The Cauchy-Goursat Theorem

Theorem. Suppose U is a simply connected domain and f : U — C is C-differentiable. Then
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for any triangular path A in U.

Proof. Let A be a triangular path in U, i.e. a closed polygonal path [z1, 29, 23, 21| with three points

21, 29,23 € U. Let
M = ‘/ fdz|, ¢ = perimeter(A).
A

We show M = 0.
Step 1: Divide and conquer. By connecting the three midpoints of each segment, we can divide

A into four smaller, similar triangles, A, Ay, A, Ag. If we orient each subtriangle the same way
as A, then after cancelling the three segments crossed twice we get
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It must therefore follow that for one of the triangles, call it Ay, we must have
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for otherwise
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Step 2: Get the limit point z*. Repeat this argument on A; now. We obtain, by induction, a
sequence of triangles (A,) with the following properties:
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Since the triangles bounded by A,, are compact and their diameters (which are bounded above by
their perimeters) tend to 0, we conclude there exists a unique point z* contained inside every A,.



Step 3: Use differentiability to give M the squeeze. Now, let € > 0 be arbitrary. Since f is
analytic at the point z* € U, there exists 6 > 0 such that
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<e=>|f(z) = f(z") = ['(2%)(z — 2")| < €|z — 2*].

Choose n so large that perimeter(A,) < 4.
Since 1 and z have complex antiderivatives defined for all of C, the complex Fundamental

Theorem of Calculus implies
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whence

Now, observe that for any z € A,
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Therefore, examining either end of the intequality, we conclude

so that
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0< M < el?

But € > 0 was abritary, whence letting ¢ — 0 above implies M = 0. O



