
1.9. The principle of Wazewski.

To motivate the discussion of the results of this section, let us first introduce the
following concepts for the differential equation

(9.1) ẋ = f(x)

in lRd.

Defiinition 9.1. Suppose that U is a given set in lRd. A set A is said to be the
maximal invariant set in U if A ⊂ U , A is an invariant set for (9.1) and, if K ⊂ U is
invariant for (9.1), then K ⊂ A.

Defiinition 9.2. An invariant set A for (9.1) is said to be an isolated invariant set if
there is an open neighborhood U of A such that A is the maximal invariant set in Ū .
The set U is said to be an isolating neighborhood of A.

We remark that, if U is an open set in lRd and if the maximal invariant set A in
U is closed, then A is an isolated invariant set and U is an isolating neighborhood of
A.

An important problem in differential equations is to know if the maximal invari-
ant set in an open set U is not empty. In our study of Liapunov functions in the
previous section, we have given conditions under which this is true. In fact, suppose
that V ∈ C1(lRdl; lR) and U = {x ∈ lRd : V (x) < k}. If U is nonempty and bounded,
then every orbit with initial data in U remains in U , is bounded and has a nonempty
ω-limit set in Ū . If we further assume that V̇ ≤ 0 in U , then the ω-limit set of
any orbit with initial data in U must be in U and the maximal invariant set A in U

is not empty. In fact, Corollary 8.1 implies that A is compact, nonempty and is a
local attractor for U . Therefore, A is an isolated invariant set and U is an isolating
neighborhood.

From this point of view, the principle of Wazewski which we present here is
an important extension of the method of Liapunov functions for determining the
asymptotic behavior of the solutions of differential equations. Since the principle
requires rather sophisticated concepts from analysis and topology, we give several
examples to bring out the ideas.

Example 9.1. Consider a scalar differential equation; that is, (9.1) with d = 1, and
suppose that there is an interval U = (a, b) such that f(a) < 0 and f(b) > 0. Then
there must be a zero of f in U and thus the maximal invariant set in U is not empty.

In the previous example, the hypotheses on the vector field imply that every
solution beginning on ∂U must leave U . Of course, if we replace t by −t, then every
solution beginning on ∂U must enter U and we have the same situation as in Corollary
8.1. A more interesting situation is when some solutions on the boundary of U enter
U and some solutons leave U . The next example illustrates this point.
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Example 9.2. Consider the equation

(9.2) ẋ1 = −x3
1, ẋ2 = x3

2

and let U be the square U = (−1, 1) × (−1, 1). If we define U+ = {(x1, 1) : x1 ∈
[−1, 1]} ∪ {(x1,−1) : x1 ∈ [−1, 1]}, then U+ is the egress set from U and is that part
of ∂U which has the property that the solution with initial data in U+ leaves U+ for
positive time. The corresponding ingress set U− = {(−1, x2) : x2 ∈ (−1, 1)}∪{1, x2) :
x2 ∈ (−1, 1)} of U has the property that the solution with initial data in U− enters
U− for positive time.

Let us now make a perturbation of (9.2) to the equation

(9.3) ẋ1 = −x3
1 + g1(x1, x2), ẋ2 = x3

2 + g2(x1, x2),

where the function g(x) = (g1(x), g2(x)) is C1 and so small that the sets U+ and U−

are respectively the egress and ingress sets for the rectangle U .
We now prove the intuitive obvious fact that there must be some solution of

(9.3) that enters U and remains in U for all positive time. To do this, we define
ϕ(t, x0) = (ϕ1(t, x0), ϕ2(t, x0)) be the solution of (9.3) through x0 and define

S∗ = S∗

+ ∪ S∗

−
,

S∗

+ = {(−1, 1)} ∪ {x0 ∈ U− : ∃τ with ϕ2(τ, x0) = 1},

S∗

−
= {(−1,−1)} ∪ {x0 ∈ U− : ∃τ with ϕ2(τ, x0) = −1}.

The set S∗ represents the set of initial values in the closure U∗

−
of U− of those solutions

of (9.3) which leave the region U at some time, S∗

+ (resp. S∗

−
) the ones which leave

the top (resp. bottom) of the rectangle.
If we know that S∗

+ and S∗

−
are open sets in the relative topology of S∗, then the

fact that S∗

+ ∩S∗

−
= ∅ implies that U∗

−
\S∗ is not empty; that is, there is an x0 ∈ U−

such that the solution x(t, x0) ∈ U for t > 0. In particular, this solution is bounded,
has ω-limit set in U and thus there is an invariant set in U . There also is a maximal
invariant set in U which is compact (why?).

It remains to show that S∗

+ and S∗

−
are open sets in the relative topology of S∗.

Let x0 ∈ S∗

+, x0 6= (−1, 1) and let τ be such that ϕ2(t, x0) = 1. Then there exists
an ǫ > 0 such that ϕ2(t, x0) > 1 for τ < t ≤ τ + ǫ. Choose a neighborhood V of
ϕ(τ +ǫ, x0) such that y = (y1, y2) ∈ V implies that y2 > 1. By continuous dependence
on initial data, there is a neighborhood W of x0 such that, for every z ∈ W , there
is a τ̄(z) such that the solution ϕ(t, z) of (9.3) through z satisfies ϕ(τ̄(z), z) ∈ V . In
particular, ϕ2(τ̄(z), z) > 1. As a consequence, there is a τ(z) such that ϕ(τ(z), z) = 1.
This shows that S∗

+ is open. A similar argument shows that S∗

−
is open.

What is the nature of the compact invariant set in the rectangle U? Without more
information about the perturbation U , we can say very little since the equilibrium
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point (0, 0) of (9.2) is not hyperbolic. For an arbitrary perturbation g satisfying the
above general limitations, there must be at least one equilibrium point (why?). If we
choose the perturbation g so that the system remains a gradient system, then the
invariant set in U consists only of equilibrium points and connections between them.
It is possible to choose the gradient system so that the perturbed equation has exactly
9 equilibrium points (show this). If we allow the perturbation g to vary in the class
of non-gradient systems, then it is possible to obtain a periodic orbit (construct such
a perturbation).

Exercise 9.1. Consider the three dimensional system

ẋ1 = −x1(x
2
1 + x2

2)
3 + x2

ẋ1 = −x2(x
2
1 + x2

2)
3 − x1

ẋ3 = x3
3.

In polar coordinates, we have the system

θ̇ = 1, ṙ = −r3, ẋ3 = x3
3.

Let U = {(θ, r, x3) : θ ∈ [0, 2π], 0 ≤ r < 1,−1 ≤ x3 ≤ 1}, U+ = {(θ, r, 1) : θ ∈
[0, 2π], 0 ≤ r < 1} ∪ {(θ, r,−1) : θ ∈ [0, 2π], 0 ≤ r < 1}, U− = {(θ, 1, x3) : θ ∈
[0, 2π], x3 ∈ (−1, 1)}. Choose a perturbation g of the vector field so small that U+

(resp. U−) is the egress (resp. ingress) set for U . Show that there must be a nonempty
invariant set in U for the perturbed system. Must there be a periodic orbit? Can the
perturbation be made in such a way that there is no equilibrium point in U?

Let us now generalize the ideas in the previous examples to d-dimensions. We
consider the differential equation (9.1) and assume that f is a C1-function. We let
ϕ(t, x0 denote the solution of (9.1) through x0, let (α(x0), β(x0)) denote the maximal
interval of existence of ϕ(t, x0), and, for any interval I ∈ (α(x0), β(x0)), let ϕ(I, x0) =
{ϕ(t, x0) : t ∈ I}.

Definition 9.3. Let U be an open set in lRd. A point x0 ∈ ∂U is a point of egress from
U with respect to (9.1) if there is a δ > 0 such that ϕ([−δ, 0), x0) ⊂ U . An egress point
x0 is a point of strict egress from U if there a δ > 0 such that ϕ((0, δ], x0) ⊂ lRd \ Ū .
The set of points of egress from U is denoted by S and the set of points of strict egress
from U is denoted by S∗.

Definition 9.4. If A ⊂ B are any two sets of a topological space and K : B → A

is a continuous map with K(P ) = P for all points P in A, then K is said to be a
retraction from B to A and A is said to be a retract of B.

With these definitions, we are in a position to prove the following result which is
known as the principle of Wazewski.
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Theorem 9.1. If S = S∗ and there is a set Z ⊂ U ∪ S such that Z ∩ S is a retract

of S but not a retract of Z, then there is at least one point x0 in Z \ S such that

ϕ([0, β(x0)), x0) ⊂ U . In particular, if U is a bounded set and the above hypotheses

are satisfied, then there is a positive orbit which remains in U and thus an invariant

set in U .

Proof. For any point x0 ∈ U for which ϕ([0, β(x0)), x0)∩(lRd\U) 6= ∅, there is a time
tx0

for which ϕ(tx0
, x0) ∈ S and ϕ(t, x0) ∈ U for t ∈ [0, tx0

). The point ϕ(tx0
, x0) is

called the consequent of x0 and denoted by C(x0). The set of points in U for which
a consequent exists is designated by G and is called the left shadow of S.

Suppose now that S = S∗ and define the map K : G ∪ S → S, K(x) = C(x)
for x ∈ G, K(x) = x for x ∈ S. We first prove that K is continuous. If x ∈ U and
C(x) = ϕ(tx, x), then S = S∗ implies that there is a δ > 0 such that ϕ((−δ, 0), x) ⊂ U ,
ϕ((0, δ), x) ⊂ lRd \ U . Since ϕ(s, x) is continuous in (s, x), for any ǫ > 0, there is an
η > 0 such that |ϕ(s, y) − ϕ(s, x)| < ǫ for s ∈ (−δ, δ) if |y − x| < η. This clearly
implies that C(y) → C(x) if y → x. If x ∈ S = S∗, then one repeats the same type
of argument to obtain that K is continuous.

Since K is continuous, K is a retract of G ∪ S into S.
If the conclusion of the theorem is not true, then Z \ S ⊂ G, the left shadow of

S. Thus, Z ⊂ G∪S. Since Z ∩S is a retract of S, there is a mapping H : S → Z ∩S

such that H(x) = x for x ∈ Z ∩ S. The map HK : G ∪ S → Z ∩ S is continuous and
HK(x) = x for x ∈ Z ∩ S. Thus, G ∪ S is a retract of Z ∩ S. Since z ⊂ G ∪ S, the
map HK : Z → Z ∩ S is a retraction of z onto Z ∩ S. This contradiction proves the
theorem.

Let us see how to apply this result to the Example 9.2.

Example 9.2 (Revisited). For Equation (9.3) with the imposed smallness conditions
on g, it is clear that S = S∗. For the set Z, choose Z = {(−1, x2) : x2 ∈ [−1, 1]}.
Then Z ∩ S is a retract of S but not a retract of Z. Therefore, the conclusion of
Theorem 9.1 holds true. What we actually did in Example 9.2 was to prove Theorem
9.1 for the special case of Equation 9.3.

Exercise 9.2. Redo Exercise 9.1 using Theorem 9.1.

Exercise 9.3. Consider the scalar equation ẋ = f(t, x), t ≥ 0, and suppose that
there is a δ > 0 such that xf(t, x) ≥ δ for |x| = 1. Show that there is a solution x(t)
such that |x(t)| < 1 for t ≥ 0.
Hint. Rewrite the equation as ẋ1 = 1, ẋ2 = f(x1, x2) and use the principle of
Wazewski.

Exercise 9.4. Consider the system

ẋ1 = −x3
1 + f1(t, x1, x2)

ẋ2 = x3
2 + f2(t, x1, x2).
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Give conditions on f1, f2 on the sets U+ = {(x1, 1) : x1 ∈ [−1, 1]} ∪ {(x1,−1) : x1 ∈
[−1, 1]}, U− = {(−1, x2) : x2 ∈ (−1, 1)} ∪ {1, x2) : x2 ∈ (−1, 1)}, to ensure that there
is a solution satisfying |x1(t)| < 1, |x2(t)| < 1.
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