
2.4. Linear Periodic Systems.

If A ∈ C0(lR, lRd×d) (or A ∈ C0(lR, Cl d×d)) is a d×d matrix function and there is
a constant p > 0 such that A(t + p) = A(t) for all t, then we say that the differential
equation (1.1) is a periodic system or a p-periodic system if we want to emphasize the
period. We remark that we do not assume that p is the minimal period. Our objective
is to give a complete characterization of the general structure of the solutions of a
periodic system (1.1).

If X(t) is a d× d matrix solution of a p-periodic system (1.1), then X(t+ p) also
is a solution. If X(t) is a fundamental matrix solution, then there is d × d constant
matrix M such that X(t+p) = X(t)M for all t. Furthermore, M is nonsingular. The
matrix M is called a monodromy matrix for (1.1) and the eigenvalues ρ are called the
Floquet multipliers of (1.1). Since each Floquet multiplier ρ is different from zero,
there is complex number λ, called a Floquet exponent, such that ρ = eλp. We remark
that the Floquet multipliers and the real parts of the characteristic exponents are
uniquely defined, but the imaginary parts of the characteristic exponents are not.
The first question that must be asked is: do the Floquet multipliers depend upon
the fundamental solution X(t)? If Y (t) is another fundamental solution of (1.1), then
there is a nonsingular matrix D such that Y (t) = X(t)D and so Y (t+p) = X(t+p)D =
X(t)MD = Y (t)D−1MD and the monodromy matrix for Y (t) is D−1MD. Since this
matrix is similar to M , the eigenvalues are the same and the Floquet multipliers do
not depend upon the choice of the fundamental matrix. As a consequence of this fact,
we can always take X(0) = I in defining the monodromy matrix.

We remark that the Floquet multipliers do depend upon the period p. In fact,
consider the example ẋ = (−1 + cos 2πt)x, for which the solution is x(0)exp[−t +
[2π]−1 sin 2πt]. If we consider the period of the coefficients in the equation to be 1,
then the Floquet multiplier is exp(−1). If we consider the period of the coefficients
to be 2, then the Floquet multiplier is exp(−2).

Let us recall that, for an autonomous linear equation ẋ = Ax, if λ is an eigenvalue
of A, then there is a nonzero vector ξ such that eλtξ is a solution. For a p-periodic
system (1.1), the Floquet exponents play the role of eigenvalues in the constant co-
efficient case. Of course, we cannot expect to have a solution as simple as a constant
vector times an exponential. However, we have the following result.

Lemma 4.1. A complex number ρ = eλp is a Floquet multiplier of a p-periodic
system (1.1) if and only if there is a nontrivial solution of (1.1) of the form eλtq(t),
where q is p-periodic. In particular, there is a periodic solution of period p (resp. 2p
and not p) if and only if there is a multiplier = +1 (resp. −1).

Proof. If eλtq(t), q(t + p) = q(t) 6= 0, is a solution of (1.1) and we choose a funda-
mental matrix solution X(t) = [eλtq(t), q2(t), . . . , qd(t)], then X(t)col[1, 0, . . . , 0] =
eλtq(t) and Mcol[1, 0, . . . , 0] = eλpcol[1, 0, . . . , 0], where M is the monodromy ma-
trix. This proves that ρ = eλp is a Floquet multiplier of (1.1)

Conversely, if ρ = eλp is a Floquet multiplier of (1.1); that is, an eigenvalue of the
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monodromy matrix M of a fundamental matrix solution X(t) of (1.1), and Mξ = eλpξ

with ξ 6= 0, then it is easy to see that q(t) ≡ X(t)ξe−λt = q(t + p) 6= 0 for all t and
q(t)eλt is a nontrivial solution of (1.1).

In the statement of Lemma 4.1, we singled out the periodic solutions of period p

and 2p because of the special role that they play in some of our later examples. If k

is a positive integer, then it is clear that there is a periodic solution of period kp and
not of period jp for any integer j < k if and only if there is a Floquet multiplier eiωp

which is a kth root of unity; that is, ω is real and eikωp = 1, eijωp 6= 1 for j < k.

To describe the solutions of (1.1) that are not periodic, it is convenient to in-
troduce some terminology. A set {ω1, ω2, . . . , ωs } of real numbers is said to be
rationally independent if Σs

j=1rjωj = 0 for rational numbers rj , j = 1, . . . , s implies
each rj = 0. A continuous function h is said to be quasiperiodic with basic frequencies
ω1, ω2, . . . , ωs if the set {ω1, ω2, . . . , ωs } is rationally independent and there is a con-
tinuous function H(θ1, θ2, . . . , θs), periodic in θj of minimal period 2π

ω , j = 1, . . . , s,

such that h(t) = H(t, t, . . . , t) for all t ∈ lR. The function sin t + sin πt is quasiperi-
odic with basic frequencies 1, π.

If eiωp, ω real, is a Floquet multiplier and not a root of unity, then the nontrivial
solution eiωtq(t) is a quasiperiodic function with basic frequencies ω, 2π

p . If ρ = eα+iωt

is a Floquet multiplier and eiωp is not a root of unity, then the solution eα+iωtq(t) is
the product of a quasiperiodic function and an exponential function.

Lemma 4.2. If ρj , j = 1, 2, . . . , d, are the Floquet multipliers of the p-periodic
system (1.1), then

(4.1)
d

∏

j=1

ρj = e

∫

p

0

Tr A(s) ds
.

Proof. If M is the monodromy matrix of the fundamental solution X(t), X(0) = I

of (1.1), then Liouville’s Theorem 2.2 implies (4.1).

At first glance it might appear that linear periodic systems share the same sim-
plicity as autonomous linear systems. However, there is a very important difference -
the Floquet multipliers are obtained from the solutions of the differential equation and
there is no apparent connection with the coefficients of the matrix in the differential
equation. The following exercise illustrates this fact.

Exercise 4.1. Consider the 2π-periodic system (1.1) with

A(t) =

[

−1 + 3
2 cos2 t 1 − 3

2 cos t sin t

−1 − 3
2 sin t cos t −1 + 3

2 sin2 t

]

Show that the eigenvalues of A(t) are 1
4 [−1± i

√
7] and thus have real parts negative.

Verify that the unbounded function col (− cos t, sin t)et/2 is a solution of the equation.
Use Lemma 4.2 to show that the multipliers are eπ and e−2π.
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To obtain more information about the structure of a fundamental matrix, we
need the following exponential representation for a nonsingular matrix.

Lemma 4.3. If M is a nonsingular d × d matrix, then there is d × d matrix B such
that M = eB .

Proof. We first note that, if M = eB and P is a nonsingular matrix, then PMP−1 =
ePBP−1

. Thus, without loss of generality, we may assume that M is in Jordan Canon-
ical Form, M = diag (M1, . . . , Ms), where each Mj has the form: Mj = λj + Nj =

λj(I +
Nj

λj
), where λj is a complex number and Nj is nilpotent; that is, there is an

integer dj such that, for k ≥ dj , we have Nk
j = 0. Using the power series for log (1+t)

near t = 0 as motivation, if we define

Bj = (log λj)I − Σ
dj−1
k=1

(−Nj)
k

kλk
j

≡ (log λj)I + Sj ,

then
eBj = elog λjIeSj

= λjΣ
∞

i=0

1

i!

[

− Σ∞

k=1

(−Nj)
k

kλk
j

]i

= λj(I +
Nj

λj
) = Mj .

If we define B = diag (B1, . . . , Bs), then eB = M and the lemma is proved.

Exercise 4.2. Suppose that M is a nonsingular matrix. If there is no negative
eigenvalue of M , show that there is a real matrix B such that M = eB . For a general
nonsingular matrix M , show that there is real matrix B such that M2 = eB .

Theorem 4.1. (Floquet representation) If X(t) is a fundamental matrix for the p-
periodic system (1.1), then there exist a d × d constant matrix B and nonsingular
d × d p-periodic matrix P (t) such that

(4.2) X(t) = P (t)eBt .

In addition, there are a real matrix B and a 2p-periodic nonsingular matrix P (t) such
that (4.2) holds.

Proof. If M is the monodromy matrix for X(t), then Lemma 4.1 implies that there
is a matrix B such that M = eBp. If we define P (t) = X(t)e−Bt, then

P (t + p) = X(t + p)e−B(t+p) = X(t)eBpe−B(t+p) = P (t) ,

which proves (4.2).
If we choose the real matrix B so that M2 = eB2p, then P (t) is real and

P (t + 2p) = X(t + 2p)e−B(t+2p) = X(t + p)Me−B(t+2p) = M2e−B(t+2p) = P (t) .

This completes the proof of the theorem.
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Corollary 4.1. For the p-periodic system (1.1), there is a nonsingular p-periodic
(real nonsingular 2p-periodic) transformation of variables taking it into an equation
with constant coefficients.

Proof. If P (t), B are defined by (4.2) and x = P (t)y, then the equation for y is

ẏ = P−1(AP − Ṗ )y .

Since P = Xe−Bt, it follows that Ṗ = AP − PB and so ẏ = By.

For any ξ ∈ lRd, we know from Section 1.5 that eBtξ is the sum of exponential
functions with polynomial coefficients. From the Floquet representation, it follows
that any solution of the p-periodic system (1.1) is the sum of functions of the form
eλtq(t), where q(t) is a polynomial in t with coefficients which are p-periodic in t. The
numbers λ are the Floquet exponents.

As an immediate consequence of the Floquet representation and Theorem 1.7.2,
we obtain the following result on stability.

Theorem 4.2. For the p-periodic system (1.1), if M is a monodromy matrix, then
the solution x = 0 is
(i) uniformly stable if and only if each ρ ∈ σ(M) satisfies |ρ| ≤ 1 and the ones with

|ρ| = 1 have simple elementary divisors;
(ii) uniformly asymptotically stable if and only if each ρ ∈ σ(M) satisfies |ρ| < 1.

Example 4.1. (Hill’s Equation) If δ is a constant and b(t) is a π-periodic function,
the equation

(4.3) ü + [δ + b(t)]u = 0

is referred to as Hill’s Equation. If we write this equation as a system (1.1) for the
vector x = col (u, u̇), then the matrix A(t) is given by

A(t) =

[

0 1
−[δ + b(t)] 0

]

.

If M is the monodromy matrix for the fundamental solution X(t), X(0) = I, then
the Floquet multipliers ρ1, ρ2 of (4.3) are the solutions of the equation

(4.4) det [M − ρI] = ρ2 + (TrM)ρ + 1 = 0 ,

since det M = 1 by (4.1).
From Theorem 4.2 and (4.4), we can determine the stability properties of the

zero solution of (4.3) from the magnitude of Tr M . In fact, the only possibilities are
the following:
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(i) If |TrM | < 2, then the Floquet multipliers are complex and simple: |ρ1| =
|ρ2| = 1, ρ1 = ρ̄2, and the zero solution of (4.3) is uniformly stable.

(ii) If |TrM | > 2, then either 0 < ρ1 < 1 < ρ2 or ρ2 < −1 < ρ1 < 0 and the zero
solution of (4.3) is unstable.

(iii) If |TrM | = 2, then either ρ1 = ρ2 = 1 or ρ1 = ρ2 = −1. In the first situation,
there must be a π-periodic solution of (4.3) and, in the latter situation, there must
be a 2π-periodic solution of (4.3). The solutions of (4.3) are either all periodic or
periodic functions times a linear function of t depending upon whether or not the
monodromy matrix is diagonalizable.

The computation of Tr M is difficult and generally it only can be done by some
approximation procedure. For some important cases that appear in the applications,
the special functions defined by (4.3) have been tabulated. If b(t) = δ + β cos 2t, the
equation (4.3) is called Mathieu’s Equation and the zones of stability in the (δ, β)
plane as well as fundamental matrix solutions have been tabulated. The only possible
transition regions from stability to instability are those values of (δ, β) for which
the equation has a periodic solution of period π or 2π. After we have developed more
analytic machinery, we will return to this example and obtain a part of these transition
curves.

Exercise 4.3. For the Mathieu equation,

(4.5) ü + (δ + β cos 2t)u = 0 ,

show that, if δ 6= n2, where n ≥ 0 is an integer, then there is a β0 = β0(δ) > 0 such
that, for 0 ≤ β ≤ β0, the zero solution of (4.5) is uniformly stable.
Hint. For β = 0, consider the linear equation ü + δu = 0 as a π-periodic equation
and show that the Floquet multipliers are nonreal and have modulus one if δ 6= n2,

where n ≥ 0 is an integer. Now use the fact that the Floquet multipliers of (4.5)
are continuous functions of β. This latter fact is a consequence of the continuous
dependence of solutions on parameters.

Exercise 4.4. (Arnol’d, p. 205) The Floquet theory for periodic systems is valid for
coefficients which are integrable in t; in particular, for piecewise continuous functions.
Suppose that ǫ is a small parameter, ω is a constant, b(t) = ω + ǫ, 0 ≤ t < π, =
ω − ǫ, π ≤ t < 2π, and consider the equation

ü + b2(t)u = 0.

Show that the approximate formulas for the curves of transition from stability to
instability for this equation for ǫ small are given by

ω = k ± ǫ2

k
+ o(ǫ2)

ω = k +
1

2
± ǫ

π(k + 1
2 )

+ o(ǫ) ,
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where k is a positive integer.
Hint. Let ω1 = ω + ǫ, ω2 = ω − ǫ, cj = cos ωj , sj = sin ωj , j = 1, 2, and show
that the fundamental matrix solution X(t), X(0) = I, of the corresponding system
satisfies

1

2
TrX(2π) = c1c2 − (1 + d)s1s2 ,

where 1 + d = 1
2
(ω1

ω2

+ ω2

ω1

) and d = 2ǫ2

ω2 + O(ǫ4). The transition from stability to
instability is when |TrX(2π)| = 2. Use trigonometric formulas to show that this is
equivalent to either

cos 2πω = 1 − d

2 + d
(1 − cos 2πǫ)

cos 2πω = −1 +
d

2 + d
(1 + cos 2πǫ) .

Solve these equations approximately.
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