2.2. Liouville's Theorem.

We recall a few elementary facts from linear algebra. If $B = (b_{ij})$ is a $d \times d$ matrix, let $\lambda_1, \lambda_2, \ldots, \lambda_d$ be the not necessarily distinct eigenvalues of B. Then we know that det $B = \prod_{j=1}^d \lambda_j$ and Tr $B = \sum_{j=1}^d b_{jj} = \sum_{j=1}^d \lambda_j$. Also, if A, B are $d \times d$ matrices, then det $AB = \det A \det B$ and if, in addition, det $B \neq 0$, then Tr $A = \text{Tr } B^{-1}AB$.

If ξ_1, \ldots, ξ_d are given vectors in \mathbb{R}^d , then the *parallelepiped* with these edges is the set consisting of all points of the form $x_1\xi_1 + \cdots + x_d\xi_d$, $0 \le x_j \le 1$, $j = 1, \ldots, d$. The determinant of a matrix A is the oriented volume of the parallelepiped whose edges are given by the columns of A. In this section, we derive a formula in terms of the coefficients of the matrix A(t) for det X(t) where X(t) is a fundamental matrix solution of (1.1). For any set $B \subset \mathbb{R}^d$, we can define the image of this set under (1.1) by the relation $X(t)B = \{X(t)\xi : \xi \in B\}$. Using the formula for det X(t), we see how the volume of the set X(t)B changes with t. If this determinant is < 1 (resp., > 1) for all t, then the volume is decreasing (resp., increasing). If det X(t) = 1 for all t, the volume remains constant and we say that (1.1) is volume preserving.

We need first a lemma on matrices depending on a parameter.

Lemma 2.1. If $A(\epsilon)$ is a $C^1 d \times d$ matrix function of ϵ for $\epsilon \in (-\epsilon_0, \epsilon_0)$, satisfying A(0) = I, $\frac{d}{d\epsilon}A(\epsilon)_{\epsilon=0} = A_0$, then

(2.1)
$$\frac{d}{d\epsilon} \det A(\epsilon)_{\epsilon=0} = \operatorname{Tr} A_0.$$

Proof. Since A(0) = I, we may change coordinates and assume that $A(\epsilon) = I + A_0 \epsilon + o(\epsilon)$ and A_0 is in Jordan canonical form. If $1 + \lambda_1(\epsilon), \ldots, 1 + \lambda_d(\epsilon)$ are the eigenvalues of $A(\epsilon)$ and $\lambda_{10}, \ldots, \lambda_{d0}$ are the eigenvalues of A_0 , then $\lambda_j(\epsilon) = \epsilon \lambda_{j0} + o(\epsilon)$ as $\epsilon \to 0$ for each $j = 1, \ldots, d$, and

det
$$A(\epsilon) = \prod_{j=1}^{d} (1 + \lambda_j(\epsilon)) = 1 + \epsilon \Sigma \lambda_{0j} + o(\epsilon) = 1 + \epsilon \operatorname{Tr} A_0 + o(\epsilon)$$

as $\epsilon \to 0$. This relation implies the conclusion in the lemma.

Theorem 2.1. (Liouville's Theorem) If $A \in C(\mathbb{R}, \mathbb{R}^{d \times d})$ is a $d \times d$ matrix and X(t) is a matrix solution of (1.1), then

(2.2)
$$\det X(t) = \det X(\tau) e^{\int_{\tau}^{t} \operatorname{Tr} A(s) \, ds}.$$

Proof. If det $X(\tau) = 0$, then (2.2) is clearly satisfied from Proposition 1.1. Therefore, we assume that det $X(\tau) \neq 0$. Since X(t) is a C^1 -function, we have det X(t) is a C^1 -function. For any $s \in \mathbb{R}$, since X(t) is a matrix solution of (1.1), we know that

$$X(t)[X(s)]^{-1} = I + \int_{s}^{t} A(\tau)X(\tau)[X(s)]^{-1}d\tau.$$

If we let $\epsilon = t - s$, $B(\epsilon) = X(\epsilon + s)[X(s)]^{-1} \equiv X(t)[X(s)]^{-1}$, then B(0) = I, $\frac{d}{d\epsilon}B(\epsilon)_{\epsilon=0} = A(s)$ and Lemma 2.1 implies that $\frac{d}{d\epsilon} \det B(\epsilon)_{\epsilon=0} = \operatorname{Tr} A(s)$. Since the determinant of a product is the product of the determinants, we have

$$\left(\frac{d}{dt}\det X(t)\right)\det[X(s)]^{-1} = \frac{d}{dt}\det\left(X(t)[X(s)]^{-1}\right)$$

Using this fact and the relation $\frac{d}{d\epsilon} \det B(\epsilon) = \frac{d}{dt} \det (X(t)[X(s)]^{-1})$, we deduce that

$$\left(\frac{d}{dt}\det X(t)_{t=s}\right)\det[X(s)]^{-1} = \operatorname{Tr} A(s),$$

or equivalently the function $u(s) = \det X(s)$ is a solution of the scalar equation $\dot{u} = \operatorname{Tr} A(s)u, u(\tau) = \det X(\tau)$. An integrating of this equation yields (2.2).

Example 2.1. (*Abel's formula*) Consider the second order equation

(2.3)
$$\ddot{u} + p(t)\dot{u} + q(t)u = 0,$$

where p, q are continuous functions on \mathbb{R} . This equation is equivalent to a two dimensional system (1.1) with

$$A(t) = \begin{bmatrix} 0 & 1 \\ -q(t) & -p(t) \end{bmatrix}.$$

For any two scalar functions u, v, the Wronskian W(u, v, t) of u, v is defined to be

$$W(u, v, t) = \det \begin{bmatrix} u(t) & v(t) \\ \dot{u}(t) & \dot{v}(t) \end{bmatrix}$$

If u, v are two solutions of the second order equation, then

$$X(t) = \begin{bmatrix} u(t) & v(t) \\ \dot{u}(t) & \dot{v}(t) \end{bmatrix}$$

is a matrix solution of the second order system. As a consequence of Liouville's Theorem, we conclude that

$$W(u, v, t) = W(u, v, \tau)e^{-\int_{\tau}^{t} p(s) ds}$$

which is Abel's formula.

If we suppose that p(t) = 0 for all t, then (2.3) is area preserving. If p(t) > 0 for all t, then the area of any set is decreasing.

Exercise 2.1. Make an appropriate definition of a Wronskian and extend the previous example to an n^{th} order scalar equation.

From Liouville's Formula (2.2), if Tr A(t) < 0, we know that the volume of the image of any *d*-dimensional set in \mathbb{R}^d obtained through a fundamental matrix solution of (2.1) is decreasing in time. We need to notice that this does not say that the solutions of (2.1) approach zero. For example, consider the system $\dot{x}_1 =$ $-2x_1$, $\dot{x}_2 = x_2$. In this case, we have Tr A = -1 and so the area of a set is decreasing in time. The rectangle $\{0 \le x_1 \le 1, 0 \le x_2 \le 1\}$ is mapped to the rectangle $\{0 \le x_1 \le e^{-2t}, 0 \le x_2 \le e^t\}$, which becomes very long and thin.

Exercise 2.2. For the equation $\dot{x}_1 = -2x_1$, $\dot{x}_2 = x_2$, and for various types of sets which do not contain the origin, draw the images under the fundamental matrix e^{At} .

æ