma can be carried out algorithmically.

Lemma 37 Let M be an S-submodule of S(m) = Sε1+...+Sεm such that length(S(m)/M) < ∞.

For every α ∈ S, we can find f ∈ K〈x, ∂〉 such that S(m) = M + P (α, f).

Proof. Let l = length(S(m)/M). Assume the assertion is proved for all M ′ such that

length(S(m)/M ′) < l. Remark 36 says that we can find an f ∈ K〈x, ∂〉 such that σ(α, f)

doesn’t belong to M .

For t ∈ S, g ∈ K〈x, ∂〉 let us define two S-modules

N1 = M + P1, where P1 = P (α, g),

N2 = M + P2, where P2 = P (tα, g).

Claim. There is a module M ′ such that M ⊂ M ′ ⊂ M + P (α, f), t ∈ S, and g ∈ K〈x, ∂〉
for which

tσ(α, f) ∈ M,

M ′ + P (tα, g) = S(m),

N1 = N2.

To prove this we employ a second induction on length(M ′/M). We start with M ′ = M +

P (α, f). We can find 0 6= t ∈ S such that tα
∑

δifεi ∈ M ; it follows from S being Ore. By the

32

first induction hypothesis, for M ′ and tα there exists g ∈ K〈x, ∂〉 such that M ′+P (tα, g) = S(m).

Notice that N1 ⊃ N2 and M ′ + Pi = S(m) for i = 1, 2. Also for i = 1, 2 we have

S(m)/Ni = (M ′ + Pi)/(M + Pi) = M ′/(M + M ′ ∩ Pi).

If length(S(m)/N1) = length(S(m)/N2) then N1 = N2 and we are done. We are done as well

if N1 = S(m). If both conditions above fail, by looking at the right hand side of 3.3.1 we

determine that M ′′ = M + M ′ ∩ P1 both contains M and is contained in M ′ properly, plus

length(M ′′/M) < length(M ′/M). Set M ′ := M ′′ and repeat the above procedure.

To finish the proof of the lemma we take M ′, t, g as in the claim and assert that N ′ =

M + P (α, f + g) equals S(m). Indeed, σ(tα, f + g) = tσ(α, f) + σ(tα, g) = σ(tα, g) modulo M ,

so N2 ⊂ N ′. But N1 = N2, thus σ(α, g) ∈ N ′, hence, σ(α, f) = σ(α, f + g)−σ(α, g) ∈ N ′. Now

we see that M ′ ⊂ N ′ and P2 ⊂ N ′. Since M ′ + P2 = S(m), we proved N ′ = S(m).

3.3.2 Lemmas for Rr

At this stage we shall specify the components in the definition of S = D(x)〈∂〉. We

set D = Dr(xr+2, ..., xn), x = xr+1 and ∂ = ∂r+1, so that new S is equal to Sr =

Dr(xr+1, xr+2, ..., xn)〈∂r+1〉 which is a subring of Rr. Also the commutative subfield K of D

that showed up before is replaced by the k, the coefficient field from the definition of An = An(k).

Proposition 38 Let δ1, ..., δm be a finite set of k-linearly independent elements in k〈xr+1, ∂r+1〉
and let 0 6= ρ ∈ Ar+1[xr+2, ..., xn]. Let S(m+1) = Sε0 + Sε1 + ... + Sεm be a free S-module of

rank m + 1 And let S(m+1)ρ ⊂ S(m+1) be its S-submodule generated by {ρε0, ρε1, ..., ρε2}. Then

there exists some f ∈ k〈xr+1, ∂r+1〉 such that

S(m+1) = S(m+1)ρ + S(ε0 + δ1fε1 + ... + δmfεm).

Proof. Follows from Lemma 37

Lemma 39 Let q ∈ Ar[xr+1, ..., xn] and let a1, ..., at be a finite set in An.

Then there exists some 0 6= ρ ∈ Ar[xr+1, ..., xn] such that ρaj ∈ Anq for all j.

Proof. See the proof of Lemma 8.5 in Björk [5].

33

Let us point out that once we know that the statement of the lemma is true, we can compute

the required ρ by finding a Gröbner basis of the module of syzygies of the columns of the matrix




a1 q 0 ... 0

a2 0 q ... 0

...

at 0 0 ... q




with respect to a monomial order that eliminates ∂r+1, ..., ∂n and such that ε1 > ε2 > ... >

εt+1 where ε1, ε2, ..., εt+1 is the basis (εi corresponds to the i-th column) of the free module

At+1
n containing our submodule of syzygies. Such a Gröbner basis is guaranteed (by Lemma

39) to contain some syzygy producing the relation ρε1 + b2ε2 + ... + bt+1εt+1 = 0 where ρ ∈
Ar[xr+1, ..., xn], bi ∈ An for i = 2, ..., n. It is not hard to see that this is the ρ we need.

Lemma 40 Let 0 6= q ∈ Ar+1[xr+2, ..., xn] and let u, v ∈ An with v 6= 0. Then there is some

f ∈ An such that Rr = Rrq +Rr(u + vf).

Proof. Consider the following subring of An obtained by ”removing” xr+1 and ∂r+1:

A
r̂+1

= k〈x1, ...xr, xr+2, ..., xn, ∂1, ..., ∂r, ∂r + 2, ..., ∂n〉.

Now An = A
r̂+1

⊗k k〈xr+1, ∂r+1〉, so we can write v = δ1g1 + ... + δmgm where δ1, ..., δm are

elements of k〈xr+1, ∂r+1〉 linearly independent over k and g1, ..., gm ∈ A
r̂+1

. The ring A
r̂+1

is

simple, since it is a Weyl algebra, thus we can find such h1, ..., hl ∈ A
r̂+1

that

A
r̂+1

=
m∑

i=1

l∑

j=0

A
r̂+1

gihj .

Since A
r̂+1

is a subring of Rr it means that Rr =
∑∑Rrgihj .

Sublemma. For any b1, ..., bm ∈ A
r̂+1

there exists some f ∈ k〈xr+1, ∂r+1〉 such that

Rrq +Rru +Rrb1 + ... +Rrbm = Rrq +Rr(u + δ1fb1 + ... + δmfbm).

Proof. It follows from Lemma 39 that there is 0 6= ρ ∈ Ar[xr+1, ..., xn] such that ρb1, ..., ρbm ∈
Anq as well as ρu ∈ Anq. With the help from Proposition 38 we get f ∈ k〈xr+1, ∂r+1〉 such that

34

S(m+1) = S(m+1)ρ + S(ε0 + δ1fε1 + ... + δmfεm) and since S is a subring of Rr we have

R(m+1)
r = R(m+1)

r ρ +Rr(ε0 + δ1fε1 + ... + δmfεm). (3.-10)

Now map ε0 7→ u and εi 7→ bi for all i; this map from Rm
r to Rr has its image equal to

Rrq +Rru +Rrb1 + ... +Rrbm and maps the right hand side of (3.3.2) to a subset of Rrq +

Rr(u+ δ1fb1 + ...+ δmfbm), because ρu, ρb1, ..., ρbm ∈ Anq. Moreover these two expressions are

equal, since it is easy to see that the latter is contained in the former as well.

Proof of lemma continued. We apply our Sublemma to bi = gih1 (i = 1, ...,m) to get

f1 ∈ k〈xr+1, ∂r+1〉 such that

Rrq +Rru +
m∑

j=1

Rrgih1 = Rrq +Rr(u +
m∑

j=1

δif1gih1).

Since v = δ1g1 + ...+ δmgm and since f1 commutes with all gi, the last equation transforms into

Rrq +Rru +
∑

Rrgih1 = Rrq +Rr(u + vf1h1).

Now reapply the Sublemma with u replaced by u + vf1h1 and bi = gih2 (i = 1, ..., m). As in

the first step we get

Rrq +Rru +
∑

Rrgih1 +
∑

Rrgih2

= Rrq +Rr(u + vf1h1) +
∑

Rrgih2

= Rrq +Rr(u + vf1h1 + f2h2)

for some f2 ∈ k〈xr+1, ∂r+1〉. After l many steps we arrive at

Rr = Rrq +Rru +
m∑

i=1

l∑

j=1

Rrgihj = Rrq +Rr(u + v

l∑

j=1

fihi),

which proves the lemma with f = f1h1 + ... + flhl.

The following lemma follows from the previous one.

Lemma 41 Let 0 ≤ r ≤ n− 1 and let 0 6= q ∈ Ar+1[xr+2, ..., xn] and let u, v ∈ An with v 6= 0.

Then there is some f ∈ An,q′ ∈ Ar[xr+1, ..., xn] such that q′ ∈ Anq + An(u + vf).

Proof. It is easy to see that this lemma is equivalent to the previous one.

35

3.3.3 Final chords

Proposition 42 (r) Let 0 ≤ r ≤ n, there is some qr ∈ Ar[xr+1, ..., xn] and dr, er ∈ An such

that qrc ∈ An(a + drc) + An(b + erc).

Proof. The statement is true for r = n, since An is Ore and Anc ∩ (Ana + Anb).

Fix r. Assume that the statement is true for r + 1, ..., n, then there exist qr+1, dr+1, er+1

such that qr+1c ∈ Ana′ + Anb′, where a′ = a + dr+1c and b′ = b + er+1c. Hence we can

write qr+1c = h1a
′ + h2b

′, where we can take h1h2 6= 0 since Ana′ ∩ Anb′ 6= 0. Also since

h1An∩h2An 6= 0 we can also find g1, g2 satisfying h1g1 +h2g2 = 0, and since Anqr+1c∩Anb′ 6= 0

there are s, t such that sqr+1c = tb′ . Using Lemma 41 to q = qr+1 with u = 0 and v = tg2, we

get qr = q′ and f such that qr = p1qr+1 + p2tg2f for some p1, p2. Summarizing, there exist such

h1, h2, g1, g2, s, t, p1, p2 ∈ An \ {0} that

qr = p1qr+1 + p2tg2f

qr+1c = h1a
′ + h2b

′

h1g1 + h2g2 = 0

sqr+1c = tb′

Using these 4 equations, make the following calculation: (In each section the underlined

terms sum up to 0.)

qrc = p1qr+1c + p2tg2fc

= p1qr+1c− p2sqr+1c

+ p2tg2fc + p2tb
′

= (p1 − p2s)qr+1c + p2t(b′ + g2fc)

= (p1 − p2s)(h1a
′ + h2b

′) + p2t(b′ + g2fc)

= (p1 − p2s)h1a
′ + (p1 − p2s)h1g1fc

+ (p1 − p2s)h2b
′ + (p1 − p2s)h2g2fc + p2t(b′ + g2fc)

= (p1 − p2s)h1(a′ + g1fc) + ((p1 − p2s)h2 + p2t)(b′ + g2fc).

Thus, with dr = dr+1 + g1fc and er = er+1 + g2fc the conclusion of the proposition holds.

The proposition above (for r = 0) shows that by “elimination” of variables ∂i one at a time

we can get such d, e ∈ An that q0c ∈ An(a + dc) + An(b + ec) where q0 ∈ k[x1, ..., xn]. This

36

proves a 50% version of Theorem 34:

Theorem 43 Every ideal of k(x1, ..., xn)〈∂1, ..., ∂n〉 can be generated by two elements.

To go the other 50% of the way one has to do a similar kind of “elimination” of xi-s. This

amounts to making copies of all lemmas that we stated for a slightly different set of rings. The

trickiest part is considering ring Sr
′ = k(x1, ..., xr)〈xr+1, ∂r+1〉 instead of Sr. In other words

instead of a ring of type D(x)〈∂〉 where D is a skew field, we have to consider the first Weyl

algebra A1(K) where K is a (commutative) field. Fortunately, analogues of Lemmas 35 and 37

for the latter ring can be effectively proved along the same lines.

Example 1. Consider A3. For a = ∂1, b = ∂2, c = ∂3 one can show that A3 · {a, b, c} =

A3 · {a, b + x1c}. Indeed, the following calculation displays it:

c = (−x1∂3 − ∂2)a + ∂1(b + x1c).

On the other hand our implementation of the algorithm in Macaulay 2 produces the follow-

ing:

i2 : R = QQ[x_1..x_3,D_1..D_3,WeylAlgebra=>{x_1=>D_1, ...

i3 : a = D_1; b = D_2; c = D_3;

i6 : I = stafford ideal (a,b,c)

2
o6 = ideal (D , x x D + x D + D)

1 1 3 3 1 3 2

o6 : Ideal of QQ [x , x , x , D , D , D , WeylAlgebra => ...
1 2 3 1 2 3 ...

i7 : ideal(a,b,c)== I

o7 = true

The second generator in the output is more involved than the one we had found before,

nevertheless, this answer is valid as shown by the last line of the script.

Example 2. Let a = ∂1∂
2
3 , b = ∂1∂2, c = ∂2∂

2
3 . Then our implementation of the algorithm

shows that

A3 · {a, b, c} = A3 · {a, b + (x3
1x

2
3 + x1x

2
3 + x1x3 + 1)c}.

3.4 Conclusion

The implementations of the algorithms constructed along the lines of the proofs of Theorems

31 and 34 in Macaulay 2 work only on rather small examples for quite obvious reason: the

37

complexity of the Gröbner bases computations in the Weyl algebra.

Though, for this reason, both the algorithm of Hillebrand and Schmale [18] and ours for

finding two generators can not be considered as practical, we shall try to comment on the

differences between the two.

A subroutine [18, Algorithm 3.6], which is central in the former algorithm, includes a step

that goes through a certain set of polynomials in one variable, checking a certain property. At

least one of polynomials in this – possibly large – set is guaranteed to satisfy this property,

however the performed check is nontrivial and requires Gröbner bases.

In our algorithm, on the other hand, the main subroutines corresponding to Lemmas 35 and

37 take a more constructive approach.

Finally, we did not attempt to analyze the complexity of any of these algorithms. Since all

of them break down rather fast, the question of complexity of the output is interesting only

from a theoretical point of view. Using the arguments in this paper, one can construct a very

rough bound as soon as a bound for the complexity of Gröbner basis computations in the Weyl

algebra is known. To the best of our knowledge, the latter is an open problem.

38

Chapter 4

Parallel computation of Gröbner

bases

In this chapter we describe a coarse-grain parallelization of Buchberger algorithm for computing

Gröbner bases in algebras of linear differential operators. The obtained results are experimental

rather than theoretical; this study belongs more to the area of computer science than to math-

ematics. The punch line of this piece of work is that we can benefit more from parallelization

of Buchberger-type algorithms in a noncommutative setting than in a commutative one.

4.1 Introduction

Algorithms for computing Gröbner bases have become a standard hard problem for computer

scientists, since their complexity is proved to have a sharp double exponential bound. That is

in the case of (commutative) polynomials; if one considers, for example, the Weyl algebra, this

complexity is not known, though it is guaranteed to be worse.

As parallel computation becomes standard and supercomputing facilities more accessible,

we turn our attention to parallelization of Gröbner bases computations. This topic has been

explored both by mathematicians and computer scientists (see [3], [30], [32], [9]) for Gröbner

bases in rings of (commutative) polynomials.

At the beginning of the project, on top of aiming at constructing a practical implementation

of a parallel Buchberger algorithm, we were especially interested in computing Gröbner bases

in algebras of linear differential operators. For these the elementary operations (e.g. multiplica-

39

tion of differential operators) are more expensive than in case of polynomials, also there are no

elaborate techniques (e.g. see [11]) developed for eliminating the unnecessary s-pairs (ones that

reduce to 0), hence, optimizing the Buchberger. These observations made us believe that paral-

lelization in the noncommutative case would yield better results compared to the commutative

one for two reasons:

1. The cost of a reduction step dominates the cost of communication.

2. Updates to the basis are not often because of a larger number of 0-reductions.

The instincts have not betrayed us. Our implementation – coded in C++ using MPI for

communication interface – displays speedups that on average are better in a noncommutative

setting than in a commutative one.

4.2 Preliminaries

In this chapter we shall deal with associative algebras of polynomial type over a field k. In

constructing those we use the variables xi, ∂i, si, ti where i ∈ Z that satisfy the following rela-

tions: [∂i, xi] = 1, [si, ti] = ti, where [a, b] = ab − ba, and all the pairs of variables that are not

mentioned above commute.

Using these variables we can describe the Weyl algebra An = k〈x1, ..., xn, ∂1, ..., ∂n〉. Another

algebra we used for our experiments is the so-called PBW algebra (see [6])

Pn,p = An〈s1, ..., sp, t1, ..., tp〉 = k〈s1, ..., sp, t1, ..., tp, x1, ..., xn, ∂1, ..., ∂n〉.

If we fix the order of the variables, each element of any algebra allowed by the above de-

scription can be written uniquely as a polynomial with monomials with variables written in the

specified order: we call this polynomial the normal form, for computational purposes we would

assume that we always operate with algebra elements in the normal form. According to [19] our

algebras are of solvable type, i.e. are eligible for Gröbner bases techniques similar to the ones in

the ring of polynomials.

In what follows we describe a simple version of Buchberger algorithm, which is a (sequential)

completion algorithm used to compute Gröbner bases.

Let A = k〈z〉 = k〈z1, ..., zn〉 be an associative algebra where variables zi have names from

the list at the beginning of the section and are subject to the corresponding relations. Let f be

40

an element of A having the normal form

f =
∑

α∈Zn
≥0

aαzα,

where all but a finite number of aα equal 0. Denote by inM(f) and inC(f) the initial monomial

and initial coefficient of f , call in(f) = inC(f)inM(f) the initial term of f . For a left ideal

I ⊂ A we define an initial ideal in(I) = A · {in(f) | f ∈ I}.
A generating set G of a left ideal I ⊂ A is called a Gröbner basis if in(I) = A {in(g) | g ∈ G}.
Given a polynomial f ∈ A and a finite subset B ⊂ A we can perform reduction as follows:

Algorithm 44 f ′ = REDUCE(f, B)

f ′ := f

WHILE there is g ∈ B such that inM(g) divides inM(f ′)

Set f ′ := f ′ − (in(f ′)/in(g))g

END WHILE

For two polynomials f, g ∈ A we define the s-polynomial

sPoly(f, g) = inC(g)
l

inM(f)
f − inC(f)

l

inM(g)
g, where l = lcm(inM(f), inM(g)).

Then an alternative definition could be given as follows: A generating set G of a left ideal I ⊂ A

is a Gröbner basis if REDUCE(sPoly(f, g), G) = 0.

The following is a sketch of the simplest completion algorithm known as Buchberger algo-

rithm.

Algorithm 45 G = BUCHBERGER(B)

G := B, S := {(f, g)|f, g ∈ B, f 6= g}
WHILE S 6= ∅ do

Pick (f, g) ∈ S according to the “strategy”, S := S \ {(f, g)}
h := REDUCE(sPoly(f, g), G)

IF h 6= 0

S′ := {(h, g)|g ∈ G}
Eliminate redundant s-pairs from S and S′ according to “criteria”

S := S ∪ S′ and G := G ∪ {h}
END IF

END WHILE

41

Here “strategy” refers to an algorithm of determining which s-pair to consider next; the most

popular strategies are sorting s-pairs either by total degree or by “sugar” degree (see [14]).

“Criteria” are sets of rules helping to eliminate redundant s-pairs, i.e. the ones that are

guaranteed to reduce to 0 under selected strategy. Most commonly used criteria are the ones

you may find in Gebauer-Möller [13]. Several of these criteria generalize for the noncommutative

setting, however, there are some that work only in the commutative case. A simple example is

the so-called T-criterion: if gcd(inM(f), inM(g)) = 1 then REDUCE(sPoly(f, g), {f, g}) = 0,

which does not hold for f = ∂ and g = x in the Weyl algebra A1.

4.3 Parallel Buchberger algorithm

As you may see, though we have a loop in the above algorithm and the REDUCE tasks at

each iteration seem routine, these tasks are not independent of each other, since the reduction

basis G may change from one step to another.

On the other hand, it is not hard to imagine many s-pairs in a row reducing to 0: if we

knew ahead of time that this would happen we could have assigned these routine 0-reductions

to different processors. This point, in our opinion, is the starting motivation for coarse-grain

parallelization of Buchberger algorithm.

What we developed is an algorithm similar to Attardi-Traverso [3]. It uses master-slave

paradigm and the distributed computing in the following way. Let n + 1 threads be at our

disposal, each assigned to a node with one processor. Make one of the the master and the rest the

slaves; the master can communicate with each of the slaves, however, there is no communication

between the slaves. Each slave maintains a local copy of reduction basis B ∈ A and is capable

of completing two tasks: updating for the basis upon reception of an update message from the

master and reducing a polynomial h ∈ A supplied by the master with respect to B.

Algorithm 46 SLAVE

B := ∅
LOOP

IF RECEIVE(MASTER, h, update) THEN B := B ∪ {h}
IF RECEIVE(MASTER, h, reduce) THEN

SEND(MASTER,REDUCE(h,B), slaveDone)

END IF

END LOOP

42

Here SEND(THREAD,DATA, TAG) sends message tagged with TAG containing DATA to

THREAD and RECEIVE(THREAD, DATA, TAG) receives message with TAG containing

DATA from THREAD. SEND is nonblocking and RECEIVE returns TRUE if the message

has been received. Note that, in practice, a slave is terminated by a separate message from the

master, but here we prefer to use an infinite loop for simplicity.

Let us describe the master now. In what follows an s-pair shall be represented by a quadru-

ple (f, g, h, status) containing two additional elements: h is a partially reduced s-polynomial

sPoly(f, g) and status is either red or nonRed depending on whether the s-polynomial has been

reduced completely or h may still be reduced with respect to the current basis G. The variable

mi stores the s-pair that is being reduced by SLAVEi, i = 1, ..., n.

Algorithm 47 G = MASTER(B). Computes a Gröbner basis of the left ideal generated by

B ⊂ A using threads SLAVEi, i = 1, ..., n.

FOR i = 1, ..., n

mi := ∅
FOR every g ∈ B,SEND(SLAVEi, g, update)

END FOR

G := B

S := {(f, g, sPoly(f, g), nonRed)|f, g ∈ B, f 6= g}
WHILE S 6= ∅ do

IF RECEIVE(SLAVEi, h, slaveDone) THEN

Let (f, g, ..., nonRed) = mi

Replace mi with (f, g, h, red) in S

mi := ∅
END IF

IF ∃mi = ∅ and ∃sp = (f, g, h, nonRed) ∈ S THEN

SEND(SLAVEi, h, reduce)

mi := sp

END IF

Let sp = (f, g, h, σ) be the first s-pair in S

IF σ = red THEN

Remove sp from S

IF h 6= 0 THEN

S′ := {(h, g, sPoly(f, g), nonRed)|g ∈ G}

43

Apply “criteria” to S and S′

S := S ∪ S′ and G := G ∪ {h}
Reorder S according to the “strategy”

FOR every (f, g, h′, red) ∈ S

IF h divides h′ THEN status = nonRed

END FOR

FOR i = 1, ..., n SEND(SLAVEi, h, update)

END IF

END IF

END WHILE

Notice that the presented algorithm clearly preserves the strategy, since no modifications of

G and S are possible before the first s-pair in the queue S is completely reduced. Of course,

one may experiment with a variation of this algorithm that takes a whatever pair in the queue

with its s-polynomial completely reduced to a nonzero and moves on with these modifications,

however, our test runs show that in such case results are highly unpredictable and the output

may heavily depend (in a random fashion) on the number of slaves, architecture of the used

hardware, as well as random events in the system. Such an approach pays off very rarely and,

when it does, it is extremely hard to reproduce the obtained good results consistently.

4.4 Experimental results

We have implemented the algorithm in C++ using MPI libraries for message passing. Though

our implementation needs further optimization, at this point it is already competitive with the

current computer algebra systems. Let us also point out that for now computations are done

only for algebras over Z/pZ for a large prime number p. All our experiments were conducted on

a shared-memory SGI Origin 3800 supercomputer equipped with 500 MHz R14000 processors.

We tried to test our software for the “natural” input, i.e. problems that arose naturally in

our research. Here are typical ideals that we computed Gröbner bases for:

• The elimination ideal in algebra A = k〈u, v, t, ∂t, x, y, z, ∂x, ∂y, ∂z〉 with a monomial order

eliminating commutative variables u and v that leads to the annihilator of fs in A3[s] for

44

f = xyz(x + y)(x + z) via Algorithm 9:

I1 = A · (−ux3yz − ux2y2z − ux2yz2 − uxy2z2 + t,

3u∂tx2yz + 2u∂txy2z + 2u∂txyz2 + u∂ty2z2 + ∂x,

u∂tx3z + 2u∂tx2yz + u∂tx2z2 + 2u∂txyz2 + ∂y,

u∂tx3y + u∂tx2y2 + 2u∂tx2yz + 2u∂txy2z + ∂z,

uv − 1, 5t∂t + x∂x + y∂y + z∂z + 5)

• The elimination ideal in the PBW-algebra A = k〈t, s, x, y, z, ∂x, ∂y, ∂z〉 with a product

monomial order that eliminates t and then s, which leads to the same annihilator ideal

via route laid out in [6]:

I2 = (tx3yz + tx2y2z + tx2yz2 + txy2z2 + s,

3tx2yz + 2txy2z + 2txyz2 + ty2z2 + ∂x,

tx3z + 2tx2yz + tx2z2 + 2txyz2 + ∂y,

tx3y + tx2y2 + 2tx2yz + 2txy2z + ∂z)

To compute BUCHBERGER(I1) it took approximately 1 minute with 1 slave and 11

seconds with 10 slaves. For BUCHBERGER(I2) it was 15 and 2.5 seconds respectively, which

provides a verification of Ucha-Castro results in [36] on the comparison of two different methods

of computing the annihilator above.

For the commutative case we used such popular benchmarks as cyclic6 (the ideal of

k[a, b, c, d, e, f] generated by polynomials abcdef − 1, abcde + abcdf + abcef + abdef + acdef +

bcdef, abcd + bcde + abcf + abef + adef + cdef, abc + bcd + cde + abf + aef + def, ab + bc + cd +

de + af + ef, a + b + c + d + e + f) and cyclic7 (the ideal of k[a, b, c, d, e, f, g] generated by

polynomials abcdefg−1, abcdef +abcdeg+abcdfg+abcefg+abdefg+acdefg+bcdefg, abcde+

bcdef + abcdg + abcfg + abefg + adefg + cdefg, abcd + bcde + cdef + abcg + abfg + aefg +

defg, abc+bcd+cde+def +abg+afg+efg, ab+bc+cd+de+ef +ag+fg, a+b+c+d+e+f +g)

as well as the family of ideals of k[x, y, z] generated by xm, ym, zm and a random polynomial.

All the examples that we used as benchmarks produce between 100 and 2000 s-pairs during

the computation, which is a relatively small number. However, our objective was simply to

see how our implementation behaves for equally intense (in terms of the number of s-pairs)

45

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

1
/ t

im
e

Number of slaves

ring of polynomials
Weyl algebra

linear

Figure 4.1: Speedups comparison for commutative and noncommutative setting

computations in commutative and noncommutative settings.

Figure 4.1 shows that computing with a small number of processors (slaves) results in good

speedups in both cases. These fall behind what would be considered perfect – the linear speedup,

though not by a lot.

As you see from the diagram using more than 5 slaves does not pay off much for both cases

and using more than 10 slaves makes no sense in the commutative case, although there is still

some progress observed if things do not commute.

Figure 4.2 provides an explanation why this behavior occurs: we look at the distribution of

REDUCE requests sent to slaves. When a decision on where to send a request is made, the

algorithm chooses the idling slave with the least number. Therefore, the last slave probabilis-

tically has a chance for more rest than the first. But how bad is the distribution of the load?

Figure 4.2 shows that whenever we cease to get a speedup close to linear (we have chosen 10

slaves to prove the point) it is quite far from uniform, however, the situation is slightly better

in the noncommutative case.

Another factor that slows downs the algorithm is the communication overhead. This can be

measured by the total number of times the REDUCE request is issued. For n = 1 this number

is just the number of s-pairs reduced during the computation, however, for n > 1 by the time a

46

1 2 3 4 5 6 7 8 9 10
slave number

ring of polynomials

1 2 3 4 5 6 7 8 9 10
slave number

Weyl algebra

Figure 4.2: Load distribution for 10 slaves in commutative and noncommutative setting

47

0 2 4 6 8 10 12 14 16 18 20
Number of slaves

ring of polynomials
Weyl algebra

Figure 4.3: The number of times REDUCE task is sent

slave finishes its job and sends the reduced s-polynomial back to the master the master’s copy of

the reduction basis might grow, making a further reduction possible; then the master proceeds

by sending an “extra” REDUCE. Usually, the number of REDUCEs grows with the number

of slaves used, though this growth is noticeably steeper in the commutative setting as opposed

to noncommutative (see Figure 4.3).

To summarize, we would like to say that, in general, the experimental results that we obtained

confirm the results of previous research on this subject: linear (superlinear) speedups are not

possible, at least using the strategy preserving approach, however, using small number of CPUs

for parallel computing of Gröbner bases is quite efficient. This also have strengthened our believe

that the payoff is even bigger if the same technique is used in the noncommutative setting due

to better ratio of (communication overhead)/(time spent in reduction routine), plus due to the

lack of elaborate s-pair selection techniques in the noncommutative case.

48

Bibliography

[1] V. Arnol’d. Normal forms of functions near degenerate critical points, the Weyl groups

Ak, Dk, Ek and Lagrangian singularities. (Russian). Funkcional. Anal. i Priložen., 6(4):3–

25, 1972.

[2] V. Arnol’d. Normal forms of functions in the neighborhood of degenerate critical points.

(Russian). I. Uspehi Mat. Nauk, 29(2(176)):11–49, 1974.

[3] G. Attardi and C. Traverso. Strategy-accurate parallel Buchberger algorithms. J. Symbolic

Comput., 21(4-6):411–425, 1996.

[4] I. Bernstein. Analytic continuation of generalized functions with respect to a parameter.

Functional Anal. Appl., 6:273–285, 1972.

[5] J.-E. Björk. Rings of differential operators, volume 21 of North-Holland Mathematical

Library. North-Holland Publishing Co., Amsterdam-New York, 1979.

[6] J. Briançon and P. Maisonobe. Remarques sur l’ideal de Bernstein associé à des polynomes.

Preprint.

[7] J. Briançon and P. Maisonobe. Idéaux de germes d’opérateurs différentiels à une variable.

Enseign. Math. (2), 30(1-2):7–38, 1984.

[8] J. Bruce. A stratification of the space of cubic surfaces. Math. Proc. Camb. Phil. Soc.,

87:427–441, 1980.

[9] S. Chakrabarti and K. Yelick. Distributed data structures and algorithms for Gröbner basis

computation. Lisp and Symbolic Computation, 7:1–27, 1994.

[10] F. Chyzak. Mgfun Project.

pauillac.inria.fr/algo/chyzak/mgfun.html.

49

[11] J. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to

zero (F5). In Proceedings of ISSAC 2002, pages 75–83, 2002.

[12] A. Galligo. Some algorithmic questions on ideals of differential operators. Lecture Notes in

Comput. Sci., 204:413–421, 1985.

[13] R. Gebauer and H. M. Möller. On an installation of Buchberger’s algorithm. J. Symbolic

Comput, 6(2-3):275–286, 1988.

[14] A. Giovini, T. Mora, G. Niesi, L. Robbiano, and C. Traverso. One sugar cube, please. In

Proc. ISSAC ’91, pages 49–54, 1991.

[15] D. R. Grayson and M. E. Stillman. Macaulay 2, a software system for research in algebraic

geometry. Available at http://www.math.uiuc.edu/Macaulay2/.

[16] G.-M. Greuel, G. Pfister, and H. Schönemann. Singular 2.0. A Computer Algebra System

for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern,

2001. http://www.singular.uni-kl.de.

[17] R. Hartshorne. Algebraic geometry. Number 52 in Graduate Texts in Mathematics.

Springer-Verlag, New York-Heidelberg, 1977.

[18] A. Hillebrand and W. Schmale. Towards an effective version of a theorem of Stafford. J.

Symbolic Comput, 32(6):699–716, 2001.

[19] A. Kandri-Rody and V. Weispfenning. Non-commutative Gröbner bases in algebras of

solvable type. J. Symbolic Computation, 9:1–26, 1990.

[20] M. Kashiwara. B-functions and holonomic systems. Rationality of roots of B-functions.

Invent. Math., 38(1):33–53, 1976/77.

[21] H. Kredel and W. V. Parametric Gröbner bases for non-commutative polynomials. In Proc.

IV. International Conference on Computer Algebra in Physical Research, Joint Institute for

Nuclear Research Dubna, USSR, May 1990, pages 236–244. World Scientific, Singapore,

1991.

[22] A. Leykin. Constructibility of the set of polynomials with a fixed Bernstein-Sato polynomial:

an algorithmic approach. J. Symbolic Comput., 32(6):663–675, 2001.

[23] A. Leykin. D-modules for Macaulay 2. Mathematical Software: ICMS 2002, World Scien-

tific, pages 169–179, 2002.

50

[24] A. Leykin and H. Tsai. D-modules for Macaulay 2.

www.math.umn.edu/∼leykin/Dmodules.

[25] G. Lyubeznik. On Bernstein-Sato Polynomials. Proc. of the AMS, 125(7):1941–1944, 1997.

[26] B. Malgrange. Le polynôme de Bernstein d’une singularité isolée. (French). In Fourier

integral operators and partial differential equations (Colloq. Internat., Univ. Nice, Nice,

1974), volume 459 of Lecture Notes in Math., pages 98–119. Springer, Berlin, 1975.

[27] Z. Mebkhout and L. Narváez-Macarro. La théorie du polynôme de Bernstein-Sato pour

les algébres de Tate et de Dwork-Monsky-Washnitzer. Ann. Sci. École Norm. Sup., (4)

24(2):227–256, 1991.

[28] T. Oaku. Algorithm for the b-function and D-modules associated with polynomial. J. Pure

Appl. Algebra, 117/118:495–518, 1997.

[29] T. Oaku and N. Takayama. Algorithms for D-modules – restriction, tensor product, local-

ization, and local cohomology groups. J. Pure Appl. Algebra, 156(2-3):267–308, 2001.

[30] B. Reinhard, G. Manfred, and W. Küchlin. A fine-grained parallel completion procedure.

In ISSAC 1994, pages 269–277, 1994.

[31] M. Saito, B. Sturmfels, and N. Takayama. Gröbner deformations of hypergeometric differen-

tial equations, volume 6 of Algorithms and Computation in Mathematics. Springer-Verlag,

Berlin, 2000.

[32] K. Siegl. A Parallel Factorization Tree Gröbner Basis Algorithm. Technical Report 94-51,

RISC-Linz, Johannes Kepler University, Linz, Austria, 1994. Published in Proceedings,

PASCO’94, World Scientific Publ. Comp.

[33] J. T. Stafford. Module structure of Weyl algebras. J. London Math. Soc. (2), 18(3):429–442,

1978.

[34] N. Takayama. kan/sm1: a computer algebra system for algebraic analysis.

www.math.sci.kobe-u.ac.jp/KAN/.

[35] N. Takayama. Gröbner basis and the problem of contiguous relation. Japan Journal of

Appl. Math., 6:147–160, 1989.

[36] J. Ucha and F. Castro-Jiménez. Bernstein-Sato ideals associated to polynomials. Preprint,

2003.

51

[37] U. Walther. Algorithmic computation of local cohomology modules and the local cohomo-

logical dimension of algebraic varieties. J. Pure Appl. Algebra, 139(1-3):303–321, 1999.

[38] V. Weispfenning. Comprehensive Gröbner bases. J. Symbolic Comput., 14:1–29, 1992.

[39] T. Yano. On the theory of b-functions. Publ. Res. Inst. Math. Sci., 14(1):111–202, 1978.

52

