2.5. Nonhomogeneous Linear Systems.

If $A \in C^{0}\left(\mathbb{R}, \mathbb{R}^{d \times d}\right)\left(\right.$ or $\left.A \in C^{0}\left(\mathbb{R}, \mathbb{C}^{d \times d}\right)\right)$ is a $d \times d$ matrix function and $g \in$ $C\left(\mathbb{R}, \mathbb{R}^{d}\right)\left(\right.$ or $g \in C\left(\mathbb{R}, \mathbb{C}^{d}\right)$), we consider the linear equation

$$
\begin{equation*}
\dot{x}=A(t) x+g(t) \tag{5.1}
\end{equation*}
$$

and refer to it as a linear nonhomogeneous equation. For any $(\tau, \xi) \in \mathbb{R} \times \mathbb{R}^{d}$, Theorem 1.3.1 implies that there is a unique solution $x(t, \tau, \xi)$ through (τ, ξ) which is continuous in its arguments and Exercise 1.4.2 ensures that this solution exists for all $t \in(-\infty, \infty)$. We have the following representation of the solution.

Theorem 5.1. (Variation of Constants Formula) If $X(t)$ is a fundamental matrix solution of (1.1), then the solution $x(t, t, \xi)$ of (5.1) is given by

$$
\begin{equation*}
x(t, \tau, \xi)=X(t) X^{-1}(\tau) \xi+\int_{\tau}^{t} X(t) X^{-1}(s) g(s) d s \tag{5.2}
\end{equation*}
$$

In particular, if A is a constant matrix, then

$$
\begin{equation*}
x(t, \tau, \xi)=e^{A(t-\tau)} \xi+\int_{\tau}^{t} e^{A(t-s)} g(s) d s \tag{5.3}
\end{equation*}
$$

Proof. If we make the transformation of variables $x(t, \tau, \xi)=X(t) c(t)$ in (5.1), then a simple computation shows that $\dot{c}=X^{-1}(t) g$ and so

$$
\begin{aligned}
c(t) & =c(\tau)+\int_{\tau}^{t} X^{-1}(s) g(s) d s \\
& =X^{-1}(\tau) \xi+\int_{\tau}^{t} X^{-1}(s) g(s) d s
\end{aligned}
$$

This proves (5.2). Relation (5.3) is clear from the definition of $e^{A t}$.
Exercise 5.1. (Nonlinear Variation of Constants Formula) There is an interesting generalization of (5.2) to nonlinear equations. Consider the equation

$$
\begin{equation*}
\dot{x}=f(t, x)+g(t, x), \tag{5.4}
\end{equation*}
$$

where $f, g \in C^{r}\left(\mathbb{R}, \mathbb{R}^{d}\right), r \geq 1$. Let $\varphi(t, \tau, \xi)$ be the solution of (5.4) satisfying $\varphi(\tau, \tau, \xi)=\xi$ and let $\psi(t, \tau, \xi)$ be the solution of the "unperturbed" nonlinear equation

$$
\begin{equation*}
\dot{x}=f(t, x) \tag{5.5}
\end{equation*}
$$

satisfying $\psi(\tau, \tau, \xi)=\xi$. Prove that

$$
\begin{equation*}
\varphi(t, \tau, \xi)=\psi(t, \tau, \xi)+\int_{\tau}^{t} \frac{\partial \psi(t, s, \varphi(s, \tau, \xi))}{\partial \xi} g(s, \varphi(s, \tau, \xi)) d s \tag{5.6}
\end{equation*}
$$

Hint. We know that (see Formula (1.3.4))

$$
\frac{\partial \psi(t, \tau, \xi)}{\partial \tau}=-\frac{\partial \psi(t, \tau, \xi)}{\partial \xi} f(\tau, \xi)
$$

Show that

$$
\frac{d \psi(t, s, \varphi(s, \tau, \xi))}{d s}=\frac{\partial \psi(t, s, \varphi(s, \tau, \xi))}{\partial \xi} g(s, \varphi(s, \tau, \xi))
$$

and then integrate from 0 to t.
It is important to know that the solutions of (5.1) depend continuously upon the matrix A and function h. In the uniform topology, this is a consequence of the uniform contraction principle. We give an independent proof of this fact which shows also that there is continuous dependence in a weaker topology.
Theorem 5.2. Let $A, B \in C\left(\mathbb{R}, \mathbb{R}^{d \times d}\right)\left(\right.$ or $A, B \in C\left(\mathbb{R}, \mathbb{C}^{d \times d}\right)$) be $d \times d$ matrix functions and let $g, h \in C\left(\mathbb{R}, \mathbb{R}^{d}\right)$ (or $g, h \in C\left(\mathbb{R}, \mathbb{C}^{d}\right)$). If $x(t)$ is a solution of the equation (5.1) and $y(t)$ is a solution of

$$
\begin{equation*}
\dot{y}=B(t) y+h(t) \tag{5.7}
\end{equation*}
$$

then, for any $\tau \in \mathbb{R}$, we have

$$
\begin{align*}
\mid x(t) & -y(t)\left|\leq e^{\int_{\tau}^{t}|A(s)| d s}\right| x(\tau)-y(\tau) \mid \\
& \quad+\int_{\tau}^{t}\left(e^{\int_{s}^{t}|A(u)| d u}\right)[|A(s)-B(s)||y(s)|+|g(s)-h(s)|] d s \tag{5.8}
\end{align*}
$$

Proof. If we let $z=x-y$, then $\dot{z}=A z+(A-B) y+g-h$. This implies that

$$
|z(t)| \leq|z(\tau)|+\int_{\tau}^{t}[|A(s)||z(s)|+|A(s)-B(s)||y(s)|+|g(s)-h(s)|] d s
$$

An application of the Generalized Gronwall Inequality yields the result stated in the theorem.

Exercise 5.2. Let $X_{A}(t), X_{A}(0)=I$, be a fundamental matrix solution of (1.1). Prove that $X_{A}(t)$ is continuous in the matrix A in the sense that, for any $\epsilon>0$ and
any t_{0}, there is a $\delta>0$ such that $\int_{0}^{t_{0}}|A(s)-B(s)| d s<\delta$ implies that, for $0 \leq t \leq t_{0}$, we have $\left|X_{A}(t)-X_{B}(t)\right|<\epsilon$.

Exercise 5.3. Let $p>0$ be a given constant and let X_{p} be the Banach space of $d \times d$ continuous matrix functions $B(t), t \in \mathbb{R}, B(t+p)=B(t)$ for all t with the norm topology, $\|B(\cdot)\|=\max _{t \in \mathbb{R}}\|B(t)\|$. Prove that the Floquet multipliers of (1.1) are continuous functions of the matrix function $A(\cdot) \in X_{p}$.

Exercise 5.4. Suppose that X_{p} is defined as in Exercise 5.3 and that $A(\cdot) \in X_{p}$ has the property that the solutions of (1.1) approach zero as $t \rightarrow \infty$. Prove that there is a neighborhood U of $A(\cdot)$ in X_{p} such that, for any $B(\cdot) \in U$, the solutions of $\dot{x}=B(t) x$ approach zero as $t \rightarrow \infty$.

