2.2. Liouville's Theorem.

We recall a few elementary facts from linear algebra. If $B=\left(b_{i j}\right)$ is a $d \times d$ matrix, let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{d}$ be the not necessarily distinct eigenvalues of B. Then we know that det $B=\prod_{j=1}^{d} \lambda_{j}$ and $\operatorname{Tr} B=\sum_{j=1}^{d} b_{j j}=\Sigma_{j=1}^{d} \lambda_{j}$. Also, if A, B are $d \times d$ matrices, then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$ and if, in addition, $\operatorname{det} B \neq 0$, then $\operatorname{Tr} A=\operatorname{Tr}$ $B^{-1} A B$.

If ξ_{1}, \ldots, ξ_{d} are given vectors in \mathbb{R}^{d}, then the parallelepiped with these edges is the set consisting of all points of the form $x_{1} \xi_{1}+\cdots+x_{d} \xi_{d}, 0 \leq x_{j} \leq 1, j=1, \ldots, d$. The determinant of a matrix A is the oriented volume of the parallelepiped whose edges are given by the columns of A. In this section, we derive a formula in terms of the coefficients of the matrix $A(t)$ for det $X(t)$ where $X(t)$ is a fundamental matrix solution of (1.1). For any set $B \subset \mathbb{R}^{d}$, we can define the image of this set under (1.1) by the relation $X(t) B=\{X(t) \xi: \xi \in B\}$. Using the formula for det $X(t)$, we see how the volume of the set $X(t) B$ changes with t. If this determinant is <1 (resp., >1) for all t, then the volume is decreasing (resp., increasing). If $\operatorname{det} X(t)=1$ for all t, the volume remains constant and we say that (1.1) is volume preserving.

We need first a lemma on matrices depending on a parameter.
Lemma 2.1. If $A(\epsilon)$ is a $C^{1} d \times d$ matrix function of ϵ for $\epsilon \in\left(-\epsilon_{0}, \epsilon_{0}\right)$, satisfying $A(0)=I, \frac{d}{d \epsilon} A(\epsilon)_{\epsilon=0}=A_{0}$, then

$$
\begin{equation*}
\frac{d}{d \epsilon} \operatorname{det} A(\epsilon)_{\epsilon=0}=\operatorname{Tr} A_{0} \tag{2.1}
\end{equation*}
$$

Proof. Since $A(0)=I$, we may change coordinates and assume that $A(\epsilon)=I+A_{0} \epsilon+$ $o(\epsilon)$ and A_{0} is in Jordan canonical form. If $1+\lambda_{1}(\epsilon), \ldots, 1+\lambda_{d}(\epsilon)$ are the eigenvalues of $A(\epsilon)$ and $\lambda_{10}, \ldots, \lambda_{d 0}$ are the eigenvalues of A_{0}, then $\lambda_{j}(\epsilon)=\epsilon \lambda_{j 0}+o(\epsilon)$ as $\epsilon \rightarrow 0$ for each $j=1, \ldots, d$, and

$$
\operatorname{det} A(\epsilon)=\prod_{j=1}^{d}\left(1+\lambda_{j}(\epsilon)\right)=1+\epsilon \Sigma \lambda_{0 j}+o(\epsilon)=1+\epsilon \operatorname{Tr} A_{0}+o(\epsilon)
$$

as $\epsilon \rightarrow 0$. This relation implies the conclusion in the lemma.
Theorem 2.1. (Liouville's Theorem) If $A \in C\left(\mathbb{R}, \mathbb{R}^{d \times d}\right)$ is a $d \times d$ matrix and $X(t)$ is a matrix solution of (1.1), then

$$
\begin{equation*}
\operatorname{det} X(t)=\operatorname{det} X(\tau) e^{\int_{\tau}^{t} \operatorname{Tr} A(s) d s} \tag{2.2}
\end{equation*}
$$

Proof. If det $X(\tau)=0$, then (2.2) is clearly satisfied from Proposition 1.1. Therefore, we assume that $\operatorname{det} X(\tau) \neq 0$. Since $X(t)$ is a C^{1}-function, we have $\operatorname{det} X(t)$ is a C^{1}-function. For any $s \in \mathbb{R}$, since $X(t)$ is a matrix solution of (1.1), we know that

$$
X(t)[X(s)]^{-1}=I+\int_{s}^{t} A(\tau) X(\tau)[X(s)]^{-1} d \tau
$$

If we let $\epsilon=t-s, B(\epsilon)=X(\epsilon+s)[X(s)]^{-1} \equiv X(t)[X(s)]^{-1}$, then $B(0)=I$, $\frac{d}{d \epsilon} B(\epsilon)_{\epsilon=0}=A(s)$ and Lemma 2.1 implies that $\frac{d}{d \epsilon} \operatorname{det} B(\epsilon)_{\epsilon=0}=\operatorname{Tr} A(s)$. Since the determinant of a product is the product of the determinants, we have

$$
\left(\frac{d}{d t} \operatorname{det} X(t)\right) \operatorname{det}[X(s)]^{-1}=\frac{d}{d t} \operatorname{det}\left(X(t)[X(s)]^{-1}\right)
$$

Using this fact and the relation $\frac{d}{d \epsilon} \operatorname{det} B(\epsilon)=\frac{d}{d t} \operatorname{det}\left(X(t)[X(s)]^{-1}\right)$, we deduce that

$$
\left(\frac{d}{d t} \operatorname{det} X(t)_{t=s}\right) \operatorname{det}[X(s)]^{-1}=\operatorname{Tr} A(s)
$$

or equivalently the function $u(s)=\operatorname{det} X(s)$ is a solution of the scalar equation $\dot{u}=\operatorname{Tr} A(s) u, u(\tau)=\operatorname{det} X(\tau)$. An integrating of this equation yields (2.2).

Example 2.1. (Abel's formula) Consider the second order equation

$$
\begin{equation*}
\ddot{u}+p(t) \dot{u}+q(t) u=0, \tag{2.3}
\end{equation*}
$$

where p, q are continuous functions on \mathbb{R}. This equation is equivalent to a two dimensional system (1.1) with

$$
A(t)=\left[\begin{array}{cc}
0 & 1 \\
-q(t) & -p(t)
\end{array}\right] .
$$

For any two scalar functions u, v, the Wronskian $W(u, v, t)$ of u, v is defined to be

$$
W(u, v, t)=\operatorname{det}\left[\begin{array}{cc}
u(t) & v(t) \\
\dot{u}(t) & \dot{v}(t)
\end{array}\right] .
$$

If u, v are two solutions of the second order equation, then

$$
X(t)=\left[\begin{array}{cc}
u(t) & v(t) \\
\dot{u}(t) & \dot{v}(t)
\end{array}\right]
$$

is a matrix solution of the second order system. As a consequence of Liouville's Theorem, we conclude that

$$
W(u, v, t)=W(u, v, \tau) e^{-\int_{\tau}^{t} p(s) d s}
$$

which is Abel's formula.
If we suppose that $p(t)=0$ for all t, then (2.3) is area preserving. If $p(t)>0$ for all t, then the area of any set is decreasing.

Exercise 2.1. Make an appropriate definition of a Wronskian and extend the previous example to an $n^{t h}$ order scalar equation.

From Liouville's Formula (2.2), if $\operatorname{Tr} A(t)<0$, we know that the volume of the image of any d-dimensional set in \mathbb{R}^{d} obtained through a fundamental matrix solution of (2.1) is decreasing in time. We need to notice that this does not say that the solutions of (2.1) approach zero. For example, consider the system $\dot{x}_{1}=$ $-2 x_{1}, \dot{x}_{2}=x_{2}$. In this case, we have $\operatorname{Tr} A=-1$ and so the area of a set is decreasing in time. The rectangle $\left\{0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}$ is mapped to the rectangle $\left\{0 \leq x_{1} \leq e^{-2 t}, 0 \leq x_{2} \leq e^{t}\right\}$, which becomes very long and thin.

Exercise 2.2. For the equation $\dot{x}_{1}=-2 x_{1}, \dot{x}_{2}=x_{2}$, and for various types of sets which do not contain the origin, draw the images under the fundamental matrix $e^{A t}$.

