
2.3. Stability.

In this section, we discuss stability properties of solutions of (1.1) in terms of a
fundamental matrix solution of (1.1). The concepts of stability are the same for linear
systems as for nonlinear systems. As a consequence, we first present the definitions
for a nonlinear system.

Consider the d-dimensional system

(3.1) ẋ = f(t, x)

and assume that f(t, 0) = 0 for all t ≥ 0.

We say that the solution x = 0 is stable on [0, ∞) if, for every ǫ > 0, τ ≥ 0, there
exists a δ = δ(ǫ, τ) > 0 such that |ξ| < δ implies that |x(t, τ, ξ)| < ǫ for all t ≥ τ. We
say that x = 0 is uniformly stable on [0, ∞) if it is stable and δ = δ(ǫ) can be chosen
independently of τ ≥ 0. We say that x = 0 is asymptotically stable on [0, ∞) if it is
stable and there exists a b(τ) > 0 such that |ξ| < b(τ) implies that |x(t, τ, ξ)| → 0 as
t → ∞. We say that x = 0 is uniformly asymptotically stable on [0, ∞) if it is stable
and there exists a b > 0 such that, for every η > 0, there exists a T (η) > 0 such that,
for any τ ≥ 0, |ξ| < b implies that |x(t, τ, ξ)| < η for all t ≥ τ + T (η).

If ϕ(t) is an arbitrary solution of (3.1) defined on [0, ∞), then the transformation
x = ϕ+y leads to a differential equation for y of the form ẏ = g(t, y) where g(t, 0) = 0.

We define the stability of ϕ in terms of the stability of the solution y = 0 of this
equation.

Remark 3.1. For autonomous equations, ẋ = f(x), the above definitions of stability
are appropriate for the equilibrium solutions; that is, the solutions of f(x) = 0. The
definitions are not appropriate for other types of invariant sets of autonomous systems.
We will return to this in a later chapter, but it is instructive to think some at this
time about the case where the invariant set is a close curve Γ which corresponds to
a periodic solution ϕ(t) of the equation. Since the system is autonomous, for any
constant α, the function ϕ(t + α) also a periodic solution corresponding with the
same orbit Γ. If α is small, then the difference ϕ(t) − ϕ(t + α) remains small for all
t. Therefore, there is a type of stability if we consider the solutions that lie on Γ.
However, if we take the initial value close to Γ but not on γ, then one does not expect
in general that this solution will remain close to ϕ(t + α) for some α. This is easily
seen from the pendulum equation ẍ + sin x = 0 if we note that the period of periodic
solutions vary with the amplitude. This means that the definitions of stability must
be modified in some appropriate way. It is instructive for the reader at this point to
attempt to come up with a meaningful definition.
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We have the following characterization of the concepts of stability for linear
systems.

Theorem 3.1. If X(t) is a fundamental solution of (1.1), then
(i) x = 0 is stable on [0,∞) if and only if there exists a k = k(τ) > 0 such that, for

t ≥ τ ≥ 0, we have |X(t)| ≤ k.

(ii) x = 0 is uniformly stable on [0,∞) if and only if there exists a k > 0 such that,
for t ≥ s ≥ 0, we have |X(t)X−1(s)| ≤ k.

(iii) x = 0 is asymptotically stable on [0,∞) if and only if |X(t)| → 0 as t → ∞.

(iv) x = 0 is uniformly asymptotically stable on [0,∞) if and only if there exists a
k > 0, α > 0 such that, for t ≥ s ≥ 0, we have |X(t)X−1(s)| ≤ ke−α(t−s).

Proof. In all cases, the “if” part of the theorem is easy if we observe that x(t, τ, ξ) =
X(t)X−1(τ)ξ. Therefore, we give the proof only for the “only if” part.

(i) If x = 0 is stable on [0, ∞), then, for every ǫ > 0, τ ≥ 0, there exists a
δ = δ(ǫ, τ) > 0 such that |ξ| < δ implies that |x(t, τ, ξ)| < ǫ for all t ≥ τ. Thus,
|X(t)X−1(τ)ξ| ≤ ǫ if |ξ| ≤ δ. This implies that

|X(t)X−1(τ)| = sup
|η|≤1

|X(t)X−1(τ)η| = sup
|ξ|≤δ

|X(t)X−1(τ)
ξ

δ
| ≤ δ−1ǫ.

(ii) The proof is the same as in (i) with the observation that δ can be chosen
independently of τ.

(iii) This is a consequence of the definition.
(iv) From (ii), there exists a k1 > 0 such that |X(t)X−1(s)| ≤ k1 for t ≥ s ≥ 0.

Also, there exists a b > 0 such that, for every η > 0, there exists a T = T (η) > 0
such that, for any s ≥ 0, |ξ| < b implies that |X(t)X−1(s)ξ| < η for all t ≥ s + T (η).
Therefore, |X(t)X−1(s)| ≤ η

b
. Let α = − 1

T
log η

b
and k = k1e

αT . For any t ≥ s ≥ 0,

there exists an integer n ≥ 0 such that nT ≤ t − s < (n + 1)T. With this notation,
we have

|X(t)X−1(s)| ≤ |X(t)X−1(s + nT )| |X(s + nT )X−1(s)|

≤ k1|X(s + nT )X−1(s + (n − 1)T )| |X(s + (n − 1)T )X−1(s)|

≤ k1
η

b
|X(s + (n − 1)T )X−1(s + (n − 2)T )| |X(s + (n − 2)T )X−1(s)|

. . .

≤ k1(
η

b
)n = k1e

−αnT = ke−α(n+1)T ≤ ke−α(t−s) .

This completes the proof of the theorem.
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