
Exercise 1
Consider the differential equation

ẋ = f(x, t) (1)

with initial condition x(t0) = x0. Assume that f ∈ C1(Rn+1, Rn). Given
h > 0 we call xh(t) (Euler approximation) the function defined by

{
xh(nh + t) = xh(nh) + f(xh(nh), nh)t for n ≥ 0 and 0 ≤ t ≤ h

xh(nh + t) = xh(nh) + f(xh(nh), nh)t for n ≤ 0 and − h ≤ t ≤ 0
(2)

Prove existence and uniqueness of the solution of eq.(1) using the Euler
approximations. Show how it happens that, if the function f is not Lipschitz,
the solution may fail to be unique.

Exercise 2
Let x(t) be a solution of

ẋ = f(x) (3)

with x(0) = x0 and x(1) = x1. Call γ the trajectory {x(t), t ∈ [0, 1]}.
Assume that f ∈ C2(Rn, Rn). Let h0(x) and h1(x) to smooth function from
Rn in R such that

h0(x0) = 0 h1(x1) = 0 (4)

Under which condition the equations:

h0(x) = 0 h1(x) = 0 (5)

define two (n− 1)-cells S0 and S1 transverse to γ?
Under these condition, show that there is a differentiable function F from

a small neighbor of x0 on S0 to a small neighbor of x1 in S1 such that F (x)
is on the trajectory of eq.(3) starting from x. Compute

∂F

∂x
(x) (6)

Exercise 3
Consider the differential equation
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{
ẋ = −y + εfx(x, y)

ẏ = x + εfy(x, y)
(7)

where f = (fx, fy) is a smooth function from R2 in R2 and ε is a small
parameter. Call φ(ξ, t) the solution of eq.(7) starting at ξ at time 0. Let
ξ = (x, 0), x > 0, be a point on the positive x axis. Show that if ε is small
enough, there is a time tε(x) close to 2π such that φ((x, 0), t(x)) is again on
the positive x axis.

Call Fε(x) the map define by Fε(x) = φx((x, 0), t(x)) where φ(ξ, t) =
(φx(ξ, t), φy(ξ, t)). Show that, for ε small enough, Fε is a smooth map from
a neighbor of x in R to a neighbor of Fε(x) in R. Compute

∂εFε(x) =
∂Fε

∂ε
(x) (8)

by treating ε as a parameter. Show that if there are x1 and x2, x1 < x2, such
that ∂εFε(x1) > 0 > ∂εFε(x2) then there is a periodic orbit starting from
some point (x̄, 0) with x1 ≤ x̄ ≤ x2.
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