Exercise 1

Consider the differential equation

$$\dot{x} = f(x, t) \tag{1}$$

with initial condition $x(t_0) = x_0$. Assume that $f \in C^1(\mathbb{R}^{n+1}, \mathbb{R}^n)$. Given h > 0 we call $x^h(t)$ (Euler approximation) the function defined by

$$\begin{cases} x^{h}(nh+t) = x^{h}(nh) + f(x^{h}(nh), nh)t & \text{for } n \ge 0 \text{ and } 0 \le t \le h \\ x^{h}(nh+t) = x^{h}(nh) + f(x^{h}(nh), nh)t & \text{for } n \le 0 \text{ and } -h \le t \le 0 \end{cases}$$
(2)

Prove existence and uniqueness of the solution of eq.(1) using the Euler approximations. Show how it happens that, if the function f is not Lipschitz, the solution may fail to be unique.

Exercise 2

Let x(t) be a solution of

$$\dot{x} = f(x) \tag{3}$$

with $x(0) = x_0$ and $x(1) = x_1$. Call γ the trajectory $\{x(t), t \in [0, 1]\}$. Assume that $f \in C^2(\mathbb{R}^n, \mathbb{R}^n)$. Let $h_0(x)$ and $h_1(x)$ to smooth function from \mathbb{R}^n in \mathbb{R} such that

$$h_0(x_0) = 0 h_1(x_1) = 0 (4)$$

Under which condition the equations:

$$h_0(x) = 0$$
 $h_1(x) = 0$ (5)

define two (n-1)-cells S_0 and S_1 transverse to γ ?

Under these condition, show that there is a differentiable function F from a small neighbor of x_0 on S_0 to a small neighbor of x_1 in S_1 such that F(x)is on the trajectory of eq.(3) starting from x. Compute

$$\frac{\partial F}{\partial x}(x) \tag{6}$$

Exercise 3

Consider the differential equation

$$\begin{cases} \dot{x} = -y + \epsilon f_x(x, y) \\ \dot{y} = x + \epsilon f_y(x, y) \end{cases}$$
(7)

where $f = (f_x, f_y)$ is a smooth function from \mathbb{R}^2 in \mathbb{R}^2 and ϵ is a small parameter. Call $\phi(\xi, t)$ the solution of eq.(7) starting at ξ at time 0. Let $\xi = (x, 0), x > 0$, be a point on the positive x axis. Show that if ϵ is small enough, there is a time $t_{\epsilon}(x)$ close to 2π such that $\phi((x, 0), t(x))$ is again on the positive x axis.

Call $F_{\epsilon}(x)$ the map define by $F_{\epsilon}(x) = \phi_x((x,0),t(x))$ where $\phi(\xi,t) = (\phi_x(\xi,t),\phi_y(\xi,t))$. Show that, for ϵ small enough, F_{ϵ} is a smooth map from a neighbor of x in \mathbb{R} to a neighbor of $F_{\epsilon}(x)$ in \mathbb{R} . Compute

$$\partial_{\epsilon}F_{\epsilon}(x) = \frac{\partial F_{\epsilon}}{\partial \epsilon}(x) \tag{8}$$

by treating ϵ as a parameter. Show that if there are x_1 and x_2 , $x_1 < x_2$, such that $\partial_{\epsilon}F_{\epsilon}(x_1) > 0 > \partial_{\epsilon}F_{\epsilon}(x_2)$ then there is a periodic orbit starting from some point $(\bar{x}, 0)$ with $x_1 \leq \bar{x} \leq x_2$.