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Chapter I

INTRODUCTION

In this thesis we study Legendrian and transverse simplicity and non-simplicty prob-

lem under the cabling operation. The terminology and more precise statements of

the following theorems will be given in order in Chapter 2, 3, 4, 5 and 6.

1.1 Sufficiently positive and negative cables

An (r, s)-curve on the boundary of a solid torus refers to the curve r[λ] + s[µ], where

λ, µ is the longitude-meridian basis for the homology of the torus, and we denote this

by the fraction s
r
. The (r, s)-cable of a knot type K, denoted K(r,s), is the knot type

obtained by taking the (r, s)-curve on the boundary of a tubular neighborhood of a

representative of K.

Theorem 1.1.1 ([32]). If K is Legendrian simple and ω(K) ∈ Z, then K(r,s) is

Legendrian and transverse simple, provided r
s
> ω(K).

Theorem 1.1.2 ([32]). If K is Legendrian simple and `ω(K) ∈ Z ∪∞, then K(r,s) is

Legendrian and transverse simple, provided r
s
< `ω(K).

Moreover, in both cases the classification of Legendrian and transverse knots in

the knot type K(r,s) is determined by the classification of such knots in the knot

type K.

Note that for the unknot U we have w(U) = 0 and `ω(U) = ∞. So, as an

immediate corollary of Theorem 1.1.1 and 1.1.2 we obtain

Corollary 1.1.3. Torus knots are Legendrian and transverse simple.

This result was originally proved by Etnyre and Honda in [14]. Also observe that

in case w(K) = `ω(K) ∈ Z we get that K is uniformly thick and recover a result
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of Etnyre and Honda in [13] that says K(r,s) is Legendrian simple if K is Legendrian

simple and K is uniformly thick. The last observation prompts the following question.

Question 1.1.4. Is there a knot type K which is not uniformly thick? If so what

can one say about the classification of Legendrian and transverse knots in K(r,s) when

w(K) < r
s
< `ω(K)?

1.2 Non-simple cables

We address Question 1.1.4 for the (2, 3)- torus knot and then in joint work with

Etnyre and LaFountain we extend the result to the other positive torus knots. We

begin with the notation

L(r,t)(K) = {L ∈ L(K) : tb(L) = t and r(L) = r}.

We similarly denote the set of transverse knots isotopic to K by T (K) and the ones

having self-linking number s by Ts(K).

We first consider cables of the right handed trefoil, that is, the (2, 3)-torus knot.

We have a complete classification indicated in Figure 1, but since the statement is

technical we state a corollary of the classification here.

Theorem 1.2.1 (Etnyre, LaFountain and Tosun [16]). Let K be the positive trefoil

knot in S3. The knot K(r,s) formed by (r, s)-cabling K is Legendrian simple if and

only if s
r
6∈ (1,∞). Furthermore, given positive integers k, m, and n, where n > 1

and gcd (k,m) = 1, there exists a slope s
r
∈ (1,∞) such that L(u,t)(K(r,s)) contains n

Legendrian knots for some pair of integers (u, t) with t = tb(K(r,s)) − m; moreover,

one of these does not destabilize, and they remain distinct when stabilized fewer than

k times (and there are k stabilizations that will make them isotopic).

Note that this theorem gives the first example of a knot type with non-destabilizable

Legendrian knots with Thurston-Bennequin invariant arbitrarily far from the maxi-

mal Thurston-Bennequin invariant. It gives yet another family of knots which have

2



arbitrarily many Legendrian knots with fixed classical invariants. We also observe

that this theorem gives the first set of prime Legendrian knots with the same invari-

ants that require arbitrarily many stabilizations before becoming Legendrian isotopic.

See Figure 1.

n n

n+ 1 2n− 1 n+ 1

1

2n 2n

1

n
2n+ 1

n

n+ 1 n+ 1

1

Figure 1: The image of L(K(r,s)) → Z2 : L 7→ (r(L), tb(L)) for non-simple cablings
of the positive trefoil with s

r
∈ (n, n+ 1). The number of Legendrian knots realizing

each point in Z2 whose coordinates sum to an odd number is indicated in the figure.
The exact width of each region depends on the pair (r, s).

Theorem 1.2.2 (Etnyre, LaFountain and Tosun [16]). Let K be the positive trefoil

knot in S3. The knot K(r,s) formed by (r, s)-cabling K is transversely simple if and

only if s
r
6∈ (1,∞). Furthermore, given positive integers k, m, and n, where n > 2

and gcd (k,m) = 1, let p = k(n− 1) +m(n− 2). Then there is some s
r
∈ (1,∞) such

that T (K(r,s)) contains (n − 1) distinct transverse knots with sl = sl(K(r,s)) − 2p, of

which (n− 2) are non-destabilizable, and such that there is another non-destabilizable

knot with sl = sl(K(r,s))− 2(p+m). Moreover, these non-destabilizable knots must be

stabilized until their self-linking number is sl(K(r,s))−2(p+m+k) before they become

transversely isotopic.

Note that Theorem 1.2.2 gives not just an infinite family of transversely non-

simple prime knot types, but also demonstrates three new phenomena concerning

transverse knots that were not previously known. More precisely, it gives the first

3



example of knot types that have transverse knots with the same self-linking number

that require arbitrarily many stabilizations before they become transversely isotopic,

and it also gives the first examples where there are non-destabilizable transverse knots

whose self-linking number is arbitrarily far from maximal. Finally, the theorem gives

the first knot type where there are non-destabilizable knots with distinct self-linking

numbers.

We recall that a Legendrian knot in an overtwisted contact manifold is caled non-

loose if it has tight complement. The complete classification of Legendrian cables of

the positive trefoil above also supply the following interesting result.

Theorem 1.2.3. Given an integer k, there is an overtwisted contact manifold (M, ξ)

and distinct prime non-loose Legendrian knots L1, ..., Lk in the same knot type with

the same Thurston-Bennequin number and rotation number.

We note that previously known (arbitrarily many) examples were all non-prime

examples. See [12].

With all the interesting and complicated behavior exhibited by cables of the right

handed trefoil knot, one would expect to see behavior at least as complicated for

cables of other positive torus knots. Surprisingly, cables of such knots turn out to be

relatively simple.

Theorem 1.2.4 (Etnyre, LaFountain and Tosun [16]). Let K be a positive (p, q)-torus

knot with (p, q) 6= (2, 3). Then for any rational number s
r
and any (u, t) with t + u

odd, there are at most 3 Legendrian knots in L(u,t)(K(r,s)) and at most 2 for all but

one pair (u, t).

Theorem 1.2.5 (Etnyre, LaFountain and Tosun [16]). Let K be a positive (p, q)-

torus knot with (p, q) 6= (2, 3). Then for any rational number s
r
there are at most two

transverse knots isotopic to the (r, s)-cable of K with the same self-linking number.

However, for any positive integers n and m with gcd (m,n) = 1, there is a rational
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number s
r
> 0 for which there is a non-destabilizable transverse knot with self-linking

number at most sl(K(r,s)) − 2n and it must be stabilized exactly m times to become

isotopic to the destabilizable transverse knot with the same self-linking number.

1.3 Non-thickenable and partially thickenable neighborhoods

A key feature in the knot classification results above is a complete understanding of

not only non-thickenable tori but also partially thickenable tori (See Chapter 3), that

is tori with convex boundary that thicken, but not to a maximally thick torus in the

given knot type. The existence of such tori has not been observed before, but it is

clear that such tori will be key to future Legendrian classification results. In addition,

it is likely they will be important in understanding contact surgeries on Legendrian

and transverse knots (See Chapter 7).

Theorem 1.3.1. Let S be a solid torus in the knot type of a positive (p, q)-torus knot.

In the standard tight contact structure ξstd on S3 suppose that ∂S is convex with two

dividing curves of slope s
r
. Then S thickens unless s

r
is an exceptional slope

ek =
k

pq − p− q
,

for some positive integer k, in which case it might or might not thicken.

Moreover for each positive integer k > 1 there are, up to contact isotopy, exactly

two solid tori N±

k with convex boundary having 2nk dividing curves of slope ek that do

not thicken, where nk = gcd(pq− p− q, k). For k = 1 there is exactly one solid torus

N1 with convex boundary having two dividing curves of slope e1. This solid torus is

a standard neighborhood of a Legendrian (p, q)-torus knots with maximal Thurston-

Bennequin invariant and it does not thicken.

The following theorem shows that partially thickenable tori exist for the (2, 3)-

torus knot.
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Theorem 1.3.2. Let K be a positive (2, 3)-torus knot and let ek = k be the exceptional

slopes. Let Ik = [k,∞) (clearly Ik ⊂ Ik+1). All solid tori below will represent the knot

type K.

1. Any solid torus S with convex boundary thickens to N±

k or to N1 (that is a

neighborhood of the maximal Thurston-Bennequin invariant (2, 3)-torus knot).

2. Any solid torus inside N±

k with convex boundary having dividing slope in Ik does

not thicken past the slope ek.

3. Any solid torus inside N±

k with convex boundary having negative (or infinite)

dividing slope will thicken to a neighborhood of the maximal Thurston-Bennequin

invariant (2, 3)-torus knot.

From this theorem we can classify solid tori in the knot type of (2, 3)-torus knot.

Corollary 1.3.3. Let K be the (2, 3)-torus knot,

1. Given a slope s > 1 there is some integer n such that n ≤ s < n+1 and there are

exactly 2n solid tori representing the knot type K with convex boundary having

dividing slope s and two dividing curves, only two of which thicken to a standard

neighborhood of a Legendrian knot.

2. Given any negative slope s there is some negative integer n < 0 such that

1
n+1

< s < 1
n
. A solid torus with convex boundary having dividing slope s and

two dividing curves will thicken to a solid torus that is a standard neighborhood

of a tb = n+ 1 Legendrian knot.

The classification of solid tori in the knot types of positive torus knots, other than

trefoil, is also obtained in [16]. We include the statement of this result and refer [16]

for its proof.
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Theorem 1.3.4. Let K be a positive (p, q) 6= (2, 3)-torus knot and let ek =
k

pq−p−q
be

the exceptional slopes. Let Ik = [ek, e
a
k) and I = {n ∈ Z : n > 1 and gcd(n, pq − p−

q) = 1}. All solid tori below will represent the knot type K.

1. For any k 6∈ I, any solid torus S inside N±

k with either boundary slope different

from ek, or less than 2nk dividing curves, thickens to N1.

2. All the Ik with k ∈ I are disjoint.

3. Any solid torus S with convex boundary having dividing slope in Ik thickens

to N±

k or to N1 (that is a neighborhood of the maximal Thurston-Bennequin

invariant (p, q)-torus knot).

4. Any solid torus inside N±

k for some k ∈ I, and with convex boundary having

dividing slope in Ik, does not thicken past the slope ek.

5. Any solid torus inside N±

k with convex boundary having dividing slope outside of

Ik (that is greater than or equal to eak or negative) will thicken to a neighborhood

of the maximal Thurston-Bennequin invariant (p, q)-torus knot.

From this theorem one can classify solid tori in the knot types of positive torus

knots.

Corollary 1.3.5. Let K be a positive (p, q)-torus knot and let ek = k
pq−p−q

be the

exceptional slopes. Let Ik = [ek, e
a
k) and I = {n ∈ Z : n > 1 and gcd(n, pq− p− q) =

1}. Given any slope s ≥ 1
pq−p−q

we have the following.

1. If there is some integer n > 0 such that 1
n
< s < 1

n−1
and s 6∈ Ik for any k ∈ I,

then there are exactly 2(pq− p− q− n+1) solid tori representing the knot type

K with convex boundary having dividing slope s and two dividing curves each of

which thickens to a standard neighborhood of a Legendrian knot with tb = n.
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2. If there is some integer n > 0 such that 1
n
< s < 1

n−1
and s ∈ Ik for any k ∈ I,

then there are exactly 2(pq − p− q − n+ 1) + 2 solid tori representing the knot

type K with convex boundary having dividing slope s and two dividing curves,

all but two of which thicken to a standard neighborhood of a Legendrian knot

with tb = n.

3. If there is some n > 0 such that s = 1
n
, then there are exactly pq−p−q−n+1 solid

tori representing the knot type K with convex boundary having dividing slope s

and two dividing curves and they each represent a standard neighborhood of a

Legendrian knot with tb = n.

This thesis organized as follows. In Chapter 2 we collect needed preliminaries, in-

cluding facts about continued fractions and convex surfaces, and we outline a strategy

for classifying Legendrian knots. In Chapter 3 we give the more precise statements

of Theorem 1.1.1, 1.1.2 and their proofs. In Chapter 4 we classify embeddings of

solid tori representing the (2, 3)-torus knot, that is we prove Theorem 1.3.1, 1.3.2 and

Corollary 1.3.3. In Chapter 5 we provide more precise statements of Theorem 1.2.1,

1.2.2 and then establish classifications for all non-simple cables of the positive trefoil

and provide the proof of Theorem 1.2.3. In Chapter 6 we provide more precise state-

ments of Theorem 1.2.4, 1.2.5 and establish classifications for all non-simple cables

of positive torus knots and finally, in Chapter 7, we give future directions in the light

of what have been developed in this thesis.
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Chapter II

BACKGROUND

A contact structure on a 3–manifold is a 2–plane field ξ in the tangent bundle that

is maximally non-integrable. This means that the 2–planes are not tangent, even

locally, to a foliation. Studying contact structures on 3–manifolds is important in its

own right but also has a crucial role in our understanding of topology and geometry

in 3–dimensions. For example, Eliashberg and Thurston have found relations between

contact geometry and foliation theory [9]. Giroux has found a close relation between

contact structures and fibered links [19]. Eliashberg has used them to understand

diffeomorphisms of S3 [8]. Contact geometry was also an important ingredient of

the following beautiful results. Kronheimer and Mrowka’s proof that all non-trivial

knots satisfy property P , Ozsváth and Szabó’s proof that that the unknot, trefoil and

figure eight knots are all determined by surgery, and Ozsváth and Szabó’s proof that

Heegaard-Floer invariants detect the Thurston norm of a manifold and the minimal

Seifert genus of a knot. Contact structures on 3–manifolds fall into two disjoint

classes: overtwisted and tight. Eliashberg has shown [7] that studying overtwisted

contact structures amounts to studying homotopy class of 2–plane fields and hence

algebraic in nature, while tight contact structures are more subtle and more intimately

related to the topology of 3–manifolds.

2.1 Legendrian and transverse knots in tight contact struc-

tures

The study of knots that respect a contact structure in a certain way has been very

important, because, they capture the geometry and topology of underlying contact

structures very well. For example, the classical invariants tb(L) and r(L) (see below)
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associated to a Legendrian knot L (those tangent to contact planes) have been used by

Eliashberg [8] (following the work of Bennequin [2]) to prove that a contact structure

is tight if and only if for any knot type K and all Legendrian knot L ∈ K the following

inequality holds

tb(L) + |r(L)| ≤ 2g(K)− 1, (1)

where g(K) is the genus of the knot K. Rudolph [31] further extended this result

to find obstructions to slicing a knot. Transverse knots (those transverse to contact

planes), on the other hand, have shown to be very powerful in the work of Giroux [19]

on fibered links and work of Bennequin [2] and Birman-Menesco [3] on braid theory.

Despite their importance, not very much is known concerning the classification of

Legendrian and transverse knots in general. There are two simple invariants of a

Legendrian knot L, the Thurston-Bennequin number, denoted tb(L) which measures

the framing ξ gives to L and rotation number, denoted by r(L) which is more or less

a relative Euler class, and there is only one invariant of a transverse knot T , the self-

linking number, denoted sl(T ). We say a knot type is Legendrian simple (respectively

transversely simple) if Legendrian knots (respectively transverse knots) in the knot

type are determined by their simple invariant(s).

One major problem in 3–dimensional contact geometry is classification of Leg-

endrian/transverse knots up to Legendrian/transverse isotopy, that is an isotopy

through Legendrian/transverse knots. Traditionally this problem has been either

worked for some nice class of knots [14, 17] or under certain toplogical operations [15,

13]. We want to study this problem under cabling operation. Studying Legendrian

and transverse knots in cabled knot types has been very fruitful. For example, in [1]

cabling was used to better understand open book decompositions of contact struc-

tures; in particular, leading to non-positive monodromy maps supporting Stein fillable

contact structures, monoids in the mapping class group associated to contact geom-

etry and procedures to construct open books on manifolds after allowable transverse
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surgery (from an open book for the original contact manifold). Moreover, the first

classification of a non-transversely simple knot type was done in [13] for the (2, 3)-

cable of the (2, 3)-torus knot. In that paper it was also shown that studying solid tori

with convex boundary that represent a given knot type (that is, their core curves are

in a given knot type) is key to understanding cables; such an analysis for solid tori

representing negative torus knots yielded simple Legendrian and transverse classifi-

cations for cables of negative torus knots. Tori representing iterated cables of torus

knots were further studied in [29, 30] as well as [32].

In the following we will give a detailed explanations of background material.

2.2 Continued fractions and interval of influence

In this section we collect various facts about continued fractions that will be needed

throughout our work.

Given a rational number u > 0 we may represent it as a continued fraction

u = a0 −
1

a1 −
1

a2 . . .−
1

an

with a0 ≥ 1 and the other ai > 1. We will denote this as u = [a0; a1, . . . , an]. If we

know that u = [a0; a1, . . . , an] then we define

ua = [a0; a1, . . . , an−1],

with the convention that if n = 0 then ua = ∞; we also define

uc = [a0; a1, . . . , an − 1].

Lemma 2.2.1. The number ua is the largest rational number bigger than u with an

edge to u in the Farey tessellation and uc is the smallest rational number less than u
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with an edge to u in the Farey tessellation. Moreover there is an edge in the Farey

tessellation between ua and uc and u is the mediant of ua and uc, that is if ua = pa

qa

and uc = pc

qc
then

u =
pa + pc

qa + qc
.

Proof. Define pk
qk

= [a0; a1, . . . , ak] , p−1 = 1, q−1 = 0. and p−2 = 0, q−2 = −1. One

may easily verify using induction that

pk+1 = ak+1pk − pk−1, and qk+1 = ak+1qk − qk−1.

From this one can inductively deduce that

pk+1qk − pkqk+1 = −1.

Thus there is an edge in the Farey tessellation between u = p
q
= pn

qn
and ua = pa

qa
=

pn−1

qn−1
. Similarly, let ck

dk
= [ak; ak+1, . . . , an] and

c′
k

d′
k

= [ak; ak+1, . . . , an − 1] and notice

that cnd
′
n − dnc

′
n = an − (an − 1) = 1. Now we see that

ck
dk

= ak −
1

ck+1/dk+1

=
akck+1 − dk+1

ck+1

and a similar expression for
c′
k

d′
k

and induction yield ckd
′
k − dkc

′
k = 1. In particular,

there is an edge in the Farey tessellation between u = c0
d0

and uc =
c′0
d′0
.

Finally by setting
c′′
k

d′′
k

= [ak; ak+1, . . . , an−1] and noticing that c′′n−1d
′
n−1−d′′n−1c

′
n−1 = 1,

we can use the above formulas, and analogous ones, to inductively prove that c′′k−1d
′
k−1−

d′′k−1c
′
k−1 = 1. This establishes an edge in the Farey tessellation between uc =

c′0
d′0

and

ua =
c′′0
d′′0
. Since there is an edge in the Farey tessellation between each pair of numbers

in the set {u, ua, uc} the lemma is established by noticing that the numerators (and

denominators) of ua and uc are both smaller than the numerator (and denominator)

of u.

Given a rational number u = s
r
> 0 let ua be the largest rational number with

an edge in the Farey tessellation to u. See Figure 2. (The a superscript stands for
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”anti-clockwise”, as ua is anti-clockwise of u in the Farey tessellation.) Similarly the

smallest rational number with an edge in the Farey tessellation to u will be denoted

by uc. A formula for computing these numbers will be given in Subsection 2.2. We

will refer to the interval (uc, ua) as the interval of influence for u.

u

ua
uc

Figure 2: Given a rational number u, the numbers ua and uc are determined by the
above figure in the Farey tessellation.

Given a positive (p, q)-torus knot and k a positive integer, define

ek =
k

pq − p− q

We will see in Subsection 4.1 that such ek represent boundary slopes of non-thickenable

solid tori, and that the half-intervals of influence (ek, e
a
k) will represent boundary

slopes of partially thickenable solid tori when gcd (k, pq − p− q) = 1. We will refer to

the ek as exceptional slopes. If we think of the fractions e∗k as representing curves on

a torus, we denote the homological intersection of (r, s) curves with the e∗k curves by

s

r
· e∗k.

Lemma 2.2.2. Fix some positive integer n and set ek = k
n
for k ∈ {1, 2, . . .} and

I = {k ∈ Z : k > 1 and gcd(n, k) = 1}. If n 6= 1 then the intervals Jk = (eck, e
a
k) for

k ∈ I are all disjoint. If n = 1 then the intervals are nested Jk+1 ⊂ Jk.

If r is a positive rational number less than eck or greater than eak then for any

s ∈ Jk we have

|r · s| ≥ min{|r · eak|, |r · e
c
k|}

with equality only if s = eak or eck.
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If r ∈ (eck, ek) and s ∈ (ek, e
a
k), then

|r · s| > |r · eak|.

2.3 Convex surfaces, bypasses and the Farey tessellation

Recall a surface Σ in a contact manifold (M, ξ) is convex if it has a neighborhood

Σ × I, where I = (−ε, ε) is some interval, and ξ is I-invariant in this neighborhood.

Any closed surface can be C∞-perturbed to be convex. Moreover if L is a Legendrian

knot on Σ for which the contact framing is non-positive with respect to the framing

given by Σ, then Σ may be perturbed in a C0 fashion near L, but fixing L, and then

again in a C∞ fashion away from L so that Σ is convex.

Given a convex surface Σ with I-invariant neighborhood let ΓΣ ⊂ Σ be the mul-

ticurve where ξ is tangent to the I factor. This is called the dividing set of Σ. If Σ is

oriented it is easy to see that Σ \Γ = Σ+ ∪Σ− where ξ is positively transverse to the

I factor along Σ+ and negatively transverse along Σ−. If L is a Legendrian curve on

a Σ then the framing of L given by the contact planes, relative to the framing coming

from Σ, is given by −1
2
(L · Γ). Moreover if L = ∂Σ then the rotation number of L is

given by r(L) = χ(Σ+)− χ(Σ−).

2.3.1 Convex tori

A convex torus T is said to be in standard form if T can be identified with R2/Z2 so

that ΓT consists of 2n horizontal curves (note ΓT will always have an even number

of curves and we can choose a parameterization to make them horizontal) and the

characteristic foliations consists of 2n vertical lines of singularities (n lines of sources

and n lines of sinks) and the rest of the foliation is by non-singular lines of slope s.

SeeFigure 3

The lines of singularities are called Legendrian divides and the other curves are

called ruling curves. We notice that the Giroux Flexibility Theorem allows us to

isotope any convex torus into standard form.
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Figure 3: Standard convex tori. The thicker dashed curves are dividing curves. The
horizontal thin lines are rulling curves of slope 0.

2.3.2 Bypasses and tori

Let Σ be a convex surface and α a Legendrian arc in Σ that intersects the dividing

curves ΓΣ in 3 points p1, p2, p3 (where p1, p3 are the end points of the arc). Then a

bypass for Σ (along α), is a convex disk D with Legendrian boundary such that

1. D ∩ Σ = α,

2. tb(∂D) = −1,

3. ∂D = α ∪ β,

4. α ∩ β = {p1, p3} are corners of D and elliptic singularities of Dξ.

The bypass attachment operation is the basic unit of isotopy of surfaces and will be

crucial in our proofs. It is given in the following theorem.

Theorem 2.3.1 (Honda 2000, [22]). Let Σ be a convex surface, D a bypass for Σ

along vertical α in Σ (Figure 3), then there exists a neighborhood of Σ ∪ D ⊂ M

diffeomorphic to Σ× [0, 1], such that Σ = Σ0, Σ1 are convex, Σ× [0, ε] is I–invariant

and ΓΣ is related to ΓΣ1 as in Figure 4.
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Figure 4: Original surface Σ with bypass arc α, on the left. The surface Σ1 after
isotoping Σ across D, on the right.

A surface Σ locally separates the ambient manifold. If a bypass is contained in

the (local) piece of M \Σ that has Σ as its oriented boundary then we say the bypass

will be attached to the front of Σ otherwise we say it is attached to the back of Σ.

When a bypass is attached to a torus T then either the dividing curves do not

change, their number increases by two, or decreases by two, or the slope of the

dividing curves changes. The slope of the dividing curves can change only when there

are two dividing curves. If the bypass is attached to T along a ruling curve then

either the number of dividing curves decreases by two or the slope of the dividing

curves changes. To understand the change in slope we need the following. Let D

be the unit disk in R2. Recall the Farey tessellation of D is constructed as follows.

Label the point (1, 0) on ∂D by 0 = 0
1
and the point (−1, 0) with ∞ = 1

0
. Now join

them by a geodesic. If two points p
q
, p′

q′
on ∂D with non-negative y-coordinate have

been labeled then label the point on ∂D half way between them (with non-negative

y-coordinate) by p+p′

q+q′
. Then connect this point to p

q
by a geodesic and to p′

q′
by a

hyperbolic geodesic. Continue this until all positive fractions have been assigned to

points on ∂D with non-negative y-coordinates. Now repeat this process for the points

on ∂D with non-positive y-coordinate except start with ∞ = −1
0
. See Figure 6.

The key result we need to know about the Farey tessellation is given in the fol-

lowing theorem. See Figure 6.

Theorem 2.3.2 (Honda 2000, [22]). Let T be a convex torus in standard form with

|ΓT | = 2, dividing slope s and ruling slope r 6= s. Let D be a bypass for T attached to
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Figure 5: The Farey tessellation.

the front of T along a ruling curve. Let T ′ be the torus obtained from T by attaching

the bypass D. Then |ΓT ′ | = 2 and the dividing slope s′ of ΓT ′ is determined as follows:

let [r, s] be the arc on ∂D running from r counterclockwise to s, then s′ is the point

in [r, s] closest to r with an edge to s.

If the bypass is attached to the back of T then the same algorithm works except

one uses the interval [s, r] on ∂D.

2.3.3 The Imbalance Principle

As we see that bypasses are useful in changing dividing curves on a surface we mention

a standard way to try to find them called the Imbalance Principle. Suppose that Σ

and Σ′ are two disjoint convex surfaces and A is a convex annulus whose interior is

disjoint from Σ and Σ′ but its boundary is Legendrian with one component on each

surface. If |ΓΣ · ∂A| > |ΓΣ′ · A| then there will be a dividing curve on A that cuts a

disk off of A that has part of its boundary on Σ. It is now easy to use the Giroux

Flexibility Theorem to show that there is a bypass for Σ on A.
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Figure 6: The Farey tessellation on the left. Schematic of the change in the dividing
slope from s to s′ after bypass attachment along a Legendrian rulling curve of slope
r on the Farey tessellation on the right.

2.3.4 Discretization of Isotopy

We will frequently need to analyze what happens to the contact geometry when we

have a topological isotopy between two convex surfaces Σ and Σ′. This can be done

by the technique of Isotopy Discretization [4] (see also [14] for its use in studying

Legendrian knots). Given an isotopy between Σ and Σ′ one can find a sequence of

convex surfaces Σ1 = Σ,Σ2, . . . ,Σn = Σ′ such that

1. all the Σi are convex and

2. Σi and Σi+1 are disjoint and Σi+1 is obtained from Σi by a bypass attachment.

Thus if one is trying to understand how the contact geometry of M \ Σ and M \ Σ′

relate, one just needs to analyze how the contact geometry of the pieces of M \ Σi

changes under bypass attachment. In particular, many arguments can be reduced

from understanding a general isotopy to understanding an isotopy between two sur-

faces that cobound a product region.

There is also a relative version of Isotopy Discretization where Σ and Σ′ are convex

surfaces with Legendrian boundary consisting of ruling curves on a convex torus. If
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∂Σ = ∂Σ′ and there is a topological isotopy of Σ to Σ′ relative to the boundary then

we can find a discrete isotopy as described above. (Note that during the discrete

isotopy the boundary of the surface is not fixed but is allowed to move among the

ruling curves on the convex torus. One could slightly rephrase item (2) in the above

definition of a discretized isotopy to keep the boundary fixed, but we find it more

natural to allow the boundary to move even though the original isotopy is relative to

the boundary.)

2.4 Classifying knots in a knot type

2.4.1 Standard neighborhoods of knots

Given a Legendrian knot L, a standard neighborhood of L is a solid torus N that has

convex boundary with two dividing curves of slope 1/ tb(L) (and of course we will

usually take ∂N to be a convex torus in standard form). Conversely given any such

solid torus it is a standard neighborhood of a unique Legendrian knot (cf . [25]). Up

to contactomorphism one can model a standard neighborhood.

One may understand stabilizations and destabilizations of a Legendrian knot L in

terms of the standard neighborhood. Specifically, inside the standard neighborhood

N of L, L can be positively stabilized to S+(L), or negatively stabilized to S−(L).

Let N± be a neighborhood of the stabilization of L inside N. As above we can assume

that N± has convex boundary in standard form. It will have dividing slope 1
tb(L)−1

.

Thus the region N \ N± is diffeomorphic to T 2 × [0, 1] and the contact structure on

it is easily seen to be a basic slice, see [22]. There are exactly two basic slices with

given dividing curves on their boundary and as there are two types of stabilization of

L we see that the basic slice N \N± is determined by the type of stabilization done,

and vice versa. Moreover if N is a standard neighborhood of L then L destabilizes

if the solid torus N can be thickened to a solid torus Nd with convex boundary in

standard form with dividing slope 1
tb(L)+1

.Moreover the sign of the destabilization will
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be determined by the basic slice Nd \N . Finally, we notice that using Theorem 2.3.2

we can destabilize L by finding a bypass for N attached along a ruling curve whose

slope is clockwise of 1/(tb(L) + 1) (and anti-clockwise of 0).

Furthermore, by using this neighborhood one can talk about the positive/negative

transverse push-off, T±(L) of a Legendrian knot L. The only classical invariant of

these transverse knots, the self linking number, can be computed for transverse push-

offs as (cf . [18])

sl(T±(L)) = tb(L)∓ r(L).

As in [14] two Legendrian knots L and L′ are called stably isotopic if there is

some n and n′ such that Sn
−(L) and Sn′

− (L′) are Legendrian isotopic. Note that

tb(L) − r(L) = tb(S−(L)) − r(S−(L)). A knot type K is called stably simple if

Legendrian knots in this knot type are stably isotopic. The key result that we need

concerning the transverse classification of a knot type is the following theorem of

Epstein, Fuchs and Meyer from [18] (also [14] for general manifolds) which reduces

the classification of transverse knots up to transverse isotopy to the classification

Legendrian knots up to Legendrian isotopy and their negetaive stabilizations.

Theorem 2.4.1 (Epstein-Fuchs-Meyer [18], Etnyre-Honda [14]). A knot type K is

stably simple if and only if it is transversely simple.

We want to note that in the proofs we will use the following classical strategy, first

proposed by Etnyre in [10] and efficiently used for almost all known results concerning

the clasification of Legendrian knots.

1. Find a formula that computes tb(K(p,q)) and r(K) where K ∈ K(p,q) with

tb(K) = tb(K(p,q)).

2. Classify Legendrian knots with maximal Thurston-Bennequin invariant.
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3. Show that all Legendrian representatives of K(p,q) of non-maximal Thurston-

Bennequin invariant admit destabilization or determine those that cannot be

destabilized.

4. Understand the relationship between the stabilizations of two non-destabilizable

representatives of K(p,q).

Recall that the Bennequin inequality implies that, there are finitely many distinct

L1, L2, ... , Ln ∈ L(K), called peaks, with tb(Li) = tb(K), i = 1, 2, ..., n. These are

distuinguished by their rotation numbers r(Li). Without loss of generality we can

assume r(L1) < r(L2) < ... < r(Ln). Moreover, the contactomorphism (x, y, z) 7−→

(−x, y,−z) of (R3, ker(dz − ydx)) shows that r(Li) = r(Ln−i). Also recall that, the

positive (resp. negative) stabilization operation, as discussed above, decreases tb by 1

and increases (resp. decreases) r by 1. Hence once we enter all these values of (r, tb),

the image of L(K) we see look like a mountain range. See Figure 7

tb

rot

-
+

Figure 7: The image of L(K) under (r, tb). The diagonal arrows stands for ±
stabilizations.

As stabilization of a Legendrian knot is well defined and positive and negative sta-

bilizations commute, it is clear that these steps will yield a classification of Legendrian

knots in the knot type K.

Second part of the strategy is facilitated by the observation above that bypasses

attached to appropriate ruling curves of a standard neighborhood of a Legendrian

knot yield destabilizations. Similarly, if L is a Legendrian knot contained in a convex

surface Σ (and the framing given to L by Σ is less than or equal to the framing given by
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a Seifert surface) and there is a bypass for L on Σ then this leads to a destabilization

of L. Moreover one can find such a bypass in some cases by the Imbalance Principle

discussed above.

Last part of the strategy require to show that each of the non-maximal represen-

tatives of L(K) shown red, called a valley, in the Figure 7 destabilizes to the two

adjecent peaks.

2.4.2 Contact isotopy and contactomorphism

We begin by recalling a result of Eliashberg concerning the contactomorphism group

of the standard contact structure ξstd on S3. Fix a point p in S3 and let Diff0(S
3) be

the group of orientation-preserving diffeomorphisms of S3 that fix the plane ξstd(p),

and let Diffξstd
be the group of diffeomorphisms of S3 that preserve ξstd.

Theorem 2.4.2 (Eliashberg 1992, [8]). The natural inclusion of

Diffξstd
↪→ Diff0(S

3)

is a weak homotopy equivalence.

Using this fact it is clear that if one has a contactomorphism φ of (S3, ξstd) that

takes a set S ⊂ S3 to S ′ ⊂ S3, then there is a contact isotopy of (S3, ξstd) that

takes S to S ′. In particular, if one is trying to show that two embeddings of a

contact structure on a torus are contact isotopic then one merely needs to construct a

contactomorphism that takes one torus to the other. Similarly to show two Legendrian

knots are Legendrian isotopic one only needs to construct a contactomorphism that

takes one knot to the other (or takes a standard neighborhood of one of the knots to

the other, that is understand the contactomorphism type of the complement of the

standard neighborhood).

22



2.5 Contact width, uniform thickness property and lower

width

The contact width of a knot K is

ω(K) = sup
1

slope(Γ∂(S1×D2))
,

where the supremum is taken over all S1 ×D2 ↪→ S3 representing K with ∂(S1 ×D2)

convex.

In order to make sense of slopes of homotopically non trivial curves on ∂(S1 ×

D2) we identify ∂(S1 × D2) = R2/Z2 where the meridian has slope 0 and the well-

defined longitude (as K is in S3) has slope ∞. More details will be given in the next

Subsection.

Definition 2.5.1. A topological knot type K is said to satisfy the uniform thickness

property (UTP) if the following hold:

1. tb(K) = ω(K)

2. Every embedded solid tori S1 ×D2 ↪→ S3 representing K can be thickened to a

standard neighborhood of a maximal tb Legendrian knot.

We remind also a theorem of Etnyre and Honda that was main motivation of the

work in this thesis.

Theorem 2.5.2 (Etnyre-Honda,[13]). If K is Legendrian simple knot type and sat-

isfies the UTP, then all of its cables are Legendrian simple.

We say that a solid torus S1 ×D2 with convex boundary representing K is non-

thickenable, if there is no N ′ containing S1×D2 (whenever we discuss solid torus con-

tained in another we assume they have the same core) with slope(ΓN ′) 6= slope(ΓN).

Since there are knots with this property (see Chapter 4), we define another invariant
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of a Legendrian knot type, the lower contact width, to be

`w(K) = inf
1

slope(Γ∂(S1×D2))
,

where S1×D2 ranges over all non-thickenable solid tori representing K with convex

boundary.

2.6 Framings for cables

One can talk about two coordinate systems for K(r,s) on its neighborhood, ∂N(K(r,s)).

The first coordinate system, which is denoted by C, has the meridian slope 0 and the

well-defined longitude, coming from the intersection of a Seifert surface for K(r,s) with

∂N(K(r,s)), has slope ∞. In the second coordinate system, denoted C ′, the meridian

has slope 0 and slope ∞ comes from the surface ∂N(K) on which K(r,s) sits. That is

we take an annulus A on ∂N(K) that intersects ∂N(K(r,s)) along its boundary with

∂N(K(r,s)) \ A has two disjoint annuli components B1 and B2 such that A ∪ Bi is

isotopic to ∂N(K). Now A ∩ ∂N(K) has slope ∞. As explained in [13] one can

relate these two framings for ∂N(K(r,s)) and deduce the following relation between

the twisting numbers of L(r,s) ∈ K(r,s):

t(L(r,s), C
′) + rs = t(L(r,s), C) = tb(L(r,s)). (2)

Given two embedded closed curves γ and γ′ on a torus T we denote their minimal

intersection by γ • γ′. If the slope of γ, respectively γ′, is s = r
t
, respectively s′ = r′

t′
,

then

s • s′ = |rt′ − tr′|.

2.7 Computations of tb, r and tb

In this subsection we collect various facts that are useful in computing the classical

invariants of Legendrian knots on tori.
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2.7.1 Rotation numbers for curves on convex tori

Let T be a convex torus in a contact manifold (M, ξ), where ξ has Euler class 0.

Now we define an invariant of homology classes of curves on T. Let v be any globally

non-zero section of ξ and w a section of ξ|T that is transverse to and twists (with ξ)

along the Legendrian ruling curves and is tangent to the Legendrian divides. If γ is a

closed oriented curve on T then set fT (γ) equal to the rotation of v relative w along

γ. One may check the following properties (cf. [10, 14]).

1. The function fT is well-defined on homology classes.

2. The function fT is linear.

3. The function fT is unchanged if we isotope T through convex tori in standard

form.

4. If γ is a (r, s)-ruling curve or Legendrian divide then fT (γ) = r(γ).

2.7.2 Legendrian knots on tori

We recall two simple lemmas from [13]. The first concerns the computation of the

Thurston-Bennequin invariant for cables and follows immediately from (2).

Lemma 2.7.1. Let K be a knot type and N a solid torus representing K whose

boundary is a standard convex torus. Suppose that L ∈ L(K(r,s)) is contained in ∂N .

1. Suppose L(r,s) is a Legendrian divide and slope(Γ∂N(K)) =
s
r
. Then

tb(L(r,s)) = rs.

2. Suppose L(r,s) is a Legendrian ruling curve and slope(Γ∂N(K)) =
s′

r′
. Then

tb(L(r,s)) = rs− |rs′ − sr′|.
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A simple consequence of the discussion in Subsection 2.7.1 yields the following

computation of the rotation number for cables.

Lemma 2.7.2. Let K be a knot type and N a solid torus representing K whose

boundary is a standard convex torus. Suppose that L ∈ L(K(r,s)) is contained in ∂N .

Then

r(L(r,s)) = r · r(∂D) + s · r(∂Σ),

where D is a convex meridional disk of N with Legendrian boundary on a contact-

isotopic copy of the convex surface ∂N , and Σ is a convex Seifert surface with Legen-

drian boundary in L(K) which is contained in a contact-isotopic copy of ∂N(K).
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Chapter III

SUFFICIENTLY POSITIVE AND NEGATIVE CABLES

ARE SIMPLE

In this section we give the proofs of Theorem 1.1.1 and 1.1.2.

3.1 Sufficiently positive cables.

We first start to give a more precise statement of Theorem 1.1.1, then work our way

up to the proof of Theorem 3.1.1 through a series of lemmas.

Theorem 3.1.1. If K is Legendrian simple and ω(K) ∈ Z. Then its (r, s)-cable,

K(r,s), is Legendrian simple and admits a classification in terms of the classification

of K, provided r
s
> ω(K). Moreover the maximal Thurston-Bennequin invariant is

tb(K(r,s)) = rs− |tb(K) •
r

s
|,

and the set of rotation numbers associated to L ∈ K(r,s) with tb(L) = tb(K(r,s)) is

r(L) = {s · r(K)| K ∈ L(K) , tb(K) = tb(K)}

If K ∈ L(K) is a non-destabilizable with tb(K) = n < tb(K), then there is non-

destabilizable L ∈ L(K(r,s)) with tb(L) = rs− | 1
n
• r

s
| and the set of rotation numbers

associated to non-destabilizable L ∈ K(r,s) with tb(L) = rs− | 1
n
• r

s
| is

r(L) = {s · r(K)| K ∈ L(K) , tb(K) = n}.

Lemma 3.1.2. Under the hyphothesis of Theorem 3.1.1 the maximal Thurston-

Bennequin invariant is tb(K(r,s)) = rs − |tb(K) • r
s
|. The set of rotation numbers

realized by L ∈ K(r,s) with tb(L) = tb is

r(L) = {s · r(K)| K ∈ L(K), tb(K) = tb(K)}.
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Proof. During the proof we will use the C ′ coordinate system. Note that tw(L, C ′) < 0

for all L ∈ L(K(r,s)). If not, we can assume there is L′ ∈ L(K(r,s)) with tw(L′) = 0.

Then there exists a solid torus S with ∂S convex such that L′ is a Legendrian divide

on ∂S which implies that slope of dividing set is s/r when measured with respect to

C but this contradicts the assumption that r
s
> ω(K)

Thus, there exists a solid torus S representing K with ∂S convex, L ⊂ ∂S and

the slope of Γ∂S equal to t.

Recall in our Theorem 3.1.1 it is assumed that ω(K) ∈ Z. Since tb(K) ≤ ω(K) ≤

tb(K) + 1. We have either ω(K) = tb(K) or ω(K) = tb(K) + 1. Hence there are two

cases to check.

Case 1. ω(K) = tb(K): We claim the following inequality holds under the as-

sumptions of Theorem 3.1.1

|
1

t
•
r

s
| ≥ |ω(K) •

r

s
| (3)

and equality holds iff 1
t
= ω(K).

To see this note that, since ω(K) ∈ Z we know that on the Farey tesellesion there

is an edge from 0 to 1
ω(K)

. Moreover, by definition of the contact width we have,

1
t
< ω(K). Now by using the oriented diffeomorphism of ∂S, we can normalize the

slopes by sending 0 to 0 and 1
ω(K)

to ∞. Such a diffeomorphism will preserve order

and hence force s′/r′ > 0 and 1
t′
∈ [−∞, 0) where s′/r′ and 1

t′
denotes the images of

s/r and 1
t
under this diffeomorphism, respectively.

Observe that 1
t′
∈ (−∞, 0) means

1

t′
= m




0

−1


+ n




1

0


 =




n

−m




where n, m > 0. Hence as slope 1
t′
= −m

n
. Now we easily get Inequality (3)

|
1

t
•
r

s
| = |

1

t′
•
r′

s′
| = |

−m

n
•
r′

s′
| = |r′n+ s′m| > s′ = |

−1

0
•
r′

s′
| = |

1

t
•
r

s
|.
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Therefore t(L, C ′) ≤ −|ω(K) • r
s
|. Now any Legendrian ruling on ∂S, where S is

solid torus representing K of maximal thickness (i.e. slopeΓ∂S = 1
tb(K)

), realizes the

equality. By Equation (2) we see that

tb(K(r/s)) = rs− |ω(K) • r/s| = rs−
∣∣tb(K) • r/s

∣∣ .

Case 2. ω(K) = tb(K) + 1: The same proof as in Case 1 is true when s < 1
tb(K)+1

except in Inequality (3) equality holds iff 1
t
= tb(K). When t ∈ [ 1

tb(K)
, 1
tb(K)+1

], then

first observe that for any such t ∈ [ 1
tb(K)

, 1
tb(K)+1

) we have

|
1

t
•
r

s
| ≥ |tb(K) •

r

s
|. (4)

Moreover, we cannot have s = 1
tb(K)+1

as otherwise we would have L ∈ L(K) with

tb(L) = tb(K) + 1.

Therefore t(L, C ′) ≤ −|tb(K) • r
s
| and any Legendrian ruling curve of slope s/r on

∂N , where N is solid torus representing K convex boundary and s(Γ∂N) =
1

tb(K)
will

realize the equality in Inequality (4)

Next we compute the rotation numbers associated to this representatives. Take

L ∈ L(K(r,s)) with tb(L) = tb(K(r,s)). Then there exist a solid torus S with convex

boundary, where slope(Γ∂S) =
1

tb(K)
and L is Legendrian ruling curve on ∂S.

Such a solid torus is a standard neighborhood of Legendrian knotK ∈ L(K). Thus

by Formula (2.7.2) we have

r(L) = r · r(∂D) + s · r(K) = s · r(K)

as r(∂D) = 0.

Lemma 3.1.3. The L ∈ L(K(r,s)) with tb(L) = tb are classified by their rotation

numbers.

Proof. If L,L′ ∈ L(K(r,s)) with tb(L) = tb(L′) = tb, then there exist solid tori S

and S ′ which represent K,K ′ ∈ L(K), respectively. Since tw(L, ∂S) < 0 (similarly
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tw(L′, ∂S ′) < 0) we can make ∂S (and ∂S ′) convex and L, L′ are Legendrian ruling

curve on S and S ′, respectively. Moreover since L and L′ are maximal tb representa-

tives there are only two dividing curves of slope 1
tb(K)

on ∂S and ∂S ′.

If r(L) = r(L′), then by Lemma 3.1.2, r(K) = r(K ′) and hence K and K ′ are

Legendrian isotopic by Legendrian simplicity of the underlying knot type K. Thus

we may assume K and K ′ are the same. Let S and S ′ be the standard neighborhoods

of the K = K ′ on which L and L′, respectively, sit. Since K = K ′ ⊂ S ∪ S ′,

there exist a solid torus S ′′ sitting inside both S and S ′ and with ∂S ′′ convex and

slope(Γ∂S′′) = 1
tb(K)

. Since S − S ′′ and S ′ − S ′′ are I-invariant neighborhoods, we

can assume L, L′ are (slope s/r) Legendrian rulings on ∂S ′′. Finally, L and L′ are

Legendrian isotopic through the other Legendrian rulings.

Remark 3.1.4. If the knot type K satisfies UTP property, then a classification as in

Figure 8 is impossible, i.e. either there is single representative at maximal tb (hence

has r = 0) or several representatives at maximal tb which are distuinguished by their

rotation numbers. Since in our case we are dealing with the knot types that do not

necessarily satisfy UTP, it is possible to have a picture as in Figure 2, though we do

not know any example of it. In other words, there might be a knot type K that is

Legendrian simple and has a Legendrian classification such that some K ′ ∈ L(K) has

tb(K ′) = n < tb but cannot be destabilized to L with tb(L) = tb. We note that

Chongchitmate and Ng have conjectural examples in [5] of this phenomena.

Figure 8: Possible non-standart (tb, r)– Mountain range for a knot type K
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Lemma 3.1.5. For each non-destabilizable K ∈ L(K) with Thurston-Bennequin

invariant tb(K) = n < tb, there exists a unique, up to Legendrian isotopy, non-

destabilizable L, a (r, s)-ruling curve on the standard neighborhood N of K with

tb(L) = rs− | 1
n
• r

s
| and the set of rotation numbers associated to such L is

r(L) = {s · r(K)| K ∈ L(K) , tb(K) = n}.

Proof. Let K ∈ L(K) be such representative. Since tb(K) = n < tb we can have

an L ∈ L(K(r,s)) which is a Legendrian ruling on ∂N ′ where N is the standard

neighborhood of K ∈ L(K) with s(Γ∂N) =
1
n
and n < tb(K). Now we want to show

that L does not admit a destabilization. Suppose that L admits a destabilization.

This implies the existence of a convex torus Σ which is (topologically) isotopic to

∂N and contains L and a bypass for L. Now isotope the annulus A = ∂N − L to

A′ = Σ − L relative to the boundary L. By the Isotopy Discretization technique

in [24, Lemma 3.10], we know such isotopy corresponds to a sequence of bypass

attachments. Now we show that all potential bypass attachment are trivial, that is

dividing set of A will not change and hence we cannot reach A′. To end this, observe

that a nontrivial bypass attachment from the outside will corresponds to a thickening

of ∂N and it cannot be thickened to some solid torus N ′ with s(Γ∂N ′) = 1
n+1

since

this will corresponds to a destabilization of K ∈ L(K) which is impossible. Hence

a nontrivial bypass attachments will give a thickening of ∂N to some solid tori N ′

with s(Γ∂N ′) = t where 1
n+1

< t < 1
n
. An important observation is that since bypass

attachment happens in the complement of L, any bypass attachments to A cannot

increase the intersection number of the dividing set with L. On the other hand, as in

Case 1 in Lemma 3.1.2, one can easily show

∣∣∣∣
s

r
• t

∣∣∣∣ >
∣∣∣∣
s

r
•
1

n

∣∣∣∣. (5)

Thus, bypass attachment to A from the outside must increase intersection number
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of the dividing set with L. Similarly bypass attachment to A from the inside would

increase the intersection of the dividing set with L. Hence, we cannot reach A′ and

so L does not destabilize

Lemma 3.1.6. If L ∈ L(K(r,s)) with tb(L) < tb(K(r,s)), then either L admits a

destabilization or L is one of the non-destabilizable representative from Lemma 3.1.5.

Proof. Given such an L there is a solid torus S representing K with convex bound-

ary, containing L and dividing slope s. If L does not intersect the dividing set Γ∂S

efficiently, then we can destabilize L with a bypass on ∂S. So we now assume L inter-

sects Γ∂S efficiently. We know s 6= 1
ω(K)

, since tb(L) < tb(K(r,s)). If S has boundary

slope 1
n
, then either K ∈ L(K) is non-destabilizable and we are in situation of Lemma

3.1.5 or, as the underlying knot type K is Legendrian simple, K ∈ L(K) admits a

destabilization and hence get a thickening of S. Now we can take a convex annulus

A = L × [0, 1] in ∂S × [0, 1] and using the Imbalance Principle, we get a destabi-

lization for L. Finally, suppose s(Γ∂S) = t and S is non thickenable. Shrink S to a

solid torus N ′ with ∂N ′ convex and s(Γ∂N) =
1
n′ . By using Equation (5) we get that

|s′/r′ • t| = |s′/r′ • (−n/m)| = |r′n + s′m| > |r′n − s′nn′| > |r′ − s′n′| = |s′/r′ • 1
n′ |.

Thus, we again get a destabilization for L.

Finally we want to show for pairs (tb, r) obtained from stabilizations of multi-

ple different non-destabilizable Legendrian knots (i.e. maximal tb representatives or

Legendrian knots from Lemma 3.1.5), there is unique Legendrian with that tb and r.

More precisely we prove

Lemma 3.1.7. If L,L′ ∈ L(K(r,s)) with tb(L) = tb(L′) = tb(K(r,s)) and r(L) =

r(L′) + 2sn, then Ssn
− (L) and Ssn

+ (L′) are Legendrian isotopic. Also If tb(L) =

tb(K(r,s)) and L′ is from Lemma 3.1.5 with r(L) = r(L′)+ s(n−m), then and Ssk
− (L)

and Ssl
+(L

′), k + l = n−m, are Legendrian isotopic.
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Proof. We need to show that Ssn
− (L) = Ssn

+ (L′). Observe that L and L′ sit on standard

neighborhood of K and K ′, respectively, where K and K ′ of L(K) have maximal tb

and r(K) = r(K ′) + 2n, by the assumption and Lemma 3.1.2. As K is Legendrian

simple, we have Sn
−(K) = Sn

+(K
′). On the other hand since L is in L(K(r,s)) is

Legendrian ruling curve of slope s
r
on the standard neighborhood, say N(K), of K in

which we have the standard neighborhood, N(S(K)), of S(K). Let L0 be a Legendrian

ruling curve of slope s/r on ∂N(S(K)) and let A be a convex annulus between N(K)

and N(S(K)) with L and L′ being its boundary. A quick computation of tb shows

that the dividing set on A has to have s-boundary parallel arcs on L0 side and no

boundary parallel arcs on L side (as otherwise we would be able to isotop L along this

bypass disks and end up with a representative with less twisting and contradict with

the maximality of L). Now the boundary parallel arcs on L0 side are all either positive

or all negative, giving two kinds of destabilization of L0. Therefore, we can easily

conclude that Ss
−(L) sits on a standard neighborhood of S−(K). In a similar way

Ss
+(L

′) sits on the standard neighborhood of S+(K
′). One can induct this argumennt

to see that Ssn
− (L) and Ssn

+ (L′) sit on the standard neighborhoods of Sn
−(K) = Sn

+(K
′).

Using the arguments as in the proof of Lemma 3.1.3, we conclude that L and L′ are

Legendrian isotopic.

By using similar argument we see can see that L,L′ ∈ L(K(r,s)) with tb(L) =

tb(K(r,s)) and L′ is from Lemma 3.1.5 and r(L) = r(L′) + s(n−m) stabilizes to same

Legendrian knot.

Proof of Theorem 3.1.1. Lemma 3.1.3, Lemma 3.1.5 and Lemma 3.1.6 give a complete

list of non-destabilizable Legendrian knots in K(r,s) and they are all determined by tb

and r, by Lemma 3.1.7
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3.2 Sufficiently negative cables.

Now we give the proof of the Therem 1.1.2. Once again we start with a more precise

statement, then Now establish the proof through the sequence of lemmas.

Theorem 3.2.1. If K is Legendrian simple and `ω(K) ∈ Z. Then K(r,s) is also

Legendrian simple, provided r
s
< `ω(K). Moreover

tb(K(r,s)) = rs = ω(K(r,s)),

and the set of rotation numbers realized by

{L(r,s) ∈ L(K(r,s)) : tb(L) = tb(K(r,s))}

is

{±(r + s(n+ r(L)) : L ∈ L(K), tb(L) = −n}

where n is the integer that satisfies

−n− 1 <
r

s
< −n.

Lemma 3.2.2. If r
s
< `ω(K) and `ω(K) ∈ Z, then

tb(K(r,s)) = rs = ω(K(r,s)).

Moreover the set of rotation numbers realized by

{L(r,s) ∈ L(K(r,s)) : tb(L) = tb(K(r,s))}

is

{±(p+ q(n+ r(L)) : L ∈ L(K), tb(L) = −n}

where n is the integer that satisfies

−n− 1 <
r

s
< −n.
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Proof. We will use the C ′ coordinate system. Observe that since r
s
< `ω(K), there is

a convex torus of slope s/r, parallel to ∂N , inside solid torus N representing K, with

convex boundary. Now a Legendrian divide on this convex torus is a representative

L(r,s) ∈ L(K(r,s)) with twisting number zero. Thus t(L(r,s), C
′) ≥ 0.

For the equality it is enough to show that ω(K(r,s), C
′) = 0 since t(L(r,s), C

′) ≤

ω(K(r,s), C
′). The proof below is essentially the same as Claim 4.2 in [13]. The key

point is showing that the knot type K(r,s) satisfies the first condition of the UTP.

Let N(r,s) be a solid torus representing K(r,s) and has convex boundary with

s(Γ∂(N(r,s)
) = t. We want to show t = 0. Suppose t > 0. After thinning the

solid tori N(r,s) we may take t to be a large positive integer and #Γ∂(N(r,s)
= 2. We

use Giroux’s Flexibility Theorem, [20], to arrange charecteristic foliation on ∂N(r,s)

to be in standart form with Legendrian ruling of slope ∞ and consider convex an-

nulus A with Legendrian boundary of slope ∞ on ∂N(r,s) such that a thickening

R = N(r,s)∪ (A× [−ε, ε]) ∼= T 2× [1, 2] has ∂R = T1∪T2 parallel to N(K), where N(K)

is a solid torus representing K with convex boundary of slope s/r, T2 is isotopic to ∂N

and T1 ⊂ N(K). Note that ΓA must consists of parallel non-seperating arcs, otherwise

we can attach the bypass corresponding to boundary parallel arcs onto ∂(N(r,s)) to

increase t to ∞ by Theorem 2.3.2. This will result excessive twisting inside N(K(r,s))

and hence would result contact structure to be overtwisted. Moreover, we can take an

identification of ∂N(K) so that slope(ΓT1) = −t and slope(ΓT2) = 1. To see this, we

note that T1 and T2 are each obtained by gluing one half of ∂N(K(r,s)) to the annulus

A and now since t is a positive integer, it is clear that ΓT1 is obtained from ΓT2 by

performing t+ 1 right-handed Dehn twists.

Let N ′ be a solid torus of maximal thickness containing R. By [22, Proposition

4.1], such a neighborhood has exactly two universally tight contact structures. On

the other hand, any tight contact structure on R can be layered into two basic slices

at the torus T1.5 parallel to Ti, i = 1, 2, with slope(ΓT1.5) = ∞ which is s/r when
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measured with respect to C coordinate system. Moreover, a quick computation of

the Poincare duals of the relative Euler classes for each of this basic slices shows that

there are four possible tight contact structures on R (two for each basic slices) which

are given by ±(1, 0) ± (1, 1− t) and the universally tight ones are the ones that has

no mixing of sign (i.e. either +(1, 0) + (1, 1 − t) or −(1, 0) − (1, 1 − t) ). We want

to determine if the tight contact structure ξ we start with, has a mixing of sign or

not. To end this, we compute the Euler class. Let γ be a Legendrian ruling curve

of slope ∞ on A and let A′ = γ × [−ε, ε]. We easily see that the dividing set on

A′ is made of 2t parallel curves (as A′ is (−ε, ε)–invariant), we use this to get that

< e(ξ), A′ >= χ(A′
+) − χ(A′

−) = 0, this gives then PDe(ξ) = ±(0, 1 − t). So, there

is a mixing of sign. But this cannot happen inside N ′. Thus, t = 0 and we get

ω(K(r,s), C
′) = 0, passing C coordinate system we have tb(K(r,s)) = rs.

Now we want to compute rotation numbers of L(r,s) in L(K(r,s)) realizing maximal

Thurston-Bennequin number. Let T 2
1.5 = ∂N which contains L(r,s) with tb(L(r,s)) =

rs. Since r
s
< `ω(K), we can take a thickening of tori T 2

1.5, T
2 × [1, 2] such that

boundary tori have slope slope(ΓT 2
1
) = − 1

n−1
and slope(ΓT 2

1
) = − 1

n
where n is the

integer that satisfies −n − 1 < r
s
< −n (note that n may equal to `ω(K)). But now

the solid tori of boundary slopes − 1
n−1

and − 1
n
are the standard neighborhoods of

L and S±(L), respectively. We can now make the relative Euler class computation

as above and then use Lemma 2.7.2 to get desired formula for the rotation number

computation.

Lemma 3.2.3. Legendrian knots with maximal tb in L(K(r,s)) are determined by their

rotation numbers.

Proof. Let L and L′ be two Legendrian knots in L(K) with maximal tb and r(L) =

r(L′), then we have associated solid tori N and N ′ with convex boundary on which

L and L′ sit as Legendrian divides. The classification of tight contact structures on

the solid torus in [21, 22] says that the contactomorphism type of a tight contact
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structure on a solid torus with convex boundary is determined by the number of the

positive bypasses on the meridional disk. Hence, determined by the rotation number

of L and L′, respectively, which are the same by the assumption. Thus, we get a

contactomorphism f : N → N ′. We may extend f to a contactomorphism of S3 that

takes ∂N to ∂N ′. Furthermore, by using Eliashberg’s result in [8], there is a contact

isotopy of S3 that takes ∂N to ∂N ′. So we will now think L and L′ are Legendrian

divides on same solid torus, say N , with convex boundary. We now want to form

a Legendrian isotopy between L and L′. To end this, we recall from Lemma 3.2.2

that ∂N is siting inside a thickened torus T 2 × [1, 2] such that boundary tori have

slope(ΓT 2
1
) = − 1

n−1
and slope(ΓT 2

2
) = − 1

n
. Now as the consequence of the classification

of tight contact structure on thickened tori (see [22, Corollary 4.8]), we know there

is also a pre-Lagrangian torus, (still) denote by ∂N , which has linear characteristic

foliation and the same boundary slope as convex torus does. Thus, we can take L

and L′ to be two leaves on this pre-Lagrangian torus. Now, L and L′ are Legendrian

isotopic through this linear characteristic foliation.

Lemma 3.2.4. If L′ ∈ K(r,s) with tb(L′) < tb, then L′ admits a destabilization.

Proof. We can put L′ on a solid torus S with ∂S convex and slope(Γ∂S) = t. By

the above lemma and the assumption that r
s
< `ω(K) we can deduce that L′ is a

Legendrian ruling on S (clearly we can assume L′ intersects Γ∂S efficiently otherwise

destabilization is immediate) and 1
t
6= `ω(K). If t < 1

`ω(K)
, then, as in Equation (3.1.2),

we easily see that |s/r • t| > |s/r • 1/`ω|. Hence,by using the Imbalance Principle,

we get a destabilaztion of L′. If t > 1
`ω(K)

, then we can thicken S to a solid tori S ′

with ∂S ′ convex and slope(Γ∂S′) = 1
`ω(K)

. Hence taking a convex annulus A with

one boundary component on L′ in ∂S × [0, 1] = S ′ − S and applying the Imbalance

Princible again we find a bypass for L′ which gives a destabilization for L′.

Lemma 3.2.5. If L+
(r,s), L

−

(r,s) ∈ L(K(r,s)) with tb(L+
(r,s)) = tb(L−

(r,s)) and r(L+
(r,s)) =
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r(L−

(r,s)) + 2r + 2sn (or r(L+
(r,s)) = r(L−

(r,s)) + 2ks − 2r − 2sn), then Sr+sn
+ (L−

(r,s)) =

Sr+sn
− (L+

(r,s)) (or Sks−r−sn
+ (L−

(r,s)) = Sks−r−sn
− (L+

(r,s))).

Proof. There are two cases to concern based on rotation number computation in

Lemma 3.2.2

Case 1: L ∈ L(K) in Lemma 3.2.2 has r(L) = 0. In this case L±

(r,s) are the

only maximal tb representatives of L(K(r,s)) with r(L+
(r,s)) = −r − sn and r(L−

(r,s)) =

r+sn. Clearly by doing −r−sn positive ( respectively negative) stabilization on L−

(r,s)

(respectively on L+
(r,s)) we end up at Legendrian knots with the same (tb, r) pair. We

also have L′

(r,s) ∈ L(K(r,s)) with tb(L′

(r,s)) = tb(K(r,s))}+r+sn number and r(L′

(r,s)) =

s r(L) = 0. We know by Lemma 3.2.4, such a L′

(r,s) admits a destabilization. We want

to show, these are Legendrain isotopic, i.e. S−r−sn
+ (L+

(r,s)) = L′

(r,s) = S−r−sn
− (L−

(r,s)).

Recall that L±

(r,s) are the Legendrian divide on a convex torus T1.5 with boundary slope

s
r
inside T 2× [1, 2] = N(L)−N(S±(L)) (See the remark at the end of the statement of

[13, Lemma 3.8]). Hence L′

(r,s) is a Legendrian ruling curve of slope s
r
on the standard

neighborhood N(L) of L ∈ L(K) with tb(L) = −n. Note that, S−r−sn
+ (L+

(r,s)) and

S−r−sn
− (L−

(r,s)) are also Legendrian ruling curve on N(L). Hence, L′

(r,s) is Legendrian

isotopic to S−r−sn
+ (L+

(r,s)) and S−r−sn
− (L−

(r,s)) through the other ruling curves. Indeed,

by taking a convex annulus A = L(r,s) × [1.5, 2] between T1.5 and N(L) with ∂A is

Legendrian curves of slope s
r
on T1.5 and N(L), we easily see L′

(r,s) destabilizes in two

ways.

Case 2: L ∈ L(K) in Lemma 3.2.2 has r(L) 6= 0. In this case, L±

(r,s) ∈ L(K(r,s))

coresponds to L± ∈ L(K) where tb(L+) = tb(L−) = −n and r(L+) 6= r(L−). Without

loss genarility we can assume that r(L−) < r(L+) and there is no L0 with r(L−) <

r(L0) < r(L+) , then r(L+)−r(L−) = 2k, k ∈ Z>0. Thus r(L
−

(r,s)) = s r(L−)+r+sn and

r(L+
(r,s)) = s r(L+)−r−sn = q r(L−)−(2ks+r+sn). This extra depth ks comes from

the underlying knot type puts us precisely in the situation of Lemma 3.1.7. Namely,

the L′

(r,s) with tb(L′

(r,s)) = rs−(ks+r+sn) and r(L′

(r,s)) = s r(L+)+ks = s r(L−)−ks
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is the Legendrian ruling curve of slope s
r
on the standard neighborhood Sk

+(L
+) =

Sk
−(L

−) (as K is Legendrian simple). Therefore, a Legendrian isotopy through the

other ruling curves gives that L′

(r,s) = Sks−r−sn
+ (L−

(r,s)) = Sks−r−sn
− (L+

(r,s)).

Proof of Theorem 3.2.1. Lemma 3.2.2 and Lemma 3.2.3 give a complete list of non-

destabilizable Legendrian knots in K(r,s) and show they are all determined by their

tb and rot. By Lemma 3.2.4, every L′

(r,s) in L(K(r,s)) with non-maximal tb invariant

can be written as Sk
−S

l
+(L(r,s)) for some L±

(r,s) ∈ L(K(r,s)) with maximal tb. Finally,

Lemma 3.2.5 shows any two L±

(r,s) with maximal tb and r(L−

(r,s)) < r(L+
(r,s)) (and no

L0
(r,s) with r(L−

(r,s)) < r(L0
(r,s)) < r(L+

(r,s)) ), stabilize to same L′

(r,s) in L(K(r,s)).
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Chapter IV

CONTACT NEIGHBORHOODS OF THE POSITIVE

TORUS KNOTS

In Section 4.1 we classify non-thickenable tori in the knot types of the positive torus

knots, and in Subsection 4.2 we classify the partially thickenable tori in the knot type

of the (2, 3)-torus knot.

Let S be a solid torus in a manifold M. We say S is in the knot type K, or

represents K, if the core curve of S is in the knot type K.

We say a solid torus S with convex boundary in a contact manifold (M, ξ) thickens

if there is a solid torus S ′ that contains S, has the same core curve as S (in particular

S ′ − S is a thickened torus) and such that S ′ has convex boundary with dividing slope

different from S. The existence of non-thickenable tori was first observed in [13]; the

following theorem shows that non-thickenable tori exist for all positive (p, q)-torus

knots.

4.1 Non-thickenable tori

This account to prove the followings

• Find necessary condition on a solid torus representing K that does not thicken,

i.e. obtain possible list of slopes for its dividing set.

• Prove that all these canditate neighborhoods do exist in (S3, ξstd).

• Prove the potential canditates you obtained in the first part are non-thickenable,

i.e. any one of them does not thicken to any other. Moreover, prove this is a

complete list.
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Lemma 4.1.1. Suppose that the solid torus N represents the knot type of a positive

(p, q)-torus knot K. If N has convex boundary then N will thicken unless it has

dividing slope

ek =
k

pq − p− q

for some k ∈ {1, 2, . . .}, and 2nk dividing curves where nk = gcd(pq − p− q, k).

Proof. We begin by ignoring the contact structure and building a topological model

for the complement of N. See Figure 9. The knot K can be thought to sit on a torus

T that separates S3 into two solid tori V1 and V2, each of which can be thought of

as a neighborhood of an unknot F1 and F2. As N is a neighborhood of K, we can

isotope T so that it intersects N in an annulus and thus A′ = T \ (T ∩ N) is an

annulus in the complement of N with boundary on ∂N. Moreover, there is a small

neighborhood of A′, which we denote N(A′) such that S3 \ (N ∪ N(A′)) consists of

two solid tori, which we may think of as V1 and V2. Turning this construction around

V1 ∪V2 ∪N(A′) is the complement of N. We can identify N(A′) as a neighborhood of

an annulus A that has one boundary component a (p, q) curve on ∂V1 and the other

boundary component a (q, p) curve on ∂V2. Thus, topologically, the complement of N

can be built as the neighborhood of two unknots (that form a Hopf link) union the

neighborhood of an annulus A.

Bringing the contact structure back into the picture we can assume that Li, i =

1, 2, is a Legendrian representative of Fi in the complement of N . Let tb(Li) = −mi,

where mi > 0. If N(Li) is a regular neighborhood of Li, then slope(Γ∂N(Li)) = −1/mi

with respect to CFi
.

Notice that S3 \ (N(L1)∪N(L2)) is diffeomorphic to S = T 2 × [0, 1] and contains

N. We wish to change coordinates on T 2 so that N is a vertical solid torus in S.

Specifically, T 2 inherits coordinates as the boundary of N(L1), that is using the

coordinate system coming from the framing CF1 . We change coordinates so that the

(p, q) curve on T 2 becomes the (0, 1) curve (which can be thought of as the longitude
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0

V1

V2

A

N

oo

oo

0

'

'

Figure 9: The cube in the picture represent T 2 × [0, 1] (the top and bottom are
identified and the front and back are also identified), thought of as the complement
of the Hopf link F1∪F2. We see the square ∂V1 on the left face that bounds the solid
tori V1 and the square ∂V2 on the right face that bounds V2 (minus their cores) and
the annulus A from V1 to V2. We have chosen coordinates on the torus (as specified
in the figure) so that the (p, q) curve is vertical, i.e. ∞′ with respect to C ′ coordinate
system.

in the C ′ framing). This can be done by sending the oriented basis ((p, q), (p′, q′)) for

T 2, where pq′ − qp′ = 1, to the basis ((0, 1), (−1, 0)). This corresponds to the map

φ1 =




q −p

q′ −p′


. Then φ1 maps (−m1, 1) 7→ (−qm1 − p,−q′m1 − p′). Since we are

only interested in slopes, we write this as (qm1 + p, q′m1 + p′).

Similarly, we change from CF2 to C ′. The only thing we need to know here is that

(−m2, 1) maps to (pm2 + q, p′m2 + q′). Thus S is a thickened torus T 2 × [0, 1] with

dividing slope q′m1+p′

qm1+p
on T × {0} and p′m2+q′

pm2+q
on T × {1}.

Now suppose qm1+p 6= pm2+q. This would mean that the twisting of Legendrian

ruling representatives of K on ∂N(L1) and ∂N(L2) would be unequal. Then we could

apply the Imbalance Principle to a convex annulus A in S3\N between ∂N(L1) and

∂N(L2) to find a bypass along one of the ∂N(Li). This bypass in turn gives rise to a

thickening of N(Li), allowing, by the twist number lemma [22], the increase of tb(Li)

by one. Hence, eventually we arrive at qm1 + p = pm2 + q and a standard convex

annulus A; that is, the dividing curves on A run from one boundary component of A

42



to the other.

Since mi > 0, the smallest solution to qm1 + p = pm2 + q is m1 = m2 = 1. All

the other positive integer solutions are therefore obtained by taking m1 = pj +1 and

m2 = qj+1 with j a non-negative integer. We can then compute the boundary slope

of the dividing curves on ∂(Ñ) where Ñ = N(L1) ∪N(L2) ∪N(A). This will be the

boundary slope for the solid torus Ñ containing N . We have

−
q′(pj + 1) + p′

pqj + p+ q
+

p′(qj + 1) + q′

pqj + p+ q
−

1

pqj + p+ q
= −

j + 1

pqj + p+ q
(6)

After changing from C ′
K to CK coordinates, and setting k = j + 1, these slopes

become k/(pq − p − q) as desired. We also notice that ∂Ñ has 2 gcd(pq − p − q, k)

dividing curves. Thus any solid torus N will thicken unless it satisfies the conditions

stated in the lemma.

We have not yet proved that tori as described in the above lemma actually exist.

It is clear that for k = 1, we have slope 1
pq−p−q

, which is the slope of the stan-

dard neighborhood of maximal tb representative of K. So we have at least one

non-thickenable neighborhood exists. To contruct the others we first make some ob-

servations. Note that by the classification of tight contact structures on solid tori

due to Honda [22], there are precisely two universally tight contact structures on

N (except k = 1 in which case there is unique (universally) tight contact struc-

ture [25]) and moreover the convex meridional disks all have bybasses of the same

sign. Let N±

k denote N with one of its universally tight contact structure on N with

slopeΓ∂N±

k
= k

pq−p−q
and #Γ∂N±

k
= 2nk. This notation makes sense as the observation

above shows that the two contact structures on N±

k differ by −Id. We will still denote

N±

1 for two (universally) tight contact structures on N1 even though they are same.

In the following we will drop ± from the notation and assume Nk has one of its two

(universally) tight contact sturctures.
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Lemma 4.1.2. The neighborhoods Nk can be embedded in (S3, ξstd) for all positive

integers k.

Proof. Let R = Nk∪N(A′) where A′ is an annulus that has boundary on Nk, N(A′) =

A′ × [−ε, ε] is its product neighborhood with a [−ε, ε]-invariant contact structure on

N(A′). Clearly R is diffeomorphic to T 2 × [0, 1] and the closed curves which run

parallel to the core curve of A′ gives a S1 fibration of R. Note that ∂R has two parallel

components T1 and T2 each of which is an unknotted torus. As in the proof above

a product neighborhood N(A) of an annulus A that has one boundary component

a (p, q)-curve on ∂V1 and the other boundary component a (q, p)-curve on ∂V2 can

be thought of as a neighborhood of an annulus A′. Moreover the union of Nk and

N(A) is a thickened torus T 2× [0, 1] whose complement is two standard neighborhood

of unknots V1 ∪ V2. and the dividing set on ∂R and these standard neighborhoods

match. For either choice of contact structure on Nk, the contact structure on R which

is obtained by extending the chosen one on Nk can be isotoped to be transverse to

the fibers of R, while preserving the dividing set on ∂R. It is well known, see for

example [23], that such a horizontal contact structure is universally tight. Moreover,

we see the boundary conditions on R are #ΓT1 = #ΓT2 = 2 and (with appropriately

chosen dividing curves on A′) slope(ΓT1) = − 1
m1

, slope(ΓT2) = −m2 when using the

coordinates on T 2 coming from the framing CF1 .

We know that there are exactly two universally tight contact structures on T 2 ×

[0, 1] with these dividing curves, differing by −Id, and their horizontal annuli contain

bypasses all of the same sign; one can easily see they correspond to the two choices

of universally tight contact structures on Nk. We know that each of these universally

tight contact structures on R embeds in the standard tight contact structure as the

region between a Legendrian realization of the Hopf link F1 ∪ F2. Thus the standard

tight contact structure on S3 minus R give standard neighborhoods of a Legendrian

realization L1 of F1, and L2 of F2. Moreover, we know that if F1 and F2 are oriented
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so that their linking is +1 then for one choice of universally tight contact structure

on R we have that L1 and L2 are both obtained from maximal Thurston-Bennequin

unknots by only positive stabilizations and for the other choice of universally tight

contact structure on R we have only negative stabilizations.

We first notice that these N±

k just constructed in S3 are non-thickenable solid

tori. In the course of the proof we will include an easier argument in the case of the

positive trefoil essentially from [13].

Lemma 4.1.3. The tori N±

k from Construction 4.1.2 are non-thickenable.

Proof. By Lemma 4.1.1, it suffices to show that Nk does not thicken to any Nk′ for

k′ < k. (We drop the ± from the notation for Nk for the remainder of this proof

and just assume one choice of sign is fixed throughout.) To this end, observe that

the (p, q)-torus knot is a fibered knot over S1 with fiber a Seifert surface Σ of genus

g = (p − 1)(q − 1)/2 (see [27]). Moreover, the monodromy map φ of the fibration is

periodic with period pq. Thus, Mk has a pq-fold cover M̃k
∼= S1 × Σ. If one thinks

of Mk as Σ × [0, 1] modulo the relation (x, 0) ∼ (φ(x), 1), then one can view M̃k as

pq copies of Σ × [0, 1] cyclically identified via the same monodromy. Now note that

in Mk, the ∞′-longitude intersects any given Seifert surface pq times efficiently. It is

therefore evident that we can view Mk as a Seifert fibered space with two singular

fibers (the components of the Hopf link). The regular fibers are topological copies

of the ∞′-longitude, which itself is a Legendrian ruling curve on ∂Mk = ∂Nk with

twisting −(pq(k − 1) + p+ q).

Case 1: The (2, 3)-torus knot

In the case of the trefoil, Σ is a punctured torus. Note that we have a contact

structure ξ on M̃k coming from pulling back the standard contact structure ξstd on

Mk. It is not difficult to see in case of Σ is punctured torus, ξ is the restriction of

contact structure ξ−6k+1 on T 3 (which is characterized by the fact that the maximal
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twisting of any Legendrian S1 which is isotopic to a fiber in T 3 is −6k + 1 with

respect to product framing). If Nk does thicken to any Nk′ for k′ < k (This is the

only possibility all otherwise it would correspond to thinning, see last paragraph

before Lemma 4.1.4). Then there exists a rulling curve L of slope ∞′ on Nk′ with

tw(L) = −6k′ + 1 > −6k + 1. As we assumed that N ′
k ⊃ Nk we have L is a regular

fiber in Mk. We claim that this cannot happen. To see this, we pull back L to M̃k

and still have it is isotopic to a regular fiber with twisting > −6k + 1. Now we close

up M̃k by gluing a solid torus to get T 3 and extend the contact structure so that

all the circle fibers are Legendrian with twisting −6k + 1. By classification of tight

contact structures on T 3 due to Giroux and Kanda ([20, 25]), we conclude that the

maximal twisting of a fiber is −6k + 1. This contradiction shows that Nk cannot be

thickened to any Nk′ for k
′ < k.

For the positive torus knots other than trefoil we need further work. The essential

reason is that the classification of tight contact structures on S1 bundle over a closed

surface Σg with g ≥ 2 is more complicated than g = 1 case. This is why closing up

S1× (Σg \D
2), the pq-fold cover of Mk explained above, unfortunately does not work.

But we still have a way to turn around mainly due to an idea first appeared in [25].

Case 2: The (p, q)-torus knot

We claim the pullback of the tight contact structure to M̃k admits an isotopy

where the S1 fibers are all Legendrian and have twisting number −(pq(k− 1)+ p+ q)

with respect to the product framing. To see this we consider the contact structure

on Vi, the neighborhood of the Legendrian unknot Li (we will use notation from

Construction 4.1.2). In the pq-cover of Mk the torus V1 will lift to p copies of the

q-fold cover Ṽ1 of V1 and similarly V2 will lift to q copies of the p-fold cover Ṽ2 of V2.

We can assume that ∂V1 has ruling slope q
p
(that is the ruling curves are Legendrian

isotopic to a Legendrian ∞′-curve on ∂Mk) and similarly for ∂V2. The ruling curves

lift to curves of slope 1
p
in Ṽ1. In particular they are longitudes and have twisting
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−(pq(k − 1) + p + q). Moreover the dividing curves on Ṽ1 are also longitudinal (a

different longitude of course). Thus we see that the contact structure on Ṽ1 is just

a standard neighborhood of one of the ruling curves (pushed into the interior of the

solid torus) as well as one of the dividing curves (pushed into the interior of the solid

torus). (One may easily see this by considering the following model for a standard

neighborhood: D2×S1 with the contact structure ker(sin 2nφ dx+cos 2nφ dy) where

(x, y) are coordinates on D2 and φ is the coordinate on S1.) Similarly for Ṽ2. Thus

each of these tori is foliated by Legendrian curves isotopic to the ruling curves. As

M̃k is made from copies of the Ṽi and copies of covers of the convex neighborhoods of

the annuli A we see the claimed isotopy of M̃k so that the S
1 fibers are all Legendrian.

If Nk can be thickened to Nk′ , then there exists a Legendrian curve topologically

isotopic to the regular fiber of the Seifert fibered space Mk with twisting number

greater than−(pq(k−1)+p+q), measured with respect to the Seifert fibration. Pulling

back to the pq-fold cover M̃k, we have a Legendrian knot which is topologically isotopic

to a fiber but has twisting greater than −(pq(k − 1) + p + q). Call this Legendrian

knot with greater twisting γ. We will obtain a contradiction, thus proving that Nk

cannot be thickened to Nk′ .

Since Σ is a punctured surface of genus g, we can cut Σ along 2g disjoint arcs

αi, all with endpoints on ∂Σ, to obtain a polygon P . Thus we have a solid torus

S1×P embedded in M̃k. We first calculate slope(Γ∂(S1×P )) as measured in the product

framing. To do so, note that a longitude for this torus intersects Γ, 2(pq(k−1)+p+q)

times, and a meridian for this torus is composed of 2 copies each of the 2g arcs αi, as

well as 4g arcs βi from ∂Σ. Now since ∂Σ is a preferred longitude downstairs in Mk,

we know that Γ intersects these βi, 2(pq − p− q) = 2(2g − 1) times positively. Thus

the dividing curves on ∂(S1 × Σ) have slope (2g − 1)/(pq(k − 1) + p + q). Cutting

along the 2g curves αi and rounding will result in dividing curves on ∂(S1 × P ) with

slope(Γ∂(S1×P )) = −1/(pq(k − 1) + p+ q).
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Now as in Lemma 3.2 in [23], we take M̃k = S1×Σ and pass to a (new) finite cover

of the base by tiling enough copies of P together so that γ is contained in a solid torus

S1 × (
⋃
P ). We notice that S1 × (

⋃
P ) is foliated by Legendrian knots with twisting

−(pq(k − 1) + p + q) that are isotopic to the S1 fibers in the product structure

and that the dividing curves on the boundary of the solid torus are longitudinal.

Thus S1 × (
⋃
P ) is a standard neighborhood of a Legendrian curve with twisting

−(pq(k− 1) + p+ q) with respect to the product structure. We know that inside any

such solid torus any Legendrian isotopic to the core of the torus has twisting less than

or equal to −(pq(k − 1) + p + q) (or else one could violate the Bennequin bound).

Thus γ cannot exist.

We now observe that if Nk admits thickening to some N with convex boundary

representing the positive (p, q)-torus knot, then N either admits further thickening to

Nk′ or is non-thickenable, we claim that in latter case N has to be in the list of Nk′ .

To end this, as in Lemma 4.1.1, we can find Legendrian unknots Li in S3\N = V1∪V2

which are isotopic to core curves Fi of unknotted tori Vi (which we can think of it

as standard neighborhoods of Li). Let A denote a convex annulus from V1 to V2

and N(A) = A × [−ε, ε] is its [−ε, ε]-invariant neighborhood. If Li are maximizing

twisting number in L(Fi) and N is non-thickenable, then the region between N and

V1 ∪ V2 ∪ N(A) is an I-invariant neighborhood of ∂N . So, the dividing slope of ∂N

is same as the dividing slope of ∂(V1 ∪ V2 ∪N(A)) which is k′

pq−p−q
for some positive

k′. Hence, If N does not thicken then N must be isotopic to one of the N±

k from

Construction 4.1.2.

In addition, we compute what the rotation numbers of Legendrian curves on ∂N±

k

are.

Lemma 4.1.4. If ∂N±

k is isotoped so that the ruling curves are meridional then the

meridional curves will have rotation number ±(k− 1), and if ∂N±

k is isotoped so that

the ruling curves are ∞-longitudes then the ∞-longitudes have rotation number 0.
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Proof. From the proof of Lemma 4.1.1 we see that tb(L1) = −(p(k − 1) + 1) and

tb(L2) = −(q(k − 1) + 1) for some positive integer k. We can assume that ∂A are

ruling curves on the tori ∂V1 and ∂V2. Ruling curves on A provide a Legendrian

isotopy form K1 to K2. Thus K1 and K2 have the same rotation numbers. From this

and the discussion at the end of Lemma 4.1.1 we see that the signs of the stabilizations

must be the same, thus r(L1) = ±p(k − 1) and r(L2) = ±q(k − 1). Moreover we see

that N± ∪N(A′) must be a universally tight contact structure on T 2 × [0, 1] (or else

we could find a bypass for one of the Li and hence thicken N±

k ).

The statement about meridional ruling curves is obvious. To verify the statement

for the ∞-longitudes we need to use the function fT that measures the rotation

numbers of curves on convex tori T that was discussed in Subsection 2.7.1. Recall L1

is a Legendrian unknot obtained from the maximal Thurston-Bennequin unknot by

p(k−1) positive (resp negative) stabilizations. Thus if V1 is a standard neighborhood

of L1 and K is a (p, q)-ruling curve on ∂V1 then we see

f∂V1(K) = pf∂V1(µ
′) + qf∂V1(λ

′′) = ±qp(k − 1),

where µ′ is a meridional curve on ∂V1 and λ′′ is a longitude.

If we isotope ∂N±

k (by this we mean for either choice of one of two univerally

tight contact structure) so that the ruling curves are ∞′-curves then there is a convex

annulus A′′ in S3 from the curve K on ∂V1 to an ∞′-longitude λ′ on ∂N±

k that has

dividing curves that run from one boundary component to the other. Thus we can rule

A′′ by curves parallel to K and λ′ and see that K and λ′ are Legendrian isotopic. In

particular f∂N±

k
(λ′) = r(λ′) = ±qp(k− 1). Let λ denote a ∞-longitude on ∂V +

k . Since

we know that λ = λ′ − pqµ where µ is a meridian on ∂V +
k with f∂N±

k
(µ) = ±(k − 1)

we see that

f∂N±

k
(λ) = f∂N±

k
(λ′)− pqf∂N±

k
(µ) = 0.
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Proof of Theorem 1.3.1. The theorem collects the statements of Lemmas 4.1.1, 4.1.3,

and 4.1.4, together with Construction 4.1.2.

4.2 Partially thickenable tori

Proposition 4.2.1. Let N s
k be a solid torus in N±

k with standard convex boundary

having dividing slope s ∈ [ek = k,∞). Then N s
k will thicken to a solid torus N ′ of

slope ek = k but not beyond. Moreover, N ′ is isotopic to N±

k .

Proof. Note that we already proved in Lemma 4.1.3 that N ′ is isotopic to N±

k for

some k. For the first statement, recall that by Corollary 4.8 in [22] we already know

that for each s > k we can find a solid torus of boundary slope s inside N±

k . As

explained above M±

k = S3 \N±

k is a Seifert Fibered space and has a degree 6 cover,

M̃±

k , diffeomorphic to S1 times a punctured torus (Seifert surface of K) so that the

S1 fibers are the lift of the longitudal rulling curve downstairs and (via an isotopy of

the pullback of the tight contact structure to M̃±

k ) they can be made Legendrian with

twisting number −6k + 1 with respect to the product framing. Let A be a T 2 × I

layer between ∂N±

k and ∂N . Clearly A is the union of the basic slices of the same

sign as the tight contact structures on N±

k are universally tight. Observe that we

can always thicken N to N±

k and hence S1 fibers of a 6-fold cover M±

k = S3 \N still

has maximal twisting −6k + 1. Suppose now, we can thicken N further to N±

k′ with

k′ < k. This would imply now in the cover we have a Legendrian curve which is

isotopic to a S1 fiber with twisting tw > −6k + 1. On the other hand, by gluing a

solid torus D2×S1 to M̃±

k we get T 3 and extend the contact structure so that all the

S1 fibers are Legendrian with twisting exactly −6k+ 1 and the classification of tight

contact structures on T 3 implies that −6k + 1 is maximal twisting number. Hence

we get a contradiction which finishes the proof of the first statement.

Proposition 4.2.2. Let N be a solid torus in N±

k with standard convex boundary

having dividing slope s 6∈ [k,∞). Then N will thicken to the solid torus N1 (which
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is a standard neighborhood of the maximal Thurston-Bennequin invariant Legendrian

(2, 3)-torus knot).

Proof. Given such a torus N we know from the construction and discussion in Sub-

section 4.1 that we can thicken N to a solid torus N ′ whose boundary is convex

with two dividing curves of slope ∞. Note that N ′ is the standard neighborhood

of a Legendrian (2, 3)-torus knot, say L, which obtained by stabilizing the maximal

Thurston-Bennequin invariant Legendrian (2, 3)-torus knot once and by being a stan-

dard neighborhood it is has a unique tight contact structure on it. Moreover, since

the (2, 3)-torus knot is Legendrian simple, all non-maximal tb invariant Legendrian

(2, 3)-torus knot, in particular L, destabilize to the maximal tb invariant Legendrian

(2, 3)-torus knot. In other words N ′ thickens to maximally thickened neighborhood

N1.

We are now ready to establish the main results stated in the introduction con-

cerning partially thickenable tori.

Proof of Theorem 1.3.2. The statements in the theorem just collect the facts from

Proposition 4.2.1 and Lemma 2.2.2.

Proof of Corollary 1.3.3. For statement (1) notice that if n ≤ s < n+1 then a convex

torus with two dividing curves of slope s will lie inside one of the N±
m for m = 2, . . . n

or N1. From the classification of the N±
m we know there is a convex torus with two

dividing curves and infinite dividing slope inside each of the N±
m and it will cobound

with ∂N±
m a unique basic slice, [22]. Moreover there are two distinct such tori in N1

and each of these two will cobound with ∂N1 a unique basic slice. Inside a basic slice

there is a unique, up to contactomorphism, convex torus of slope s. Thus given any

convex torus T with two dividing curves of slope s we can use this data to construct

a contactomorphism of S3 taking T to one of the tori described above. Then the
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discussion in Subsection 2.4.2 gives a contact isotopy from T to one of these tori. As

there are 2n such tori this establishes statement (1) of the theorem.

The other statements in the corollary have analogous proofs.
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Chapter V

LEGENDRIAN AND TRANSVERSE CABLES OF THE

POSITIVE TREFOIL

In the next two subsections we state and prove the precise classification theorems

that lead to the qualitative results in Theorem 1.2.1 and 1.2.2.

Theorem 5.0.3. Let K be the (2, 3)-torus knot. Then the (r, s)-cable of K, K(r,s),

is Legendrian simple if and only if s
r
6∈ (1,∞), and the classification of Legendrian

knots in the knot type K(r,s) is given as follows.

1. If s
r
∈ (0, 1] then there is a unique Legendrian knot L ∈ L(K(r,s)) with Thurston-

Bennequin invariant tb(L) = rs+s−r and rotation number r(L) = 0. All others

are stabilizations of L.

2. If s
r
< 0, then the maximal Thurston-Bennequin invariant for a Legendrian

knot in L(K(r,s)) is rs and the rotation numbers realized by Legendrian knots

with this Thurston-Bennequin invariant are

{±(r + s(n+ k)) | k = (1 + n), (1 + n)− 2, . . . ,−(1 + n)},

where n is the integer that satisfies

−n− 1 <
r

s
< −n.

All other Legendrian knots L ∈ L(K(r,s)) are stabilizations of these. Two Leg-

endrian knots with the same tb and r are Legendrian isotopic.
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3. If 1 < s
r
< ∞, s > r > 1, then K(r,s) is not Legendrian simple and has the

following complete classification. See Figure.

(a) There are exactly 2n, n =
⌊
s
r

⌋
, pairwise Legendrian non-isotopic maximal

Thurston-Bennequin representatives Li
± ∈ L(K(r,s)), i = 1, 2, ..., n, with

tb(Li
±) = rs and r(Li

±) = ±(s− r)

(b) If r 6= 1 then there are exactly two non-destabilizable non-maximal Thurston-

Bennequin representatives K± ∈ L(K(r,s)) with

tb(K±) = rs− |r(n+1)− s| and r(K±) = ±(s− r+ |r(n+1)− s|) = ±rn

(c) Every other L ∈ L(K(r,s)) is a stabilization of one of K+, K−, L
i
+ or Li

−.

(d) Ss−r
+ (L1

−) = Ss−r
− (L1

+) but S
s−r
+ (Li

−) is not Legendrian isotopic to Ss−r
− (Li

+)

for i = 2, ..., n.

(e) Sm−n
− (K−) = Sm

− (Li
−) and Sm−n

+ (K+) = Sm
+ (Li

+).

(f) Sj
−(K−) is not Legendrian isotopic to Sj+n

− (Li
−), similarly Sj

+(K+) is not

Legendrian isotopic to Sj+n
+ (Li

+) for j = 1, ...,m and i = 1, 2, ..., n.

(g) Se
+(K−) is not Legendrian isotopic to Se

+S
n
−(L

i
−) and Se(K+) is not isotopic

to SeSn
+(L

i
+) for all e ∈ Z>0. Also Sn+1

+ (K−) is not isotopic to Sn+1
− (K+).

(h) Se
+(S

j
−K−) is not Legendrian isotopic to Se

+S
j+n
− (Li

−) and Se(Sj
+K+) is not

isotopic to SeSj+n
+ (Li

+) for all e ∈ Z>0 and j = 1, 2, ...,m− n.

Note that by Theorem 2.4.1, Items 3d- 3h of Theorem 5.0.3 yield the following

Theorem 5.0.4. Let K be the (2, 3)-torus knot. If s
r
6∈ (1,∞) then K(r,s) is trans-

versely simple and all transverse knots are stabilizations of the one with maximal

self-linking number rs+ s− r.

If s
r
> 1 and s

r
∈ [n, n + 1) for a positive integer n then K(r,s) is not transversely

simple and has the following classification.
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1. The maximal self-linking number is rs+ s− r, and there is a unique transverse

knot in T (K(r,s)) with this self-linking number.

2. There are n−1 distinct transverse knots in T (K(r,s)) that do not destabilize and

have self-linking number rs+ r − s.

3. If s
r
6= n then there is a unique transverse knot in T (K(r,s)) that does not desta-

bilize and has self-linking number rs+ r − s− 2|(n+ 1)r − s|.

4. All other transverse knots in T (K(r,s)) destabilize to one of the ones listed above.

5. None of the transverse knots listed above become transversely isotopic until they

have been stabilized to have self-linking number rs − s − r. There is a unique

transverse knot in T (K(r,s)) with self-linking number less than or equal to rs−

s− r.

We note that by Theorem 1.1.1 we get that if r, s are relatively prime integers

with

r

s
=

1

s/r
> w(K) = 1,

then K(r,s) is Legendrian simple. Moreover, by Theorem 1.1.2 we get that if r, s are

relatively prime integers with s > 1 and

r

s
=

1

s/r
< lw(K) = 0,

then K(r,s) is also Legendrian simple.

Hence, we left to classify all non-simple cables. We follow the standard approach

to classifying Legendrian knots used above.

• Identify the maximal Thurston-Bennequin invariant of the knot type and classify

Legendrian knots realizing this:

Lemma 5.0.5. tb(K(r,s), C) = rs and rot(L) = ±(s − r) where L ∈ L(K(r,s)) with

tb(L) = tb(K(r,s)).
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tb=rs

rs-m

rs-r

rot= -(s-r) (s-r)
- sl=rs+s-r-

rs-s+r

rs-s+r-2m

rs-s-r

n

Figure 10: The image of L(K(r,s)) → Z2 : L 7→ (r(L), tb(L)) for non-simple cablings
of the positive trefoil with s

r
∈ (n, n + 1) on the left and T(K(r,s)) → Z : T 7→ sl(T )

on the right. The number of Legendrian knots realizing each point in Z2 whose co-
ordinates sum to an odd number is indicated in the figure. The concentric circles
stand for Legendrian knots in L(K(r,s)) that have the same (r, tb) but pairwise Leg-
endrian non-isotopic. The red circles stands for the non-destabilizable, non-maximal
representatives where n =

⌊
s
r

⌋
, m = |

⌈
s
r

⌉
• s

r
|.

Proof. One way of the tb computation is the adaptation of Lemma 3.2.2. But we

include another relatively easier proof for the cables with s > r > 1. Observe that by

assumption, the cabling coefficient is sufficiently negative; i.e. r
s
< ω(K). Hence one

can find Legendrian representatives in L(K(r,s)) which appear as Legendrian divides

on a convex torus parallel to ∂N , where N is any solid torus of maximal thickness

representing K and its boundary is convex. Hence tb(K(r,s)) ≥ rs by (2). For the

converse, assume tb(K(r,s)) > rs. That means there is an L in L(K(r,s)) with tb(L) =

rs + 1. Now by attaching a 2-handle to D4 = ∂S3 along L with framing rs, we

obtain a Stein manifold W . It is well known that the boundary 3-manifold is ∂W =

S3
L(rs) = S3

K(r/s)#L(s, r) where K is in L(K). Obviously there is a 2–sphere S in

S3
L(rs) = S3

K(r/s)#L(s, r). On the other hand, a theorem of Eliashberg in [6] claims

that if Stein 4–manifold W has an embedded 2-sphere in ∂W , then there must be an
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embedded 3–ball D in W such that ∂D = S. We prove now that this is simply not

possible. Hence get a desired contradiction. Assume there is such a ball, then there are

essentially two posibilities for W . Either W has a 1-handle, i.e. W = W ′∪1-handle or

W is the boundary sum of two 4– manifolds, say W = W1\W2. The former possibility

is imposible as this would imply that our simply connected W has H1(W ) 6= 0. The

latter possibility is also impossible as otherwise a simple Mayer-Vietoris argument

(H2(W1) ⊕H2(W2) ∼= H2(W )) would imply that one of the summands, say W1, has

H2(W1) = 0. Recall ∂W = S3
K(r/s)#L(s, r). Let ∂W1 = L(s, r) but long exact

sequence of the pair (W1, ∂W1)

H2(∂W1) → H2(W1) → H2(W1, ∂W1) → H1(∂W1) → H1(W1) → 0

gives

H2(W1, ∂W1) ∼= H1(∂W1) ∼= Zs

and recall by the assumption that s > 1. On the other hand first by the Poincare

duality, then the Universal coefficient theorem we get that

H2(W1, ∂W1) ∼= H2(W1) ∼= H2(W1) = 0

Therefore, with this contradiction in hand we conclude that tb(K(r,s)) = rs.. Note

that the possibility ∂W1 = S3
K(r/s) can be handled similarly as r > 1.

Now we compute the rotation number associated to maximal tb representatives.

See Figure 5 for following computation.

Take the thickened tori T 2 × [1, 2] such that

1. T1.5 = ∂N (K) and s (ΓT1.5) =
s
r
and L(r,s) ⊂ ∂N (K) is a Legendrian divide

2. s (ΓT1) = ∞ and s (ΓT2) = k and T 2 × [1, 1.5] ⊂ ∂N (K)

Clearly T 2 × [1, 2] is a basic slice and there are two possible tight contact structures
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  1/0 s/r
 
k

T12 1.5TT

A

A'

Figure 11: T 2 × I

([22]) that are distinguished by their relative Euler class. We also have

PD(e (ξ)) = ∓




1

k


−




0

1


 = ∓




1

k − 1


 . (7)

Since both tight contact structures are universally tight, it follows from the clas-

sification ([22], [21]) that such tight contact structure can be obtained by evaluating

PD(e(ξ)) on T 2 × [1, 1.5] and T 2 × [1.5, 2] respectively and by doing this we get

∓







r

r


−




0

1





 = ∓




r

s− 1


 (8)

∓







1

k


−




r

s





 = ∓




1− r

k − s


 (9)

We need to know what rot (µ2) and rot (λ2) are to compute rot (L)

• rot (µ2) = rot (µ1)+〈e (ξ) , A〉 = 0∓(s− 1) where A is annulus between ∂–slope

∞ solid tori and ∂–slope s
r
solid tori.

Moreover by using innermost solid tori in Figure 3 we get

• rot (λ2) = rot (λ1) + 〈e (ξ) , A〉 = rot (λ1) ∓ r where A′ is annulus between

∂–slope ∞ solid tori and ∂–slope s
r
solid tori.
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By using Equation (2.7.2) we get

rot (L) = srot (λ1)± sr + r(±(s− 1)) = srot (λ1)± r =





±(s+ r)

±(s− r)

Observe that the second equality is because the solid tori with ∂–slope ∞ is the

standart neighborhood of K ∈ L(K) with tb = 0 and rot = ±1, and hence we have

rot (λ1) = ±1.

By a careful analysis of the signs in (4.2) and (4.3) above, one can determine that

r(L) = ±(s − r). We may alternatively rule out the cases ±(s + r) by the following

easy calculation. Recall that the Euler characteristic for the Seifert surface of cabling

is

χ(L) = sχ(K) + r − rs = −rs− s+ r.

Now by the Bennequin inequality [2], [10] we have

tb+| r | ≤ rs+ s− r

putting tb = rs in this inequality we get that r = ±(s− r) as claimed.

We know give classification of maximal Thurston-Bennequin invariant knots in

L(K(r,s)). If K ∈ L(K(r,s)) with tb(K) = rs then K sits on a convex torus with

dividing slope s
r
.

Lemma 5.0.6. There are exactly 2n pairwise Legendrian non-isotopic maximal tb

representatives in L(K(r,s)), call L
i
±, which have r(Li

−) = −(s−r) and r(Li
+) = (s−r)

where n < s
r
< n+ 1; i = 0, 2, ..., n− 1.

Proof. We separate the proof into the three cases.

Case 1: 1 < s
r
< 2

If L ∈ L(K(r,s)) with maximal tb, then it can be realized as a Legendrian divide on

the boundary of a solid torus N s
r
representing K with slope(ΓN s

r
) = s

r
and #ΓN s

r
= 2.
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Any such solid torus can be thickened to N1 with boundary slope 1, which is the

standard neighborhood of K ∈ L(K) with maximal Thurston-Bennequin number and

hence carries a unique tight contact structure. On the other hand, by classification

of tight contact structures on solid tori, N s
r
has two tight contact structures (both of

them are universally tight). Once the extension to N1 is determined the complement

S3\N1 is unique up to contact isotopy as L(K) is Legendrian simple. Hence we

have at most two Legendrian representatives at maximal tb for L(K(r,s)). On the

other hand the rotation number computation in Lemma 5.0.5 shows, indeed, there

are exactly two Legendrian representatives at maximal tb which are distuinguished

by their rotation numbers. This finishes the proof of Case 1.

Case 2: 2 ≤ n ≤ s
r
< n+ 1.

We have n (including the maximally thickened solid torus, N1) non-thickenable

solid torus outside of slope s
r
. Let Li

± be a maximal tb representative of L(K(r,s))

which can be realized as a Legendrian divide on partially thickenable solid tori ∂N i
s
r
,

i = 1, 2, ..., n that thickens to Ni but not further. By Theorem 4.2.1, we have n

different partial thickenings. There are two universally tight contact structures on

each N i
s
r
and Ni. By partial thickenning of each N i

s
r
to Ni, we get at most 4 Legendrian

representatives of L(K(r,s)) at maximal tb. But as we explained in the last part of

Lemma 5.0.5 two of them are rule out and we get 2 Legendrian representatives,

call them Li
±. If we apply Claim 5.0.7 below to each Li

±, we get 2n maximal tb

representatives in L(K(r,s)) which finishes the proof of Lemma 5.0.6.

Claim 5.0.7. Se
+(L

j
−) and Se

+(L
i
−) are not Legendrian isotopic. Similarly Se

−(L
j
+)

and Se
−(L

i
+) are not Legendrian isotopic for any positive integer e. Consequently, Li

−

is not Legendrian isotopic to Lj
−, and similarly Li

+ is not Legendrian isotopic to Lj
+

whenever j 6= i = 1, 2, ..., n.

Proof. Observe that Se
+(L

i
−) (for e >> 0) can be realized on ∂Ni as a non-efficient

rulling curve. On the other hand Se
+(L

j
−) can be realized on ∂Nj. Now let A′ =
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∂Ni\S
e
+(L

i
−) and A = ∂Nj\S

e
+(L

j
−) and suppose Se

+(L
j
−) is Legendrian isotopic to

Se
+(L

i
−), then such isotopy can be considered as an isotopy from A′ to A. Now

by Isotopy Discretisation technique [24], Lemma 3.10, there is a sequence of bypass

attachments that starts at A′ and end at A. Observe that there are no non-trivial

bypass attachments from the outside as ∂Ni is non thickenable. From the inside,

however, we can have non-trivial bypass attachments but any such bypass will result

a slope t ∈ (i,∞]. It is not difficult to see that t /∈ ( s
r
,∞] because of (tb, rot)-count

(as in the proof of Lemma 5.0.13). If t ∈ [i, s
r
) and L̃ is a Legendrian curve of slope

s
r
on T̃ with rot(L) = rot(Se

+(L
i
−)), then, by Theorem 4.2.1, any bypass attachments

to Ã will give a torus T ′ with slope(ΓT ′) ∈ [i, s
r
). Hence we cannot reach A′. This

contradiction shows that Se
+(L

j
−) and Se

+(L
i
−) are not Legendrian isotopic whenever

and j 6= i = 1, 2, ..., n.

• Identify and classify the non-destabilizable, non-maximal Thurston-Bennequin Leg-

endrian knots in L(K(r,s)) and then show the rest destabilize to one of these or a

maximal Thurston-Bennequin Legendrian knot:

Let Nk be the non-thickenable solid tori representing K that were constructed in

Chapter 4.

Lemma 5.0.8. Let K be a Legendrian rulling curve of slope s
r
on N±

k . The knot K

does not admit any destabilization. Since K has twisting number t(K, C) = |(n+1)• s
r
|,

it is a non-maximal tb representatives of L(K(r,s)). Also there are exactly two of them

with the following classical invariants

tb(K±) = rs−

∣∣∣∣(n+ 1) •
s

r

∣∣∣∣ = rs− (n+ 1)r − s,

r(K±) = ±(s− r +

∣∣∣∣(n+ 1) •
s

r

∣∣∣∣) = ±rn.

Proof. Suppose K admits a destabilization. Then there is a K ′ ⊂ Σ′ such that

S±(K
′) is also in Σ′ and isotopic to K. Recall in S3 Legendrian isotopy is equivalent
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to ambient isotopy [11]. Hence an isotopy from S±(K
′) ⊂ Σ′ to K extend to a global

isotopy Ψt such that Ψ1(S±(K
′)) = K. Now set Σ = Ψ1(Σ

′). By assumption Σ both

contains S±(K
′) = K and a bypass for it. Moreover, Σ is topologically isotopic to

∂N(n+1). We may isotop Σ to ∂Nn+1 relative to K which is equivalent to isotoping

the annulus A = ∂Nn+1 − K to A′ = Σ − K. By Isotopy Discretisation technique

[24], Lemma 3.10, such an isotopy can be discritized, i.e. we can get from Σ to ∂Nn+1

by a sequence of bypass attachments. There may be two kind of bypass attachments

to A, either from the outside or from the inside. We show in either case the only

bypass attachments are triavial ones. First of all, since Nn+1 is non thickenable there

cannot be any nontrivial bypass attachment onto A from the outside. On the other

hand any bypass attachments from the inside will increase the slope of A and since

the slope s
r
is shilded by an edge from a slope greater than n+1, the new dividing set

will have more intersection with boundary rulling curve K of slope s
r
but this is not

possible. Hence we cannot change the boundary slope of A and hence there cannot

be an isotopy from A to A′ which finishes the first part of the proof.

Secondly, we want to compute the classical invariants; tb computation is clear by

Equation (2). For rotation number, on the other hand, first by Equation (2.7.2) we

have

rot(K) = r · rot(∂D) + s · rot(∂Σ)

where D is convex meridional disk on Nk, which has rot = ±n as the universally

tightness of contact structures on Nk implies all the bypasses are the same sign, on

the other hand Σ is convex Seifert surface of longitudal curve (which is isotopic to

the core curve of Nk ) on ∂Nk and rot(∂Σ) = 0 as Nk is non thickenable, there is

no boundary parallel dividing arcs. Hence we get rot(K) = ±(rn) which finishes the

proof.

Lemma 5.0.9. The only non-destabilizable representatives of L(K(p,q)) are Li
± and

K± from Lemma 5.0.6 and Lemma 5.0.8, respectively.

62



Proof. Let K be a non-destabilizable representative of L(K(r,s)). We can place K on

a convex torus Σ = ∂N(K). Let slope(ΓΣ, C) = s. Now s ∈ [1,∞]∪ [−∞, 0) We claim

that the only boundary slope that the convex torus Σ can have is either s
r
or (n+1).

All the other cases we show that there is a convex torus Σ′ isotopic to Σ = ∂N(K)

and disjoint from it and | s
r
•ΓΣ′ | < | s

r
•ΓΣ|. Then by applying the imbalance principle

([22]) to the annulus A in between Σ and Σ′ with ∂A is Legendrian rulling curve of

slope s
r
we show that K admits a destabilization which is excluded by assumption.

First of all observe that if s = s
r
, then K is Legendrian divide and hence we are in

the situation of Lemma 5.0.6. Thus we can take K as Legendrian rulling curve on

Σ and K intersect ΓΣ efficiently, otherwise we get an immediate destabilization. If

s = k + 1, then we are in situation of Lemma 5.0.8 and now we show these are the

only boundary slopes for Σ = ∂N(K). To this end, if s ∈ [1, s
r
), then there is a convex

torus Σ′ ⊂ N(K) with slope(ΓΣ′ , C) = s′ = s
r
. If s ∈ ( s

r
, n+1) , then the same convex

torus Σ′ (which in this case is outside of N(K), but it is possible as N(K) can be

thickened to solid torus with boundary slope s
r
) can be used to get a destabilization

for K. Next, if s ∈ (n+ 1,∞), then there is a convex torus Σ′ ⊂ N of slope ∞.

n + 1 < s < ∞ means s = l




1

n+ 1


+m




0

1


 =




l

ln+ l +m


 where

m, l > 0. Then,

∣∣∣∣
s

r
• s

∣∣∣∣ >
∣∣∣∣sl − rln− rl − rm

∣∣∣∣ >
∣∣∣∣rm

∣∣∣∣ >
∣∣∣∣r
∣∣∣∣ =

∣∣∣∣
s

r
•
1

0

∣∣∣∣.

The second strict inequality is because s
r
< k + 1 and hence sl − rln− rl < 0. Thus

we get a destabilization for K. Next, if s ∈ (−∞, 0), then there is a convex torus Σ′

of slope ∞ outside of N . Finally, if s = ∞, then in this case the solid torus N(K)

with boundary slope ∞ is the standard neighborhood of once stabilized maximal tb

representative of underlying knot type K which is Legendrian simple by assumption.

Now take the convex torus Σ′ with s(ΓΣ′) = 1 (which is isotopic and disjoint from

∂N(K)) and we are done.
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• Determine which stabilizations of the K± and Li
± are Legendrian isotopic:

The stabilizations of the L1
± are shown to be Legendrian isotopic when they have

the same classical invariants

Lemma 5.0.10. Ss−r
+ (L1

−) = Ss−r
− (L1

+). On the other hand Ss−r
+ (Li

−) is not Legen-

drian isotopic to Ss−r
− (Li

+) where i = 2, 3, ..., n and n < q
p
< n+ 1.

Proof. For the first part observe that L1
± are Legendrian divides on ∂N s

r
and N s

r
can

be thickened all the way to N1 (which is the maximally thickened solid torus repre-

senting K ∈ L(K) with tb(K) = tb). Simple tb count shows Ss−r
+ (L1

−) and Ss−r
− (L1

+)

are Legendrian rulling curves on ∂N1 and now by using Legendrian simplicity of un-

derlying knot types and the 1-parameter family of rulling curves we get that Ss−r
+ (L1

−)

and Ss−r
− (L1

+) are Legendrian isotopic. On the other hand, observe that for each i,

Li
− and Li

+ are Legendrian divides on the same partially thickenable solid torus N
s
r

i

and distuinguished by their rotation numbers. Moreover as a result of Lemma 5.0.5

we see, Ss−r
+ (Li

−) and Ss−r
− (Li

+) are also can only be put (as a non-efficient curve)

on N
s
r

i . They have the same tb and both have rot = 0. But now since stabilization

operation is well defined, i.e. S+S− = S−S+, Claim 5.0.7 results that Ss−r
+ (Li

−) and

Ss−r
− (Li

+) are not Legendrian isotopic for i = 2, 3, ..., n.

Next we understand the relationship between the stabilizations of K± and Li
±;

Lemma 5.0.11. Ss−rn
− (K−) = Sr

−(L
i
−) and Ss−rn

+ (K+) = Sr
+(L

i
+) where i = 1, 2, ..., n

and n < s
r
< n+ 1 .

Proof. Observe that since K− is a Legendrian rulling curve on Nn+1, its s − rn-

times negative stabilizition, Ss−rn
− (K−), is a rulling curve on slope ∞ solid torus

N∞ ⊂ Nn+1. On the other hand, as in Lemma 5.0.6, for each i, Li
− is a Legendrian

divide on N i
s
r
and Sr

−(L
i
−), as a Legendrian rulling, also sits on a solid torus of slope

∞, N∞ ⊂ N i
s
r
. But N∞ is the standard neighborhoods of Legendrian knot K ∈ L(K)
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with tb(K) = 0 and such a neighborhood is unique up to isotopy. Moreover by

using Lemma 5.0.6 and Formula (2.7.2), one can see the associated rotation number

is rot(K) = −1. Now since K is Legendrian simple we get that Ss−rn
− (K−) can be

isotoped to Sr
−(L−) through the other Legendrian rullings on the . Similarly we obtain

Ss−rn
+ (K+) = Sr

+(L
i
+).

Lemma 5.0.12. Sj
−(K−) is not Legendrian isotopic to Srn+r−s+j

− (Li
−), similarly Sj

+(K+)

is not Legendrian isotopic to Srn+r−s+j
+ (Li

+) for any i = 1, ..., n and j = 1, ..., s− rn.

Proof. Observe that for each i Srn+r−s
− (Li

−) is a Legendrian rulling on Nk
s
r
which

admits a (partial) thickening and all other stabilizations Srn+r−s+j
− (Li

−), for j =

1, ..., s − rn, are Legendrian rulling curve on some solid torus Sj (they exist as Nk
s
r

admits a thickening) with ∂Sj are convex and slope(Γ∂Sj
) = sj such that sj < n+ 1.

On the other hand K− is Legendrian rulling curve on N ′
k which cannot be thickened.

We claim that Sj
−(K−), for j = 1, ..., s − rn, cannot sit on a convex torus S ′

j with

boundary slope sj < n + 1. Assume there are such torus then again by Isotopy Dis-

cretization technique [24], Lemma 3.10, such an isotopy can be discritized,i.e, there

should be an isotopy which is given by sequence of bypass attachments from the an-

nulus A = ∂N ′
k\K− to A′ = ∂S ′

j\S
j
−(K−). This is simply impossible as any possible

bypass attachment from the inside would have to result a boundary slope greater than

n + 1 and an edge on the Farey teselation to K−, the only such slope is n + 1. On

the other hand any bypass attachments from the outside would result a thickening of

N ′
k but it is non-thickenable. Hence we cannot reach A′.

Finally we want to give the proof of the last two statements in Theorem 5.0.3

part(a) and hence proof of Theorem 5.0.4.

Lemma 5.0.13. Se
+(K−) is not Legendrian isotopic to Se

+(S
rn+r−s
− (L−)) and Se(K+)

is not isotopic to SeSrn+r−s
+ (L+) for all e ∈ Z>0. Also Sr

+(K−) is not isotopic to

Sr
−(K+).
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Proof. Recall from Lemma 5.0.9 that K− is a Legendrian ruling curve on the convex

torus Σk = ∂N ′
k(K), where #ΓΣk

= 2 and s(ΓΣk
) = k + 1. Now by a finger move

we can create nonefficient intersection of K− with ΓΣk
and hence realize all its (say

positive) stabilizations, call K = Se
+(K−), on Σk. Thus if we show that any other

convex torus Σ containing K and isotopic to Σk has slope k+ 1, then by the Lemma

5.0.9 we would get that Se
+(K−) is not Legendrian isotopic to Se

+(S
rk+r−s
− (Li

−)) for all

e ∈ Z>0. Observe that the creation of nonefficient intersections of K− with ΓΣk
that

we mentioned above geometrically corresponds to having an annulus A = Σ\K so

that its dividing set contains exactly k negative (and respectively positive) boundary

parallel arcs on the left (and repectively on the right) hand side edge. Now assume Σ

is another convex torus containingK. Then we can use the other incompressible torus

in Seifert fibered space to topologically isotop Σ to Σk relative to K. Now we want to

show that under any isotopy relative to K the slope of the dividing set remains the

same. By Isotopy Discretization technique [24], Lemma 3.10, such an isotopy can be

discritized, that is, the basic unit for this isotopy is a bypass attachment. Now we

prove that all potential bypasses are trivial by induction. To this end observe that,

we already know that K can be placed on Σk. We assume inductively that Σ satisfies

the following assumptions:

• Σ is a convex torus which contains K and satisfies 2 ≤ #ΓΣ ≤ 2n + 2 and

s(ΓΣ) = n+ 1.

• Σ is contained in a I-invariant T 2 × I with s(ΓT0) = s(ΓT1) = n + 1 and

#ΓT0 = #ΓT1 = 2

• There is a diffeomorphism of S3 that takes the above I-invariant neighborhood

T 2 × I to standart I-invariant neighborhood of Σ and matches up their com-

plement.
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Hence it is enough to show that under any bypass attachment the above condi-

tions are preserved.

We will use the method in Lemma 5.0.8 and Lemma 5.0.10 to show that the

first condition is preserved. To this end, suppose Σ satisfy the above hypothesis

and consider the annulus A = Σ − K. First of all there cannot be any nontrivial

bypass attachments (i.e. which changes the slope of the attached convex torus or

increases the number of dividing curves) from the outside as such a bypass will result

a thickening for our non-thickenable solid torus N ′
k(K). On the other hand any non-

trivial bypass attachment from the inside will result a convex torus Σ′ with boundary

slope s′ ∈ (n + 1,∞]. Now recall from Lemma 5.0.9 that there is a convex torus Σ′′

with boundary slope, s′′ = ∞ and #ΓΣ′′ = 2, such that |K ′′ ∩ ΓΣ′′| ≤ |K ′ ∩ ΓΣ′ |

where K ′ and K ′′ are Legendrian ruling curves, parallel and disjoint from K, on Σ′

and Σ′′, respectively. By applying the Imbalance Principle to annulus A in between

Σ′ and Σ′′ with ∂A = K ′ ∪ K ′′ we get bypasses disjoint from K. Hence we reduce

to the situation that K sits on a convex torus Σ′′ with boundary slope ∞. Now we

want to show that this is not possible. Recall that in Lemma 5.0.10 we showed that a

Legendrian rulling curve of slope s
r
on Σ′′ must be Sj

−(K−), for some positive integer

j, where K− is the non-maximal, non-destabilizable representative (since the convex

torus Σ′′ with boundary slope ∞ bounds a standard neighborhood of a Legendrian

knot in L(K) with tb = 0 and rot = −1). Hence K ⊂ Σ′′ must be a stabilization of

Sj
−(K−). On the other hand, tb(K) = tb(K−)−e and rot(K) = rot(K−)+e although

the last conclusion K = S±(S
j
−(K−)) gives tb(K) = S±(S

j
−(K−)) = tb(K−) − j − 1

and rot(K) = rot(K−)− j ± 1. This is a contradiction as tb and rot numbers do not

match. Therefore the first condition of the induction hypothesis is preserved. We

want to show that the second and the third conditions of the induction hypothesis

are preserved under bypass attachment. The argument comes from Lemma 6.8 in

[13] and we recall it for the sake of completeness. Suppose Σ′ is obtained from Σ by
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a non-trivial bypass attachment. We have already showed that Σ and Σ′ must have

the same slope. Hence this bypass may only change the number of dividing curves.

It either increases or decreases the number of dividing curves by 2 (cf. [22]). Now

there are two situations to handle. First suppose that Σ′ ⊂ N where ∂N = Σ and

also suppose Σ = T 2
1/2 inside T

2× [0, 1] which satisfies the induction hypotheses. Now

we will modify this thickened torus. First form the new T 2× [1/2, 1] by adjoining the

old T 2× [1/2, 1] and the thickened torus between Σ′ and Σ. We know that Σ′ bounds

a solid torus N ′ and by using the classification of tight contact structures on solid

torus, we can factor a nonrotative outer layer which gives the new T 2× [0, 1/2] for Σ′.

Now suppose that Σ′ ⊂ (S3\N). Observe that S3\N is the union of neighborhoods

N(F1) and N(F2) of F1 and F2, respectively (which are the core curves of genus

1 Heegaard splitting V1 ∪T V2 of S3), and the vertical annulus between N(F1) and

N(F2). Now by thickening N(F1) and N(F2) to their maximal thickness inside S3\N ′

and rounding the edges we get a convex torus in S3−N ′ parallel to Σ′ with #ΓΣ′ = 2

as F1 and F2 are outside of S3\N and their maximally thickened neighborhoods are

the standart neighborhoods N(L1) and N(L2), where Li, i = 1, 2 are the Legendrian

representatives of Fi, i = 1, 2 which maximize tb(Li) in S3−N , and L1∪L2 is isotopic

to F1 ∪ F2 . Hence we get a nonrotative outer layer T 2 × [1/2, 1]. Therefore this says

induction hypothesis preserved under any bypass attachment and this completes the

proof of the lemma.

Lemma 5.0.14. Se
+(S

j
−(K−)) is not Legendrian isotopic to Se

+(S
(rn+r−s)+j
− (L−)) and

Se(Sj
+(K+) is not isotopic to Se(S

(rn+r−s)+r
+ (L+)) for all e ∈ Z>0, j = 1, 2, ...s− rn.

Proof. The proof is a corollary of Lemma 5.0.12 and Lemma 5.0.13 above. Re-

call by Lemma 5.0.11 we have proved that Sj
−(K−) is not Legendrian isotopic to

S
(rk+r−s)+j
− (Li

−) for each j = 0, 1, 2, ...s − rk − 1. The reason was Sj
−(K−) can only

be obtained by putting K− on N ′
k as a Legendrian which intersect with Γ∂N ′

k
non-

efficiently exactly j-times. On the other hand S
(rn+r−s)+j
− (Li

−) sits on a convex torus
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Σ with s(ΓΣ) = s > n + 1. Now by the same argument we used in Lemma 5.0.13

we know any convex torus Σ′ containing Se
+(S

j
−(K−)) and isotopic to ∂N ′

k must have

slope k + 1. Moreover by using this we immediately get that Se
+(S

j
−(K−)) is not

Legendrian isotopic to Se
+(S

(rn+r−s)+j
− (Li

−)) for all e ∈ Z>0 and j = 1, 2, ..., s − rn.

The proof of the second statement is similar.

Proof of Theorem 1.2.1 and Theorem 5.0.3. Theorem 5.0.3 simply collects the results

from Lemma 5.0.5- 5.0.14. For Theorem 1.2.1 we can choose s
r
= kn+m(n−1)

k+m
. One

may easily check using Theorem 5.0.3 that L(K(r,s)) contains n− 1 Legendrian knots

L1, . . . , Ln−1 with maximal Thurston-Bennequin invariant (which will be rs in this

case) and rotation number s− r. It also contains one non-destabilizable knot L′ with

tb = rs − | s
r
· n| = rs − m and rotation number s − r + m. Moreover, one must

stabilize L′ positively k times before it becomes isotopic to a stabilization of one of

the Li.

Proof of Theorem 1.2.2 and Theorem 5.0.4. Theorem 2.4.1 tells us that the classifi-

cation of transverse knots is equivalent to the classification of Legendrian knots up

to negative stabilization. Thus the Theorem 5.0.4 is a corollary of Theorem 5.0.3.

Turning to Theorem 1.2.2 we see that choices similar to those in the previous proof

yield the desired result.

Proof of Theorem1.2.3. LetKi ∈ L(K(r,s)) denote Legendrian knots obtained in Item 3

of Theorem5.0.3 with tb(Ki) = rs−m and rot(Ki) = (s− r+m). Let’s (S3
+1(Ki), ξi)

denote contact +1-surgery along Ki in (S3, ξstd). Since all but one of Ki, say K1

(which is the non-destabilizable representative of L(K(r,s))), comes from the stabi-

lization, ξi) are overtwisted for all i 6= 1 for sure. But on the other hand, according

to Theorem 1 in [12], (S3
+1(Ki), ξi) are all contactomorphic manifolds. Hence ξ1 is

overtwisted, too. Moreover since all the Ki have the same classical invariants, all the
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ξi) are homotopic as 2-plane fields. Let (M, ξ) denote this common overtwisted mani-

fold. The Legendrian knots K ′
i’s are core curve of the surgery solid torus associated to

surgery on Ki and they have the same classical invariants (including the kot type) as

well. Moreover, K ′
i are Legendrian non-loose as M\K ′

i is contactomorphic to S3\Ki.

Finally, since Ki’s in S3 are distinct, by Theorem 2.13 in [11], the contact structures

on S3\Ki and hence M\K ′
i are distinct for all i. Therefore K ′

i are all distinct.
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Chapter VI

LEGENDRIAN AND TRANSVERSE CABLES OF THE

POSITIVE TORUS KNOTS OTHER THAN TREFOIL

We can now state the precise classification theorems for cables of general positive

(p, q)-torus knots.

Theorem 6.0.15. Let K be a (p, q)-torus knot with (p, q) 6= (2, 3). Let

I = {n ∈ Z : n > 1 and gcd(n, pq − p− q) = 1}

and

J = ∪n∈IJn

where Jn = (ecn, e
a
n) is the interval of influence for the exceptional slope en, Figure 12.

The Jn are all disjoint.

The classification of Legendrian knots in the knot type K(r,s) is then given as

follows.

1. If s
r
6∈ J then K(r,s) is Legendrian simple. Moreover, in this case we have the

following classification.

(a) If s
r
∈ (0, 1

pq−p−q
] then there is a unique Legendrian knot L ∈ L(K(r,s)) with

Thurston-Bennequin invariant tb(L) = rs+ s(pq− p− q)− r and rotation

number r(L) = 0. All others are stabilizations of L.

(b) If s
r
> 1

pq−p−q
or s

r
< 0, then the maximal Thurston-Bennequin invariant

for a Legendrian knot in L(K(r,s)) is rs and the rotation numbers realized

by Legendrian knots with this Thurston-Bennequin invariant are

{±(r+s(n+k)) | k = (pq−p−q−n), (pq−p−q−n)−2, . . . ,−(pq−p−q−n)},
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where n is the least integer bigger than r
s
. All other Legendrian knots

L ∈ L(K(r,s)) are stabilizations of these. Two Legendrian knots with the

same tb and r are Legendrian isotopic.

2. If s
r
∈ [ n

pq−p−q
, ean), then there is some m ≥ 0 such that 1

m−1
> s

r
> 1

m
and K(r,s)

is not Legendrian simple. The classification of Legendrian knots in K(r,s) is as

follows.

(a) There are exactly 2(pq − p− q −m) + 2 pairwise Legendrian non-isotopic

maximal Thurston-Bennequin representatives of L(K(r,s)), call them Lj
±

and K±. Then they satisfy tb(Lj
±) = tb(K±) = rs and the set of rotation

numbers realized by
{
Lj
± ∈ K(r,s)| tb(L

j) = tb(K(r,s))
}
is

{±(r + s(−m+ r(K)))|K ∈ L(K), tb(K) = m}

and

r(K±) = ±(r − s(pq − p− q)),

where m is the integer satisfiesm−1 < r/s < m and j = 0, 1, ..., pq − p− q −m− 1.

(b) Every other L ∈ L(K(r,s)) is either a stabilization of one of Lj
± or K±

where j = 0, 1, ..., pq − p− q −m− 1.

(c) If Lj0
± ∈ L(K(r,s)) with tb(Lj0

± ) = rs and rot(Lj0
± ) = ±(r − s(pq − p − q)),

then Se
+(L

j0
− ) is not Legendrian isotopic to Se

+(K−) and similarly Se
−(L

j0
+ )

is not Legendrian isotopic to Se
−(K+) for all e ≥ 0.

3. If s
r
∈ (ecn,

n
pq−p−q

), then there is some m ≥ 0 such that 1
m−1

> s
r
> 1

m
and K(r,s)

is not Legendrian simple. The classification of Legendrian knots in K(r,s) is as

follows.
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(a) Let L,L′ ∈ L(K(r,s)) with tb(L) = tb(L′) = tb(K(r,s)) = rs. Then L and

L′ are Legendrian isotopic if and only if r(L) = r(L′). We have precisely

2(pq−p−q−m) Legendrian representatives of L(K(r,s)) at tb distuinguished

by their rotation numbers. Moreover the set of rotation numbers realized

by
{
Lj
± ∈ K(r,s)| tb(L

j) = tb(K(r,s))
}
is

{±(r + s(−m+ r(K)))|K ∈ L(K), tb(K) = m} ,

where m is the integer satisfiesm−1 < r/s < m and j = 1, 2, ..., pq − p− q −m.

(b) There are exactly two non-destabilizable non-maximal Thurston-Bennequin

representatives K± ∈ L(K(r,s)) with

tb(K±) = rs− n and r(K±) = ±r(k − 1)

where n =
∣∣∣ k
pq−p−q

• s
r

∣∣∣ and k ≥ 0.

(c) Every other L ∈ L(K(r,s)) is either a stabilization of one of K+, K− from

Item (b) or one of Lj
+, L

j
− from Item (a).

(d) S
s(m−1)−r
− (Lj

−) = S
s(m−1)−r−n
− (K−) and S

s(m−1)−r
+ (Lj

+) = S
s(m−1)−r−n
+ (K+)

(e) Se
+(K−) is not Legendrian isotopic to Se

+S
n
−(L

j
−) and Se

−(K+) is not iso-

topic to Se
−S

n
+(L

j
+) for all e ∈ Z>0.

n/pq − p− q

ean

ecn

Figure 12: Given a rational number n
pq−p−q

= [a0; a1, ..., ak] with a0 ≥ 0 and the
other ai > 1, the numbers ean and ecn are determined in the Farey tessellation as
ean = [a0; a1, ..., an−1] and ecn = [a0; a1, ..., an − 1] with the convention that ean = ∞ if
k = 0

From this theorem we can easily derive the transverse classification.
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Theorem 6.0.16. Let K be a (p, q)-torus knot with (p, q) 6= (2, 3). Using nota-

tion from Theorem 6.0.15 we have the following classification of transverse knots in

T (K(r,s)).

1. If s
r
6∈ Jn for any n ∈ I then K(r,s) is transversely simple and all transverse

knots in this knot type are stabilizations of the one with self-linking number

rs− r + s(pq − p− q).

2. If s
r
∈ Jn for some n ∈ I then K(r,s) is not transversely simple. There is a

unique transverse knot T in this knot type with maximal self-linking number,

which is rs− r+s(pq−p− q). There is also a unique non-destabilizable knot T ′

in this knot type and it has self-linking number rs+ r− s(pq− p− q). All other

transverse knots in T (K(r,s)) destabilize to either T or T ′ and the stabilizations

of T and T ′ stay non-isotopic until they are stabilized to the point that their

self-linking numbers are

rs+ r − s(pq − p− q)− 2
(s
r
· ean

)

in the case of s
r
∈ [en, e

a
n), and

rs+ r − s(pq − p− q)− 2
(s
r
· ean −

s

r
· en

)

in the case of s
r
∈ (ecn, en).

6.1 Simple cables of the positive torus knots (other than

the trefoil)

We note that again by Theorem 1.1.1 we get that if r, s are relatively prime integers

with

r

s
=

1

s/r
> w(K) = pq − p− q,

then K(r,s) is Legendrian simple. By Theorem 1.1.2 we get that if r, s are relatively

prime integers with s > 1 and

s

r
=

1

s/r
< lw(K) = 0,
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then K(r,s) is also Legendrian simple. Moreover we have, contrary to the trefoil case,

infinitely many subdomains in ( 1
pq−p−q

,∞) such that for s/r in these domains the

K(r,s) is Legendrian simple. More precisely we have

Theorem 6.1.1. Suppose K is a positive (p, q)-torus knot with (p, q) 6= (2, 3). If r, s

are relatively prime positive integers with 0 < r
s
< w(K) = pq − p − q but s

r
6∈ J ,

where J is as in Theorem 6.0.15, then K(r,s) is also Legendrian simple. Moreover,

tb(K(r,s)) = rs and the set of rotation numbers realized by {L ∈ L(K(r,s))|tb(L) =

tb(K(r,s))} is

{±(r+ s(−n+ k)) | k = (pq− p− q−n), (pq− p− q−n)− 2, . . . ,−(pq− p− q−n)},

where n is the integer that satisfies

n− 1 <
r

s
< n.

All other Legendrian knots destabilize to one of these maximal Thurston-Bennequin

knots.

Proof. Establishing the classification of maximal Thurston-Bennequin Legendrian

knots in this knot type can be done exactly as in Chapter 4, except when s
r
∈ [en, e

a
n)

for some n not relatively prime to pq − p − q. If L is a Legendrian knot in the knot

type K(r,s) for such an s
r
6= en and L has maximal Thurston-Bennequin invariant,

then, as discussed above, L will sit as a Legendrian divide on a convex torus T in the

knot type K. Such a torus bounds a solid torus S that can be thickened to a solid

torus with convex boundary having two dividing curves of slope en. As mentioned in

Corollary 1.3.3, we see that this torus further thickens to N1. Thus the reasoning in

Theorem 3.6 in [13] applies. If L is a Legendrian knot in the knot type K(r,s) with

s
r
= en, then it again sits as a Legendrian divide on a convex torus T . If T is not

∂N±
n then according to Corollary 1.3.3 it will bound a solid torus that thickens to N1.

If T = ∂N±
n then since en 6∈ J , by assumption, we know gcd(n, pq − p − q) 6= 1 and
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hence T has more than two dividing curves. Below we show that we can find a torus

T ′, inside the solid torus T bounds, with two less dividing curves on which L also sits.

Of course this new torus will thicken to N1 and hence we are done as above. To find

T ′ notice that according to the classification of contact structures on thickened tori

we can find a convex torus T0 inside of S, the solid torus T bounds, with two dividing

curves of slope en. Let B = T0× [0, 1] be the thickened torus that T and T0 cobound.

Take a simple closed curve γ on T0 that intersects a curve of slope en one time. Let

A = γ × [0, 1] be an annulus in B running from γ on T0 to T . We can arrange that

∂A consists of ruling curves on T0 and T . Now if gcd(n, pq − p − q) > 2 then there

will be at least 2 non-adjacent bypasses on A for T . Thus one of them will be disjoint

from L. Pushing T across this bypass will result in the torus T ′ with fewer dividing

curves than T and on which L sits. Since we are considering (p, q)-torus knots notice

that pq− p− q is odd and thus gcd(n, pq− p− q) cannot be even, thus the condition

that gcd(n, pq − p− q) > 2 is satisfied.

We are left to show that any Legendrian knot with non-maximal Thurston-Bennequin

invariant destabilizes. Let K be a Legendrian knot in the knot type K(r,s) with

tb(K) < rs. We know that K can be put on a convex torus T that bounds a solid

torus S representing the knot type K. Let a be the dividing slope of T. If a > s
r

then there is a torus T ′ parallel to T inside S with dividing slope s
r
. We can use an

annulus that cobounds K and a Legendrian divide on T ′ to show that K destabilizes.

Now suppose that a < s
r
. If a ∈ In = [en, e

a
n) for some n then from Lemma 2.2.2 we

see that |a · s
r
| ≥ |ean · s

r
| with equality if and only if a = ean. Since a 6= ean we can

let T ′ be a torus inside S that is parallel to T and has dividing slope ean and use an

annulus between K and a ruling curve on T ′ to show K destabilizes. If a is not in

In = [en, e
a
n) for any n then from Theorem 1.3.2 we know there is a torus T ′ outside S

that is parallel to T and has dividing slope 1
pq−p−q

. Thus between T and T ′ we have

a convex torus T ′′ with dividing slope s
r
. As above we can use this torus to show K
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destabilizes.

6.2 Non-simple cables of the positive torus knots (other

than the trefoil)

To complete the proof of Theorem 6.0.15 we need to classify Legendrian knots in the

(r, s)-cable of the (p, q)-torus knot type K when s
r
∈ Jn for some n ∈ I. We do this

first for the case when s
r
∈ [en, e

a
n), and then for the case when s

r
∈ (ecn, en).

We follow the standard approach to classifying Legendrian knots in a given knot

type outlined in Chapter 2. For an example of classification picture see Figure 13.

An arbitrary cable of an arbitrary torus knot concerned in this section is going to

have a classification picture same as in Figure 13 except there might be extra peaks

distinguished by their rotation numbers.

Case 1. s
r
∈ [ n

pq−p−q
, ean)

Identify the maximal Thurston-Bennequin invariant of the knot type and classify Leg-

endrian knots realizing this:

tb=12

rot=

-
+

-
-5 -1 1 5

sl=17
-

Figure 13: The image of the (4, 3)-cable of the (2, 5)-torus knot under (r, tb) on the
left and under sl on the right. The diagonal arrows stands for ± stabilizations. The
red circle and the black dot at (r = −5, tb = 12) are Legendrian non-isotopic and
stay Legendrian non-isotopic under any number of positive stabilizations. Similarly
the red circle and the black dot at (r = 5, tb = 12) are Legendrian non-isotopic and
stay Legendrian non-isotopic under any number of negative stabilizations. Hence give
rise to transversely non-isotopic representatives in the same knot type at sl = 7

The computation of the maximal Thurston-Bennequin invariant is done in Lemma 3.1.2

as well as in Lemma 5.0.5
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• Construction of maximal Thurston-Bennequin invariant knots in L(K(r,s)):

Let N±
m be the non-thickenable solid tori representing K that were constructed

in Subsection 4.1. Recall N1 is a standard neighborhood of the maximal Thurston-

Bennequin invariant Legendrian (p, q)-torus knot L (and that there is only one N1

so the ± is ignored here). Inside N1 there are solid tori corresponding to stabilizing

L, (pq − q − p) − k times. The range of the rotation numbers for the Legendrian

(p, q)-torus knots represented by these tori is S = {(pq − p − q − k), (pq − p − q −

k)− 2, . . . ,−(pq− p− q− k)}. Denote these tori Sl for l ∈ S. Inside each Sl there are

two tori S±

l that come from positively or negatively stabilizing the Legendrian knot

corresponding to Sl. In the thickened torus Sl − S±

l there is a unique convex torus

T±

l with dividing slope s
r
. Let i = sl ± m where m = r − sk > 0 is the remainder.

Denote by Li a Legendrian divide on T±

l . We clearly have that tb(Li) = rs and the

computation in the proof of Lemma 3.8 in [13] (or similar to the one given below for

K±) gives that r(Li) = i.

Now consider the two tori N±
n . Inside each one there is a convex torus T± with

dividing slope s
r
. Let K± be a Legendrian divide on T±. Again it is clear that

tb(K±) = rs. Recall that from Lemma 2.7.2 we know that

r(K±) = r r(∂D) + s r(∂Σ)

where D is a meridional disk for T± with Legendrian boundary and Σ is a surface,

outside the solid torus T± that bounds, with Legendrian boundary on T±. If D′ and

Σ′ are the corresponding surfaces for ∂N±
n then we know from Lemma 4.1.4 that

r(∂D′) = ±(n−1) and r(∂Σ′) = 0. Thus the rotation number of an (r, s)-ruling curve

on ∂N±
n is ±r(n − 1). To compute the rotation number for the Legendrian divide

on T± we use the classification of tight contact structures on thickened tori, as given

in [22], and the fact that N±
n is universally tight. In particular, we can compute the
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relative Euler class e of the thickened torus cobounded by N±
n and T±:

P.D.(e) = ±((r, s)− (pq − p− q, n)) ∈ H1(T
2 × I;Z),

where P.D. stands for the Poincaré Dual and we are using the basis for H1 given by

the meridian and longitude. We can use this to compute the difference between the

rotation number of the (r, s) curve on ∂N±
n and on T± which is ±(r(s − n) − s(r −

(pq − p− q)). Thus we have that r(K±) = ±(s(pq − p− q)− r).

Classification of maximal Thurston-Bennequin invariant knots in L(K(r,s)):

If K ∈ L(K(r,s)) with tb(K) = rs then K sits on a convex torus with dividing

slope s
r
. Theorem 1.3.2 and Corollary 1.3.3 say that such a torus is one of the ones

considered when constructing K± and Li. Thus, a by now standard argument, see

[14] and Subsection 2.4.2 above, says the torus must be isotopic to one of the ones

used in those constructions from which we can also conclude that K is isotopic to one

of K± or Li.

• Prove all non-maximal Thurston-Bennequin invariant knots in L(K(r,s)) destabilize:

Let K be any Legendrian knot in L(K(r,s)) with Thurston-Bennequin invariant

less than rs. Let T be a torus bounding a solid torus S in the knot type K on which

K sits. Since tb < rs we know that we can perturb T relative to K so that it is

convex. If the dividing slope t of T is equal to s
r
then K intersects the dividing curves

inefficiently and we can find a bypass for K on T . Thus we can destabilize K. If t 6= s
r

then we have three cases to consider. Case one is when t 6∈ [em, e
a
m) for any m. In this

case Theorem 1.3.2 tells us that S can be thickened to a standard neighborhood of a

maximal Thurston-Bennequin knot in L(K). Thus there is a convex torus T ′ parallel

to T (either inside S or outside S depending on t) with dividing slope s
r
. We can use

an annulus between T and T ′ with boundary on K and a Legendrian divide on T ′

to find a bypass for K and hence K destabilizes. Case two is when t ∈ [em, e
a
m) for

m 6= n. Lemma 2.2.2 says that |t · s
r
| is strictly greater than | s

r
· eam| and | s

r
· ecm| (since
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t is on the interior of [ecm, e
a
m]). Thus there is a torus T ′ in S with dividing slope eam.

Using an annulus between K on T and a s
r
ruling curve on T ′ we find a bypass for

K and hence a destabilization. Finally in case three we consider t ∈ [en, e
a
n). In this

case we can find a torus T ′ as in case one to destabilize K.

• Determine which stabilizations of the K± and Lj are Legendrian isotopic:

Recall that Lj0
− and K− are Legendrian divides on Ns/r and Nk

s/r, respectively.

Since Nk
s/r is partially thickenable, i.e. we can thicken it to kth non-thickenable solid

tori Nk but not further, we can realize Se
+(K−) on non-thickenableNk as a Legendrian

rulling curve for some e > 0. Similarly Se
−(L

j0
− ) can be realized on thickenable Nk′

(it exisits because Ns/r can be thickened). Assume Se
+(K−) = Se

−(L
j0
− ), but then this

would imply that ∂Nk is isotopic to ∂Nk′ relative to Se
+(K−) = Se

−(L
j0
− ). In other

words the annulus A = ∂Nk−Se
+(K−) can be isotoped to A′ = ∂Nk′−Se

−(L
j0
− ) relative

to the boundary. By state transition technique introduced in [23], one can discritize

this isotopy such that each step is a bypass attachment either from the outside or

the inside. There are no nontrivial bypass attachment from the outside as Nk is non-

thickenable. On the other hand we could have bypasses from the inside. Assume such

a bypass exists, then we get a convex torus T1. By (tb, rot)-count (as in Claim 5.0.7)

shows that slope(ΓT1) ∈
[

k
pq−p−q

, s
r

)
. On the other hand by partial thickenability of

Nk
s/r, we conclude that any bypass atachment to T1 will result sequence of convex tories

Ti such that slope(ΓTi
) ∈

[
k

pq−p−q
, s
r

)
. Hence we cannot reach A′. This completes the

proof.

We now classify cables arise in the right portion of the interval influence around

en. As it will be explained below, the reason of non-simplicity for the cables that

can be realized in the right portion of the non-simple domain is very different than

the ones in the left portion of non-simple domains. For an example of classification

picture see Figure 14. An arbitrary cable of an arbitrary torus knot concerned in the

following case is going to have a classification picture same as in Figure 14 except the
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non-stabilizable, non-maximal representatives might have tb arbitrary less than tb.

Case 2. s
r
∈ (ecn, en)

• Identify the maximal Thurston-Bennequin invariant of the knot type and classify

Legendrian knots realizing this:

tb=15

rot=

-
+

-
-4 -2 2 4 sl=19

-

Figure 14: The image of the (5, 3)-cable of the (2, 5)-torus knot under (r, tb) on
the left and under sl on the right. The diagonal arrows stands for ± stabilizations
of Legendrian representatives. The red circles stands for the non-destabilizable non-
maximal Thurstaon-Bennequin representatives. Moreover the red circle and the black
dot at (r = −5, tb = 14) are Legendrian non-isotopic and stay Legendrian non-isotopic
under any number of positive stabilizations. Similarly the red circle and the black
dot at (r = 5, tb = 14) are Legendrian non-isotopic and stay Legendrian non-isotopic
under any number of negative stabilizations. Hence give rise to transversely non-
isotopic representatives in the same knot type at sl = 9

The computation of the maximal Thurston-Bennequin invariant is done in Lemma

3.1.2.

Construction of maximal Thurston-Bennequin invariant knots in L(K(r,s)):

This is identical to part of the construction in the previous case. Let N1 be

a standard neighborhood of the maximal Thurston-Bennequin invariant Legendrian

(p, q)-torus knot. InsideN1 there are solid tori corresponding to stabilizing L, (pq−q−

p)−k times. The range of the rotation numbers for the Legendrian (p, q)-torus knots

represented by these tori is S = {(pq−p−q−k), (pq−p−q−k)−2, . . . ,−(pq−p−q−k)}.

Denote these tori Sl for l ∈ S. Inside each Sl there are two tori S±

l that come from

positively or negatively stabilizing the Legendrian knot corresponding to Sl. In the

thickened torus Sl −S±

l there is a unique convex torus T±

l with dividing slope s
r
. Let
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i = sl ± m where m = r − sk > 0 is the remainder. Denote by Li a Legendrian

divide on T±

l . We clearly have that tb(Li) = rs and the computation in the proof of

Lemma 3.8 in [13] gives that r(Li) = i.

Classification of maximal Thurston-Bennequin invariant knots in L(K(r,s)):

If K ∈ L(K(r,s)) with tb(K) = rs then K sits on a convex torus with dividing

slope s
r
. Theorem 1.3.2 and Corollary 1.3.3 say that such a torus is one of the ones

considered when constructing the Li. Thus, a by now standard argument, see [14],

says the torus must be isotopic to one of the ones used in those constructions from

which we can also conclude that K is isotopic to one of Li.

• Identify and classify the non-destabilizable, non-maximal Thurston-Bennequin Leg-

endrian knots in L(K(r,s)) and then show the rest destabilize to one of these or a

maximal Thurston-Bennequin Legendrian knot:

Let N±
m be the non-thickenable solid tori representing K that were constructed in

Subsection 4.1.

Constructing the non-destabilizable Legendrian knots:

Consider the two tori N±
n . Let K± be a ruling curve of slope (r, s) on ∂N±

n . It is

clear that the twisting of the contact planes along K± with respect to the framing of

K± coming from ∂N±
n is

−
1

2

∣∣K± · Γ∂N±
n

∣∣ = −
∣∣∣s
r
· en

∣∣∣ .

Thus the Thurston-Bennequin invariant (that is the twisting with respect to the

Seifert surface for K±) is

tb(K±) = rs−
∣∣∣s
r
· en

∣∣∣ .

Just as in the previous case we compute

r(K±) = ±r(n− 1).

Proving all non-maximal Thurston-Bennequin invariant knots either destabilize or

have tb = rs− | s
r
· en| and sit as a ruling curve on ∂N±

n :
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Let L be a Legendrian knot in L(K(r,s)) with tb(L) < rs. Let S be a solid torus

representing the knot type K that contains L in its boundary. We know that the

twisting of the contact planes with respect to ∂S is negative so we can make ∂S

convex without moving L. If L does not intersect the dividing curves Γ∂S minimally

(for curves in their homology classes) then we will see a bypass for L on ∂S and hence

L destabilizes. So we can assume that L intersects Γ∂S minimally.

Now if the dividing slope t of ∂S is not en then there are three cases to consider.

Case one is when t 6∈ [em, e
a
m) for any m. In this case Theorem 1.3.2 tells us that S

can be thickened to a standard neighborhood of a maximal Thurston-Bennequin knot

in L(K). Thus there is a convex torus T parallel to ∂S (either inside S or outside

S depending on t) with dividing slope s
r
. We can use an annulus between T and ∂S

with boundary on L and a Legendrian divide on T to find a bypass for L and hence

L destabilizes. Case two is when t ∈ [em, e
a
m) for m 6= n. Lemma 2.2.2 says that |t · s

r
|

is strictly greater than | s
r
· eam| and | s

r
· ecm| (since t is on the interior of [ecm, e

a
m]). Thus

there is a torus T in S with dividing slope eam. Using an annulus between K on T

and a s
r
ruling curve on T we find a bypass for L and hence a destabilization. Finally

in case three we consider t ∈ (en, e
a
n). In this case we have that | s

r
· t| > | s

r
· en|. We

can thus use an annulus between L on ∂S and a s
r
ruling on ∂N±

n to find a bypass

for L.

If t = en then L is a ruling curve on ∂S. If S is not N±
n then S will thicken to N1

and thus we can again destabilize L as in case one of the previous paragraph. So we

see that L will destabilize unless it is a ruling curve on N±
n . Of course in this case

tb(L) = rs− | s
r
· en|.

• Proving the knots K± do not destabilize:

If K± destabilized then by the above work they would be stabilizations of one

of the Li. Thus K± could be put on some convex torus other than ∂N±
n , but this

contradicts
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Proving any Legendrian knots with tb = rs− | s
r
· en| either destabilize or are isotopic

to K±: This is immediate from the work above and Corollary 1.3.3.

• Determine which stabilizations of the K± and Li are Legendrian isotopic:

Note that Lj0
− is the Legendrian divide on N and s(m − 1) − r is the necessary

number of negatif stabilization to realize L− as Legendrian rulling curve on ∂N ′ ⊂ N

where N ′ is the standard neighborhood of a Legendrian knot K ∈ L(K) with tb(K) =

m − 1. Similarly since K− is a Legendrian rulling curve on the kth non-thickenable

Nk, i.e. slope(Γ∂T k) = k
pq−p−q

, S
s(m−1)−r−n
− (K−) is a Legendrian rulling curve on

N ′
1, where N ′

1 is also a standard neighborhood of Legendrian knot K ′ ∈ L(K) with

tb(K ′) = m− 1. Moreover rot(K) = rot(K ′) = pq − p− q −m+ 1. Since underlying

knot type K is Legendrian simple we conclude that there is a global contact isotopy

of (S3) that takes N ′ to N ′
1. Now we may Legendrian isotope Ss(m−1)−r(L−) to

Ss(m−1)−r(K−) through rulling curves. Similarly one can conclude that Ss(m−1)−r(L+)

to Ss(m−1)−r(K+).

We now prove Se
+(K−) is not Legendrian isotopic to Se

+S
n
−(L

j
−) and Se

−(K+) is

not isotopic to Se
−S

n
+(L

j
+) for all e ∈ Z>0, where n = |

⌈
k

pq−p−q

⌉
• s

r
|.

By using the very similar argument we used in Theorem 5.0.13 (Or Claim 6.5 in

the proof of Theorem 1.7 from [13]) we would like to show that any convex torus

which contains Se
+(K−) and is isotopic to T k = ∂Nk, kth-non-thickenable tori, has

slope k
pq−p−q

and #Γ = 2. In other words every positive stabilization of K− has

to be obtained by creating non-efficient intersection of K− with ΓT . Assuming for

while we have this. On the other hand, since this will not be a case for further

stabilizations of Sn
−(L

j
−),we will conclude that Se

+(K−) is not Legendrian isotopic to

Se
+S

n
−(L

j
−) for all e ∈ Z>0 by previous step. Note that we may always put Se

+(K−)

on T k so that the dividing set on annulus A = T k\Se
+(K−) has e boundary parallel

arc of positive/negative sign on the left boundary and e boundary parallel arc of

negative/positive sign on the right boundary. Now let T be another convex torus
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that contains Se
+(K−) and having base case already satisfied by T k we assume T

satisfies the following induction hypothesis; (1) T is a convex torus which contains

Se
+(K−) and satisfies 2 ≤ #ΓT ≤ 2e + 2 and s(ΓT ) =

k
pq−p−q

(2) T is contained in a

I-invariant T 2 × I with s(ΓT0) = s(ΓT1) =
k

pq−p−q
and #ΓT0 = #ΓT1 = 2 (3) There

is a diffeomorphism of S3 that takes the above I-invariant neighborhood T 2 × I to

standart I-invariant neighborhood of Σ and matches up their complement.

Hence it is enough to show that under any bypass attachment the above conditions

are preserved. We will prove for (1) and refer the identical proof of Lemma 5.0.13 for

(2) and (3). Let T satisfy the inductive hypothesis. Since Nk is non-thickenable no

bypass attachment to T\Se
+(K−) from the outside will change the slope of dividing

set. On the other hand we could have non-trivial bypass attachment from the insidea

and any such bypass will result a convex torus T ′ with slope(ΓT ′) ∈
[

k
pq−p−q

,∞
]
.

We want to show that after further bypass attachment to T ′ we can obtain convex

torus T ′′ such that it has slope 1
m−1

for some m = 1, 2, ..., pq − p − q. For a while

assume we have this, i.e. Se
+(K−) sits on T ′′ with slope(ΓT ′′) = 1

m−1
for some m and

#ΓT ′′ = 2. Note that T ′′ bounds the standard neighborhood of a Legendrian knot in

L(K) with tb = m−1 and r = pq−p−q−m+1. We know tb(Se
+(K−)) = tb(K−)−e

and r(Se
+(K−)) = r(K−) + e. On the other hand by Step (4) we find that slope

s/r rulling curve on T ′′ must be S
s(m−1)−r−n
− (K−) which implies that Se

+(K−) =

S±S
s(m−1)−r−n
− (K−) which gives tb(Se

+(K−)) = tb(K−)− (s(m− 1)− r − n)− 1 and

r(Se
+(K−)) = r(K−)− (s(m−1)− r−n)±1 that contradicts our (tb, r) computation.

Now we prove the assumption that caused this contradiction.

Assume slope(ΓT ′) ∈
[

k
pq−p−q

, 1
m−1

)
for some m = 1, 2, ..., pq− p− q. Then take a

efficient Legendrian curve L′ parallel to and disjoint from Se
+(K−). Also take L

′′ on T ′′.

Once again by using the Farey tesselation as in Lemma 5.0.9 and Lemma 5.0.13 we get

that |ΓT ′ ∩ L′| > |ΓT ′′ ∩ L′′|. Thus we get bypasses for T ′ by using the above inequality

and the Imbalance Principle. We can further continue on this to get succesive bypasses
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that finally gives a convex torus with slope 1
m−1

, for m = 1, 2, .., pq− p− q. Therefore

this proves that slope(ΓT ) is preserved under any bypass attachment.

Proof of Theorem 1.2.4 and Theorem 6.0.15 . Theorem 6.0.15 is an immediate con-

sequence of Case 1 and Case 2 together with Theorems 1.1.1, 1.1.2 and 6.1.1. Theo-

rem 1.2.4 is clear from the statement of Theorem 6.0.15.

Proof of Theorem 1.2.5 and Theorem 6.0.16. Theorem 2.4.1 tells us that the classi-

fication of transverse knots is equivalent to the classification of Legendrian knots up

to negative stabilization. Thus the Theorem 6.0.16 is a corollary of Theorem 6.0.15.

Theorem 1.2.5 follows from Theorem 6.0.16 once one observes that that if we choose

s
r

= mek + neak (where the addition is done as on the Farey tessellation), then

s
r
· 1

pq−p−q
> n. As a result, the non-destabilizable transverse knot will have self-

linking number at least 2n less than maximal; furthermore, it will take s
r
· eak = m

stabilizations before it becomes isotopic to a stabilization of the maximal self-linking

number transverse knot.
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Chapter VII

FUTURE PLANS

In this chapter we list some of the problems we want to study in the future.

Let K be a knot type in (S3, ξstd) that realize Bennequin bound, i.e. tb(K) +

| r(K)| = 2g(K)−1 and r(K) 6= 0. Let (Yn(L), ξ
−
n ) denote contact 3–manifold obtained

by doing contact n - surgery along L ∈ L(K) in (S3, ξstd).

Problem 7.0.1. Determine necessary and sufficient condition on integer n that re-

sults ξ−n to be overtwisted.

One way is to attack this problem is showing that the contact class c(ξ−n ) ∈

HF o(−Yn(L), sξ−n ) does not vanish for all n. Hence concluding that ξ−n is tight. We

can give a necessary and sufficient condition for vanishing of c(ξ−n ) in terms of n. So,

tightness is not the automatic for all n. Moreover, this vanishing result, of course,

gives a clue for overtwistedness but nothing more. As, unfortunately, vanishing of

the contact class does not necessarily implies the overtwistedness. The iterated torus

knots treated in Chapter 5 and 6 are, at least to the author, only known examples of

knot types that realize Bennequin bound and have r 6= 0.

Problem 7.0.2. Study on the classification problem of tight contact structures on

small Seifert Fibered spaces, M(e0; r1, r2, r3) where e0 = −1 and ri ∈ Q ∩ (0, 1) with

r1 ≥ r2 ≥ r3.

The case r1 ≥ r2 ≥ 1
2
was completed by Lisca-Ghiggini-Stipsicz in [26]. The

usage of non-thickenable (and possibly partially thickenable) neighborhhods is already

suggesting some classification results for certain Briskorn spheres.
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Problem 7.0.3. Given a knot type K in (S3, ξstd), is there an integer n such that

any L ∈ L(K) with tb(L) < n admits a destabilization?

In our classification of Legendrian cables of the positive trefoil, we locate a non-

destabilizable representative arbirtary far below maximum tb invariant, by arranging

the cabling coefficients. But this effort also result a very high maximum tb invariant.

As a result, it is not difficult to see the integer asked in the problem above is indeed

0 for Legendrian cables of the positive torus knots. It is very likely that answer will

be “yes” to Problem 7.0.3 and one way to attack this addressing the following.

Problem 7.0.4. Let K be a knot type with ω(K) 6= tb(K), is K = the unknot?

Moreover, if K is not the unknot, is `ω(K) < ∞?

Problem 7.0.5. Study Legendrian simplicity under some other statalite construc-

tions, in particular under Whitehead doubling.

The last problem in particular will be very helpful in terms of better understanding

the uniform thickness property.

88



REFERENCES

[1] Kenneth L. Baker, John B. Etnyre and Jeremy Van Horn-Morris. Cabling, ra-

tional open book decompositions and contact structures. 2010. arXiv:1005.1978.
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