2.5. Nonhomogeneous Linear Systems.

If $A \in C^0(\mathbb{R}, \mathbb{R}^{d \times d})$ (or $A \in C^0(\mathbb{R}, \mathbb{C}^{d \times d})$) is a $d \times d$ matrix function and $g \in C(\mathbb{R}, \mathbb{R}^d)$ (or $g \in C(\mathbb{R}, \mathbb{C}^d)$), we consider the linear equation

$$\dot{x} = A(t)x + g(t)$$

and refer to it as a *linear nonhomogeneous equation*. For any $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^d$, Theorem 1.3.1 implies that there is a unique solution $x(t, \tau, \xi)$ through (τ, ξ) which is continuous in its arguments and Exercise 1.4.2 ensures that this solution exists for all $t \in (-\infty, \infty)$. We have the following representation of the solution.

Theorem 5.1. (Variation of Constants Formula) If X(t) is a fundamental matrix solution of (1.1), then the solution $x(t, t, \xi)$ of (5.1) is given by

(5.2)
$$x(t, \tau, \xi) = X(t)X^{-1}(\tau)\xi + \int_{\tau}^{t} X(t)X^{-1}(s)g(s)\,ds\,.$$

In particular, if A is a constant matrix, then

(5.3)
$$x(t, \tau, \xi) = e^{A(t-\tau)}\xi + \int_{\tau}^{t} e^{A(t-s)}g(s) \, ds \, .$$

Proof. If we make the transformation of variables $x(t, \tau, \xi) = X(t)c(t)$ in (5.1), then a simple computation shows that $\dot{c} = X^{-1}(t)g$ and so

$$c(t) = c(\tau) + \int_{\tau}^{t} X^{-1}(s)g(s) \, ds$$

= $X^{-1}(\tau)\xi + \int_{\tau}^{t} X^{-1}(s)g(s) \, ds$.

This proves (5.2). Relation (5.3) is clear from the definition of e^{At} .

Exercise 5.1. (Nonlinear Variation of Constants Formula) There is an interesting generalization of (5.2) to nonlinear equations. Consider the equation

(5.4)
$$\dot{x} = f(t, x) + g(t, x),$$

where $f, g \in C^r(\mathbb{R}, \mathbb{R}^d), r \geq 1$. Let $\varphi(t, \tau, \xi)$ be the solution of (5.4) satisfying $\varphi(\tau, \tau, \xi) = \xi$ and let $\psi(t, \tau, \xi)$ be the solution of the "unperturbed" nonlinear equation

$$(5.5) \qquad \qquad \dot{x} = f(t, x)$$

satisfying $\psi(\tau, \tau, \xi) = \xi$. Prove that

(5.6)
$$\varphi(t,\,\tau,\,\xi) = \psi(t,\,\tau,\,\xi) + \int_{\tau}^{t} \frac{\partial\psi(t,\,s,\,\varphi(s,\,\tau,\,\xi))}{\partial\xi} g(s,\,\varphi(s,\,\tau,\,\xi)) \, ds \, .$$

Hint. We know that (see Formula (1.3.4))

$$\frac{\partial \psi(t,\,\tau,\,\xi)}{\partial \tau} = -\frac{\partial \psi(t,\,\tau,\,\xi)}{\partial \xi} f(\tau,\,\xi) \,.$$

Show that

$$\frac{d\psi(t,\,s,\,\varphi(s,\,\tau,\,\xi))}{ds} = \frac{\partial\psi(t,\,s,\,\varphi(s,\,\tau,\,\xi))}{\partial\xi}g(s,\,\varphi(s,\,\tau,\,\xi))$$

and then integrate from 0 to t.

It is important to know that the solutions of (5.1) depend continuously upon the matrix A and function h. In the uniform topology, this is a consequence of the uniform contraction principle. We give an independent proof of this fact which shows also that there is continuous dependence in a weaker topology.

Theorem 5.2. Let $A, B \in C(\mathbb{R}, \mathbb{R}^{d \times d})$ (or $A, B \in C(\mathbb{R}, \mathbb{C}^{d \times d})$) be $d \times d$ matrix functions and let $g, h \in C(\mathbb{R}, \mathbb{R}^d)$ (or $g, h \in C(\mathbb{R}, \mathbb{C}^d)$). If x(t) is a solution of the equation (5.1) and y(t) is a solution of

$$(5.7) \qquad \qquad \dot{y} = B(t)y + h(t)$$

then, for any $\tau \in \mathbb{R}$, we have

(5.8)
$$\begin{aligned} |x(t) - y(t)| &\leq e^{\int_{\tau}^{t} |A(s)| \, ds} |x(\tau) - y(\tau)| \\ &+ \int_{\tau}^{t} \left(e^{\int_{s}^{t} |A(u)| \, du} \right) [|A(s) - B(s)| \, |y(s)| + |g(s) - h(s)|] \, ds \end{aligned}$$

Proof. If we let z = x - y, then $\dot{z} = Az + (A - B)y + g - h$. This implies that

$$|z(t)| \le |z(\tau)| + \int_{\tau}^{t} [|A(s)| |z(s)| + |A(s) - B(s)| |y(s)| + |g(s) - h(s)|] \, ds \, .$$

An application of the Generalized Gronwall Inequality yields the result stated in the theorem.

Exercise 5.2. Let $X_A(t)$, $X_A(0) = I$, be a fundamental matrix solution of (1.1). Prove that $X_A(t)$ is continuous in the matrix A in the sense that, for any $\epsilon > 0$ and

any t_0 , there is a $\delta > 0$ such that $\int_0^{t_0} |A(s) - B(s)| ds < \delta$ implies that, for $0 \le t \le t_0$, we have $|X_A(t) - X_B(t)| < \epsilon$.

Exercise 5.3. Let p > 0 be a given constant and let X_p be the Banach space of $d \times d$ continuous matrix functions B(t), $t \in \mathbb{R}$, B(t+p) = B(t) for all t with the norm topology, $||B(\cdot)|| = \max_{t \in \mathbb{R}} ||B(t)||$. Prove that the Floquet multipliers of (1.1) are continuous functions of the matrix function $A(\cdot) \in X_p$.

Exercise 5.4. Suppose that X_p is defined as in Exercise 5.3 and that $A(\cdot) \in X_p$ has the property that the solutions of (1.1) approach zero as $t \to \infty$. Prove that there is a neighborhood U of $A(\cdot)$ in X_p such that, for any $B(\cdot) \in U$, the solutions of $\dot{x} = B(t)x$ approach zero as $t \to \infty$.

æ