Exercise 1

Consider the differential equation

$$
\begin{equation*}
\dot{x}=f(x, t) \tag{1}
\end{equation*}
$$

with initial condition $x\left(t_{0}\right)=x_{0}$. Assume that $f \in C^{1}\left(\mathbb{R}^{n+1}, \mathbb{R}^{n}\right)$. Given $h>0$ we call $x^{h}(t)$ (Euler approximation) the function defined by

$$
\begin{cases}x^{h}(n h+t)=x^{h}(n h)+f\left(x^{h}(n h), n h\right) t & \text { for } n \geq 0 \text { and } 0 \leq t \leq h \tag{2}\\ x^{h}(n h+t)=x^{h}(n h)+f\left(x^{h}(n h), n h\right) t & \text { for } n \leq 0 \text { and }-h \leq t \leq 0\end{cases}
$$

Prove existence and uniqueness of the solution of eq.(1) using the Euler approximations. Show how it happens that, if the function f is not Lipschitz, the solution may fail to be unique.

Exercise 2

Let $x(t)$ be a solution of

$$
\begin{equation*}
\dot{x}=f(x) \tag{3}
\end{equation*}
$$

with $x(0)=x_{0}$ and $x(1)=x_{1}$. Call γ the trajectory $\{x(t), t \in[0,1]\}$. Assume that $f \in C^{2}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$. Let $h_{0}(x)$ and $h_{1}(x)$ to smooth function from \mathbb{R}^{n} in \mathbb{R} such that

$$
\begin{equation*}
h_{0}\left(x_{0}\right)=0 \quad h_{1}\left(x_{1}\right)=0 \tag{4}
\end{equation*}
$$

Under which condition the equations:

$$
\begin{equation*}
h_{0}(x)=0 \quad h_{1}(x)=0 \tag{5}
\end{equation*}
$$

define two $(n-1)$-cells S_{0} and S_{1} transverse to γ ?
Under these condition, show that there is a differentiable function F from a small neighbor of x_{0} on S_{0} to a small neighbor of x_{1} in S_{1} such that $F(x)$ is on the trajectory of eq.(3) starting from x. Compute

$$
\begin{equation*}
\frac{\partial F}{\partial x}(x) \tag{6}
\end{equation*}
$$

Exercise 3

Consider the differential equation

$$
\left\{\begin{array}{l}
\dot{x}=-y+\epsilon f_{x}(x, y) \tag{7}\\
\dot{y}=x+\epsilon f_{y}(x, y)
\end{array}\right.
$$

where $f=\left(f_{x}, f_{y}\right)$ is a smooth function from \mathbb{R}^{2} in \mathbb{R}^{2} and ϵ is a small parameter. Call $\phi(\xi, t)$ the solution of eq.(7) starting at ξ at time 0 . Let $\xi=(x, 0), x>0$, be a point on the positive x axis. Show that if ϵ is small enough, there is a time $t_{\epsilon}(x)$ close to 2π such that $\phi((x, 0), t(x))$ is again on the positive x axis.

Call $F_{\epsilon}(x)$ the map define by $F_{\epsilon}(x)=\phi_{x}((x, 0), t(x))$ where $\phi(\xi, t)=$ $\left(\phi_{x}(\xi, t), \phi_{y}(\xi, t)\right)$. Show that, for ϵ small enough, F_{ϵ} is a smooth map from a neighbor of x in \mathbb{R} to a neighbor of $F_{\epsilon}(x)$ in \mathbb{R}. Compute

$$
\begin{equation*}
\partial_{\epsilon} F_{\epsilon}(x)=\frac{\partial F_{\epsilon}}{\partial \epsilon}(x) \tag{8}
\end{equation*}
$$

by treating ϵ as a parameter. Show that if there are x_{1} and $x_{2}, x_{1}<x_{2}$, such that $\partial_{\epsilon} F_{\epsilon}\left(x_{1}\right)>0>\partial_{\epsilon} F_{\epsilon}\left(x_{2}\right)$ then there is a periodic orbit starting from some point $(\bar{x}, 0)$ with $x_{1} \leq \bar{x} \leq x_{2}$.

