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ABSTRACT

APPLICATIONS OF OZSVÁTH-SZABÓ INVARIANTS TO

CONTACT GEOMETRY

David Shea Vela-Vick

John B. Etnyre, Advisor

Let T ⊂ (Y, ξ) be a transverse knot which is the binding of some open book, (T, π), for

the ambient contact manifold (Y, ξ). We show that the transverse invariant �T(T ) ∈ �HFK(−Y,K),

defined in [LOSS08], is nonvanishing for such transverse knots. We also prove a vanishing theorem

for the invariants L and T. As a corollary of these two facts, we see that if (T, π) is an open book

with connected binding, then the complement of T has no Giroux torsion.

More generally, we prove using different methods that if (B, π) is any open book decomposition

of (Y, ξ), then the complement of B is torsion-free.

We also show by explicit computation that the sutured Floer contact invariant can distinguish

isotopy classes of tight contact structures on solid tori with convex boundary and 2n vertical

dividing curves.
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Chapter 1

Introduction

This thesis naturally breaks into two parts. In the first half, we study properties and applications

of newly defined invariants of Legendrian and transverse knots. In the second half, we give a

direct computation of some contact invariants for contact structures on solid tori with specified

boundary conditions. Each of these will be discussed in turn.

1.1 LOSS Invariants and Bindings of Open Books

Lisca, Ozsváth, Stipsicz, and Szabó define a pair of invariants for null-homologous Legendrian

and transverse knots in [LOSS08]. These invariants live in the knot Floer homology groups of the

ambient space with reversed orientation, and generalize the previously defined invariants of closed

contact manifolds, c(Y, ξ). They have been useful in constructing new examples of knot types

which are not transversally simple (see [LOSS08, OS08a]).

Here, we compute these invariants for a wide class of transverse knots:

Theorem 1. Let T ⊂ (Y, ξ) be a transverse knot which can be realized as the binding of an

open book (T, π) compatible with the contact structure ξ. Then the transverse invariant �T(T ) is

nonvanishing.
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Remark 1.1.1. In [LOSS08], it is shown that if c(Y, ξ) �= 0, then T(T ) �= 0 for any transverse

knot T ⊂ (Y, ξ). In Theorem 1, no restrictions are made on the ambient contact structure ξ.

In particular, Theorem 1 is true even when ξ is overtwisted. Moreover, the nonvanishing of the

invariant �T implies the nonvanishing of the invariant T.

Let L be a null-homologous Legendrian knot in (Y, ξ). It is shown in [LOSS08] that the invariant

L(L) inside HFK−(−Y,L) remains unchanged under negative stabilization, and therefore yields

an invariant of transverse knots. If T is a null-homologous transverse knot in (Y, ξ) and L is a

Legendrian approximation of T , then T(T ) := L(L). We will generally state results only in the

Legendrian case, even though the same results are also true in the transverse case.

Remark 1.1.2. There is a natural map HFK−(−Y,L) → �HFK(−Y,L), defined by setting U = 0.

Under this map, the L(L) is sent to �L(L). Therefore, if �L(L) is nonzero, then L(L) must also be

nonzero. Similarly, if L(L) vanishes, then �L(L) must also vanish.

In addition to understanding when these invariants are nonzero, we are also interested in

circumstances under which they vanish. In [LOSS08], it was shown that if the complement of

the Legendrian knot contains an overtwisted disk, then the Legendrian invariant for that knot

vanishes. Here, we generalize this result by proving:

Theorem 2. Let L be a Legendrian knot in a contact manifold (Y, ξ). If the complement Y − L

contains a compact submanifold N with convex boundary such that c(N, ξ|N ) = 0 in SFH(−N, Γ),

then the Legendrian invariant L(L) vanishes.

Since I-invariant neighborhoods of convex overtwisted disks have a vanishing contact invariant

(Example 1 of [HKM07]), Theorem 2 generalizes the vanishing theorem from [LOSS08].

In [GHV07], Ghiggini, Honda, and Van Horn-Morris show that a closed contact manifold with

positive Giroux torsion has vanishing contact invariant. They show this by proving that the

contact element for a 2π-torsion layer vanishes in sutured Floer homology. Thus, as an immediate

corollary to Theorem 2, we have:
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Corollary 3. Let L be a Legendrian knot in a contact manifold (Y, ξ). If the complement Y − L

has positive Giroux torsion, then the Legendrian invariant L(L) vanishes.

Remark 1.1.3. A similar result has been established for the invariant �L by Stipsicz and Vértesi

[SV08] using slightly different arguments.

Remark 1.1.4. Theorem 2 and Corollary 3 are both true in the transverse case as well.

Combining the transverse version of Corollary 3 with Theorem 1, we conclude the following

interesting fact about complements of connected bindings:

Theorem 4. Let (T, π) be an open book with a single binding component. Then the complement

of T has no Giroux torsion.

In joint work with John B. Etnyre [EV08], we extend this result to the case of disconnected

bindings, showing:

Theorem 5 (with John B. Etnyre). Let (B, π) be an open book for a contact manifold (Y, ξ).

Then the complement of B has no Giroux torsion.

Our proof of Theorem 5 is presented in Chapter 5.

1.2 Ozsváth-Szabó Invariants and Contact Structures on

Solid Tori

The second part of this thesis is devoted to studying the Heegaard Floer contact invariants for

tight contact structures on S1 ×D2 with convex boundary and 2n vertical dividing curves. Tight

contact structures on solid tori with convex boundary and 2n vertical dividing curves were first

classified independently by Giroux in [Gir00] and by Honda in [Hon00]. Our primary goal is to

give an alternate proof of this classification using techniques from Heegaard Floer homology. In

particular, we show the following:
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Theorem 6. Let ξ1 and ξ2 be tight contact structures on a solid torus S1 × D2 with convex

boundary and 2n vertical dividing curves. Then the sutured Floer contact invariants of ξ1 and ξ2

agree if and only if they are isotopic as contact structures relative to the boundary.

Our proof of Theorem 6, found in Chapter 6, is by explicit computation. A list of the potentially

distinct tight contact structures on the solid torus with 2n vertical dividing curves on the boundary

can be obtained using elementary techniques form convex surface theory. To prove Theorem 6,

we show that the sutured contact invariants for each of these contact structures are nonzero and

pairwise distinct. The hands-on nature of this computation allows for direct comparison of these

invariants and yields an explicit proof of Theorem 6.

This same result has been obtained independently by Honda, Kazez and Matić in [HKM08].

There, the authors use contact geometric methods to define a gluing map for sutured Floer ho-

mology. By studying properties of this gluing map for certain classes of contact manifolds, the

authors indirectly conclude independence of the above mentioned contact invariants.

This thesis is organized as follows: in Chapter 2, we briefly review some of the basic definitions

and theorems from contact geometry, Heegaard Floer homology and knot Floer homology. We

prove Theorem 1 in Chapter 3 and Theorem 2 in Chapter 4. Next, Chapter 5 is devoted to a

proof of Theorem 5 and, finally, we prove Theorem 6 in Chapter 6.
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Chapter 2

Background

Here, we discuss the basic definitions and results that are used throughout this thesis. Unless

otherwise stated, (Y, ξ) denotes a contact manifold whose contact structure is cooriented. Dividing

sets on convex surfaces and sutures on the boundaries of contact manifolds will both be denoted

by Γ. In situations where ambiguity may arise, we use subscripts such as Γξ or ΓΣ for dividing

sets to distinguish them from sutures.

2.1 Contact Geometry Preliminaries

Recall that a contact structure on an oriented 3-manifold is a plane field ξ satisfying a certain

nonintegrability condition. Since we assume that our plane fields are cooriented, ξ is given as the

kernel of some global 1-form: ξ = ker(α) with α(Np) > 0 for each oriented normal vector Np to ξp.

Such an α is called a contact form for ξ. In this case, the nonintegrability condition is equivalent

to the statement α ∧ dα > 0.

A surface Σ ⊂ (Y, ξ) is called convex if there exists a contact vector field V for (Y, ξ) such that

V is transverse to Σ. The dividing set Γ of a convex surface Σ is

ΓΣ = {p ∈ Σ | Vp ⊂ ξ}.
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Convex surfaces and dividing sets are important because, nearby a convex surface Σ, the contact

structure ξ is determined up to isotopy by the dividing set ΓΣ.

A primary tool used in the study of contact manifolds is Giroux’s correspondence between

contact structures on 3-manifolds and open book decompositions up to an equivalence called

positive stabilization. Indeed, open books lie at the heart of many recent results in contact

geometry, and are essential in defining any of the Heegaard Floer contact invariants.

An open book decomposition of a contact 3-manifold (Y, ξ) is a pair (B, π), where B is an

oriented, fibered, transverse link and π : (Y − B) → S1 is a fibration of the complement of B by

oriented surfaces whose oriented boundary is B. The transverse link B is called the binding of the

open book (B, π), while each of the fiber surfaces Sθ = π−1(θ) are called pages.

An open book is said to be compatible with a contact structure ξ if, after an isotopy of the

contact structure, there exists a contact form α for ξ such that:

1. α(v) > 0 for each (nonzero) oriented tangent vector v to B, and

2. dα restricts to a positive area form on each page of the open book.

Given an open book decompositon of a 3-manifold Y , Thurston and Winkelnkemper [TW75]

show how one can produce a compatible contact structure on Y . Giroux proves in [Gir02] that

two contact structures which are compatible with the same open book are, in fact, isotopic as

contact structures. Giroux also proves that two contact structure are isotopic if and only if they

are compatible with open books which are related by a sequence of positive stabilizations.

Alternatively, one can abstractly specify an open book by identifying a surface with boundary

S (the page), and a monodromy map φ : S → S whose restriction to a neighborhood of ∂S is the

identity. Comparing with the first definition of an open book given above, S is the fiber surface

π−1(θ), and φ as the monodromy map of the fibration π.

A relative version of open book decompositions, called partial open book decompositions can

be defined for contact manifolds with nonempty, convex boundary. A partial open book decom-
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position can be specified by naming a page S, and a partially defined monodromy map φ : P → S

of a subsurface P ⊂ S. A relative version of Giroux’s correspondence theorem holds in this case

allowing one to study contact structures on boarded manifolds using open books.

Definition 2.1.1. A knot L smoothly embedded in a contact manifold (Y, ξ) is called Legendrian

if TpL ⊂ ξp for all p in L.

Definition 2.1.2. An oriented knot T smoothly embedded in a contact manifold (Y, ξ) is called

transverse if it always intersects the contact planes transversally with each intersection positive.

We say that two Legendrian knots are Legendrian isotopic if they are isotopic through Legen-

drian knots; similarly, two transverse knots are transversally isotopic if they are isotopic through

transverse knots. Given a Legendrian knot L, one can produce a canonical transverse knot nearby

to L, called the transverse pushoff of L. On the other hand, given a transverse knot T , there

are many nearby Legendrian knots, called Legendrian approximations of T . Although there are

infinitely many distinct Legendrian approximations of a given transverse knot, they are all related

to one another by sequences of negative stabilizations. These two constructions are inverses to

one another, up to the ambiguity involved in choosing a Legendrian approximation of a given

transverse knot (see [EFM01, EH01]).

If I is an invariant of Legendrian knots which remains unchanged under negative stabilization,

then I is also an invariant of transverse knots: if T is a transverse knot and L is a Legendrian

approximation of T , define I(T ) to be equal to the invariant I(L) of the Legendrian knot L. This

is how the authors define the transverse invariants T(T ) and �T(T ) in [LOSS08].

For more on open book decompositions and partial open book decompositions, we refer the

reader to [Etn06, Col07] and [HKM07].
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2.2 Sutured Floer Homology and the Contact Invariant

In [Juh06], Juhász defined a variant of Heegaard Floer homology for balanced sutured 3-manifolds.

This Floer homology theory was used in [HKM07] to define a generalization of the Heegaard-Floer

contact invariant for closed contact 3-manifolds (see [OS05a] and [HKM06]).

Suppose that (Y, ξ) is a contact manifold with convex boundary and dividing set Γξ. By

thinking of the dividing curves on ∂Y as sutures, (Y,Γ) is naturally a balanced sutured 3-manifold

(balanced because ξ is cooriented). The invariant c(Y, ξ), defined by Honda, Kazez and Matić,

directly generalizes the original contact invariant defined by Ozsváth and Szabó in [OS05a] and

lives in the sutured Floer homology group SFH(−Y,−Γ).

To construct this invariant, let (S, P, φ) be a partial open book decomposition of a contact

manifold with convex boundary (Y, ξ). Then Y = S × [−1, 1]/ ∼ , where the equivalence relation

∼ is given by

(x, t) ∼ (x, t�) if x ∈ ∂S and

(x, 1) ∼ (φ(x),−1) if x ∈ P.

A basis for (S, P ) is a collection of properly embedded arcs {a1, . . . , ak}, contained within the

subsurface P , such that after cutting along the ai, the resulting surface deformation retracts onto

S − P .

Choose such a basis {a1, . . . , ak} for (S, P ) and construct a second collection of embedded

arcs {b1, . . . , bk} by applying small isotopies to the ai’s such that their boundaries are isotoped

according the orientation on ∂P , and so that each ai intersects bi transversally in a single point.

With this data, a sutured Heegaard diagram (Σ, β, α) can be obtained for the (−Y,−Γξ).
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Namely,

Σ = (P × {1}) ∪ (−S × {−1})

βi = (bi × {1}) ∪ (φ(bi)× {−1})

αj = ∂(aj × [−1, 1]).

Let xi be the unique intersection point between αi and βi on P × {1}, and x = (x1, . . . , xk).

It follows immediately from this definition that ∂x = 0. The homology class of x inside of

SFH(−Y,−Γ) is the contact invariant defined in [HKM07]. In what follows, we denote this invari-

ant by c(Y, ξ).

If L ⊂ (Y, ξ) is a Legendrian link, let ν(L) denote an open standard neighborhood of L

contained in (Y, ξ).

Definition 2.2.1. Denote by SFH(L) the sutured Floer homology of the balanced sutured 3-

manifold (−(Y − ν(L)),−Γ|ξ). Denote by c(L) the contact invariant of the contact invariant of

the contact manifold (Y − ν(L), ξ|Y −ν(L)).

The invariant c(L) is the Legendrian invariant defined in [HKM07]. Although this invariant is

unchanged under Legendrian isotopies of L, it is sensitive to stabilizations (positive and negative)

made to the components of L. Indeed, stabilizing a component of the link L may actually change

the isomorphism type of the sutured Floer homology theory associated to the Legendrian link.

For this reason, c(L) does not also define an invariant of transverse knots or links.

For more on sutured Floer homology and on the sutured contact invariant, see [Juh06, Juh08]

and [HKM07, HKM08].

2.3 Invariants of Legendrian and Transverse Knots

Let L be a Legendrian knot with knot type K, and let T be a transverse knot in the same knot type.

In [LOSS08], the authors define invariants L(L) and T(T ) in HFK−(−Y,K) and �L(L) and �T(T )
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in �HFK(−Y, K). These invariants are constructed in a similar fashion to the contact invariants in

[HKM06, HKM07]. Below we describe how to construct this invariant for a Legendrian knot.

Let L ⊂ (Y, ξ) be a null-homologous Legendrian knot. Consider an open book decomposition

of (Y, ξ) containing L on a page S. Choose a basis {a0, . . . , an} for S (i.e., a collection of disjoint,

properly embedded arcs {a0, . . . , an} such that S −
�

ai is homeomorphic to a disk) with the

property that L intersects only the basis element a0, and does so transversally in a single point.

Let {b0, . . . , bn} be a collection of properly embedded arcs obtained from the ai by applying a

small isotopy so that the endpoints of the arcs are isotoped according to the induced orientation

on ∂S and so that each bi intersects ai transversally in the single point xi. If φ : S → S is the

monodromy map representing the chosen open book decomposition, then our Heegaard diagram

is given by

(Σ, α, β) = (S1/2 ∪ −S1, (ai ∪ ai), (bi ∪ φ(bi))).

The first basepoint, z, is placed on the page S1/2 in the complement of the thin strips of isotopy

between the ai and bi. The second basepoint, w, is placed on the page S1/2 inside the thin strip

of isotopy between a0 and b0. The two possible placements of w correspond to the two possible

orientations of L.

The Lengendrian invariant L(L) is defined, up to isomorphism, to be the element [x] =

[(x0, . . . , xn)] in HFK−(Σ, β, α, w, z). A picture of this construction is given in Figure 3.4. If

T is a transverse knot, the transverse invariant T(T ) is defined to be the Legendrian invariant of

a Legendrian approximation of T .

Interestingly, these invariants do not necessarily vanish for knots in overtwisted contact mani-

folds; this is why we do not need to assume tightness in Theorem 1. Another property, which will

be useful in Chapter 3, is that these invariants are natural with respect to contact (+1)-surgeries.

Theorem 2.3.1 (Ozsváth-Stipsicz, [OS08a]). Let L ⊂ (Y, ξ) be a Legendrian knot. If (YB , ξB , LB)

is obtained from (Y, ξ, L) by contact (+1)-surgery along a Legendrian knot B in (Y, ξ, L), then,

10



under the natural map

FB : HFK−(−Y,L) → HFK−(−YB , LB),

L(L) is mapped to L(LB).

An immediate corollary of Theorem 2.3.1 is the following:

Corollary 2.3.2. Let L ⊂ (Y, ξ) be a Legendrian knot, and suppose that (YB , ξB , LB) is obtained

from (Y, ξ, L) by Legendrian surgery along a Legendrian knot B in (Y, ξ, L). If L(L) �= 0 in

HFK−(−Y,L), then L(LB) �= 0 in HFK−(−YB , LB).

Remark 2.3.3. Theorem 2.3.1 and Corollary 2.3.2 are also true for the invariant �L(L) and for

the invariants T(T ) and �T(T ) in the case of a transverse knot.

In addition, the invariant L directly generalizes the original contact invariant c(Y, ξ) ∈ �HF(−Y )

(see [OS05a]). Under the natural map HFK−(−Y,L) → �HF(−Y ) obtained by setting U = 1, L(L)

maps to c(Y, ξ), the contact invariant of the ambient contact manifold.

We encourage the interested reader to look at [LOSS08, OS08a] to learn about other properties

of these invariants.

2.4 The c-Bar Invariant

A connection between the HKM Legendrian invariant and the LOSS Legendrian/transverse in-

variant was explored by Stipsicz and Vertesi in [SV08]. As a first step towards developing this

connection, Stipsicz and Vertesi show that c(L) can be mapped to an intermediate invariant which

we presently call the c-bar invariant, denoted by c(L). It is this bar invariant that Stipsicz and

Vertesi are able to directly identify with the Legendrian/transverse invariant from [LOSS08].

We will see in Chapter 5 that this intermediate bar invariant is very useful in its own right.

It is defined for any Legendrian knot or link and does not require any of the preconditions, like

being null-homologous, that are required to define the invariants L(L) and �L(L).

11



Consider a Legendrian knot L ⊂ (Y, ξ), and let ν(L) ⊂ (Y, ξ) be an open standard neighborhood

of L. Focusing our attention on the complement of this standard neighborhood, we consider the

contact manifold obtained by attaching a basic slice to the torus boundary of (Y −ν(L), ξ|Y −ν(L))

so that the resulting dividing set on the new boundary consists of precisely two meridional (mea-

sured with respect to the original knot L) dividing curves.

We denote this new contact manifold by Y (L). A local picture of this construction is supplied

in Figure 2.1(a). The contact invariant of the manifold Y (L) is an invariant of the Legendrian knot

L. We denote this invariant by c(L), and the sutured Floer homology of the ambient manifold by

SFH(L).

6 DAVID SHEA VELA-VICK
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Y (L) is an invariant of the Legendrian knot L. We denote this invariant
by EH(L), and the sutured Floer homology of the ambient manifold by
SFH(L).
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Figure 1.

As was observed in [SV08], it is immediate form its definition that if L
is a Legendrian knot, then EH(L) is invariant under negative stabilizations
of L. Recall that if L and L� differ by a negative stabilization, then the
complements of open standard neighborhoods of L and L� differ by a basic
slice attachment. As depicted in Figure 1(b), the basic slice attachment that
yields Y (L) factors into two basic slice attachments. The first attachment
corresponds to the stabilization L � L�, and the second corresponds to the
attachment yielding Y (L�) = Y (L).

2.3. Link Floer Homology Invariants.

Remark 2.2. I’m completely unsure how beefy this section should be.

In accordance with the conventions set forth in [OS05b], we assume that
all the 3-manifolds considered in this subsection are rational homology spheres.

Let Y be a rational homology sphere, and let L ⊂ Y be an oriented (null-
homologous?) link. In [OS05b], Ozsváth and Szabó define an invariant of
such links they call Link Floer Homology. There are two variants of this
theory, denoted HFL−(Y,L) and �HFL(Y,L).
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(b)

Figure 2.1: Obtaining Y (L) and factor tori

As was observed in [SV08], c(L) is invariant under negative stabilizations of L. Recall that if L

and L� differ by a negative stabilization, then the complements of open standard neighborhoods of

L and L� differ by a basic slice attachment. As depicted in Figure 2.1(b), the basic slice attachment

that yields Y (L) factors into two basic slice attachments. The first attachment corresponds to the

stabilization L ❀ L�, and the second corresponds to the attachment yielding Y (L�) = Y (L).
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Chapter 3

The LOSS Invariants and

Bindings of Open Books

Let T ⊂ (Y, ξ) be a transverse knot. Recall that Theorem 1 states that if T is the binding for some

open book (T, π) for (Y, ξ), then the transverse invariant �T(T ) ∈ �HFK(−Y, T ) is nonvanishing.

In this Chapter, we prove Theorem 1 in three steps. In Section 3.1 we construct an open book

on which a Legendrian approximation L of the transverse knot T sits. Then we show in Section 3.2

that the Heegaard diagram obtained in Section 3.1 is weakly admissible. Finally, in Section 3.3,

we prove the theorem in the special case where the monodromy map φn consists of a product of

n negative Dehn twists along a boundary-parallel curve.

An arbitrary monodromy map differs from some such φn by a sequence of positive Dehn

twists, or Legendrian surgeries, along curves contained in pages of the open book. By Corollary

2.3.2, since the transverse invariant is nonvanishing for the monodromy maps φn, it must also be

nonvanishing for an arbitrary monodromy map.
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3.1 Obtaining the Pointed Diagram

By hypothesis, T is the binding of an open book (T, π) for (Y, ξ). In order to compute the

transverse invariant �T(T ), we need to find a Legendrian approximation L of T , realized as a curve

on a page of an open book for (Y, ξ).

ON THE TRANSVERSE INVARIANT 7

nonvanishing for the monodromy maps φn, it must also be nonvanishing for
an arbitrary monodromy map.

3.1. Obtaining the pointed diagram. By hypothesis, T is the binding of
an open book (T,π) for (Y, ξ). In order to compute the transverse invariant
�T(T ), we need to find a Legendrian approximation L of T , realized as a
curve on a page of an open book for (Y, ξ).

T γ
S

(a)

γ

c
τ

T
S�

(b)

Figure 1.

In Figure 1(a), we see a page of the open book (T,π). Here, T appears as
the binding ∂S = T . Assuming the curve γ could be realized as a Legendrian
curve, it would be the natural choice for the Legendrian approximation L.
Unfortunately, since γ is zero in the homology of the page, γ cannot be made
Legendrian on the page.

To fix this problem, stabilize the diagram. The result of such a stabiliza-
tion is illustrated in Figure 1(b). To see that this solves the problem, we
prove the following lemma:

Lemma 3.1. The stabilization depicted in Figure 1(b) can be performed
while fixing T as the “outer” boundary component.

Assume the truth of Lemma 3.1 for the moment. Then the curve γ
depicted in Figure 1(b) can now be Legendrian realized, as it now represents
a nonzero element in the homology of the page. By construction, if we orient
this Legendrian coherently with T , then T is the transverse pushoff of γ.

Proof. Consider S3 with its standard tight contact structure. Let (H+,π+)
be the open book for (S3, ξstd) whose binding consists of two perpendicular
Hopf circles and whose pages consist of negative Hopf bands connecting these
two curves. In this case, each binding component is a transverse unknot with
self linking number equal to −1.

Let T be a transverse knot contained in a contact manifold (Y, ξ) and
let U be a transverse unknot in (S3, ξ|std) with self-linking number equal to
−1. Observe that the complement of a standard neighborhood of a point
contained in U is itself a standard neighborhood of a point contained in a
transverse knot. Therefore, if we perform a transverse connected sum of T
with the transverse unknot of self linking number equal to −1 in (S3, ξstd),
we do not change the transverse knot type of T .

(a)
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Proof. Consider S3 with its standard tight contact structure. Let (H+,π+)
be the open book for (S3, ξstd) whose binding consists of two perpendicular
Hopf circles and whose pages consist of negative Hopf bands connecting these
two curves. In this case, each binding component is a transverse unknot with
self linking number equal to −1.

Let T be a transverse knot contained in a contact manifold (Y, ξ) and
let U be a transverse unknot in (S3, ξ|std) with self-linking number equal to
−1. Observe that the complement of a standard neighborhood of a point
contained in U is itself a standard neighborhood of a point contained in a
transverse knot. Therefore, if we perform a transverse connected sum of T
with the transverse unknot of self linking number equal to −1 in (S3, ξstd),
we do not change the transverse knot type of T .

(b)

Figure 3.1: The open book (T, π) and its stabilization

In Figure 3.1(a), we see a page of the open book (T, π). Here, T appears as the binding ∂S = T .

Assuming the curve γ could be realized as a Legendrian curve, it would be the natural choice for

the Legendrian approximation L. Unfortunately, since γ is zero in the homology of the page, γ

cannot be made Legendrian on the page.

To fix this problem, stabilize the diagram. The result of such a stabilization is illustrated in

Figure 3.1(b). To see that this solves the problem, we prove the following lemma:

Lemma 3.1.1. The stabilization depicted in Figure 3.1(b) can be performed while fixing T as the

“outer” boundary component.

Assume the truth of Lemma 3.1.1 for the moment. Then the curve γ depicted in Figure 3.1(b)

can now be Legendrian realized, as it now represents a nonzero element in the homology of the

page. By construction, if we orient this Legendrian coherently with T , then T is the transverse

pushoff of γ.

Proof. Consider S3 with its standard tight contact structure. Let (H+, π+) be the open book

for (S3, ξstd) whose binding consists of two perpendicular Hopf circles and whose pages consist
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of negative Hopf bands connecting these two curves. In this case, each binding component is a

transverse unknot with self linking number equal to −1.

Let T be a transverse knot contained in a contact manifold (Y, ξ) and let U be a transverse

unknot in (S3, ξ|std) with self-linking number equal to −1. Observe that the complement of a

standard neighborhood of a point contained in U is itself a standard neighborhood of a point

contained in a transverse knot. Therefore, if we perform a transverse connected sum of T with the

transverse unknot of self linking number equal to −1 in (S3, ξstd), we do not change the transverse

knot type of T .8 DAVID SHEA VELA-VICK

(a) (b)

Figure 2.

Let (B,π) be an open book with connected binding for a contact mani-
fold (Y, ξ). Consider the contact manifold obtained from (Y, ξ) by Murasugi
summing the open book (B,π) with the open book (H+,π+) along bigon
regions bounded by boundary-parallel arcs contained in pages of the respec-
tive open books. The summing process is depicted in Figure 2. Figure 2(a)
shows the open books before the Murasugi sum, while Figure 2(b) shows
the resulting open book after the sum.

(a) (b)

Figure 3.

The Murasugi sum operation has the effect of performing a contact con-
nected sum of (Y, ξ) with (S3, ξstd) and a transverse connected sum of
the binding component B with one of the binding components of H+ (see
[Tor00]). Before and after pictures of this operation are shown in Figures
3(a) and 3(b), respectively. Since both of the binding components of the
open book (H+,π+) are transverse unknots with self linking number equal
to −1, this connected sum has no effect on the transverse knot type of the
“outer” boundary component of the open book in Figure 1. �

Since the curve γ can now be Legendrian realized and approximates T as
desired, we will denote γ by L from this point forward. The new monodromy
map φ� : S� → S� is equal to the old monodromy map, φ, composed with one
positive Dehn twist along the curve c shown in Figure 1(b). For notational
ease, we continue denoting the monodromy map by φ, and the page by S.

(a)
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(b)

Figure 3.2: Murasugi summing along a bigon

Let (B, π) be an open book with connected binding for a contact manifold (Y, ξ). Consider

the contact manifold obtained from (Y, ξ) by Murasugi summing the open book (B, π) with the

open book (H+, π+) along bigon regions bounded by boundary-parallel arcs contained in pages of

the respective open books. The summing process is depicted in Figure 3.2. Figure 3.2(a) shows

the open books before the Murasugi sum, while Figure 3.2(b) shows the resulting open book after

the sum.

The Murasugi sum operation has the effect of performing a contact connected sum of (Y, ξ)

with (S3, ξstd) and a transverse connected sum of the binding component B with one of the binding

components of H+ (see [Tor00]). Before and after pictures of this operation are shown in Figures

3.3(a) and 3.3(b), respectively. Since both of the binding components of the open book (H+, π+)

are transverse unknots with self linking number equal to −1, this connected sum has no effect on

the transverse knot type of the “outer” boundary component of the open book in Figure 3.1.
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Figure 3.3: A Murasugi sum with (H+, π+) along a bigon region

Since the curve γ can now be Legendrian realized and approximates T as desired, we will

denote γ by L from this point forward. The new monodromy map φ� : S� → S� is equal to

the old monodromy map, φ, composed with one positive Dehn twist along the curve c shown in

Figure 3.1(b). For notational ease, we continue denoting the monodromy map by φ, and the page

by S. ON THE TRANSVERSE INVARIANT 9
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Figure 4.

We choose a basis for our surface whose local picture near the stabilization
is depicted in Figure 4. There are two possible choices for the placement of
the second basepoint w: w1 and w2. In order for L to be oriented coherently
with T , we must choose w = w1.

3.2. Admissibility. In this section, we construct a weakly admissible, doubly-
pointed Heegaard diagram from the open book described in Section 3.1.

Before we continue, let us discuss some notation. We are concerned with
open book decompositions whose pages are twice-punctured surfaces. We
picture a genus g surfaces as a 4g-sided polygon with certain boundary edges
identified. We choose the standard identification scheme, where the first and
third edges are identified, as are the second and fourth edges, the fifth and
seventh edges, and so on. For convenience, we always assume that the first
edge appears in the 12 o’clock position, at the top of each diagram.

x1

x2

z

x0w

S1/2

a1,I

a2,I

a1,F

a2,F

a0b0

Figure 5.

Figure 3.4: An appropriate choice of basis

We choose a basis for our surface whose local picture near the stabilization is depicted in

Figure 3.4. There are two possible choices for the placement of the second basepoint w: w1 and

w2. In order for L to be oriented coherently with T , we must choose w = w1.
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3.2 Admissibility

In this section, we construct a weakly admissible, doubly-pointed Heegaard diagram from the open

book described in Section 3.1.

Before we continue, let us discuss some notation. We are concerned with open book decom-

positions whose pages are twice-punctured surfaces. We picture a genus g surfaces as a 4g-sided

polygon with certain boundary edges identified. We choose the standard identification scheme,

where the first and third edges are identified, as are the second and fourth edges, the fifth and

seventh edges, and so on. For convenience, we always assume that the first edge appears in the

12 o’clock position, at the top of each diagram.
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open book decompositions whose pages are twice-punctured surfaces. We
picture a genus g surfaces as a 4g-sided polygon with certain boundary edges
identified. We choose the standard identification scheme, where the first and
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z

x0w
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a1,I

a2,I

a1,F

a2,F

a0b0

Figure 5.
Figure 3.5: The page S1/2

Our punctures are always situated so that one of the punctures is in the center of the polygon,

with the other close by. We choose our basis elements, a1, . . . , a2g, to be straight arcs emanating

from the center of the polygon and passing out the corresponding edge. If we were to forget about

the identifications being made at the boundary, the basis element ai would break into two straight

arcs emanating from the center of the diagram. For ease of exposition in what follows, we label

the first segment that we see as we move clockwise around the diagram ai,I , and the second ai,F .

The subscript I stands for “initial”, while the subscript F stands for “final”.
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According to these conventions, the second boundary component of our surface lies in the

region between the curves a2g,F and a1,I . The last basis element a0 is a straight line segment

connecting the two boundary components of the surface.

We have adopted the practice of Honda, Kazez and Matić of placing surrogate basepoints

throughout the diagram whenever it is convenient. The points signal that no holomorphic disk is

allowed to cover that region of the diagram.

We have restricted our figures to the case where our page is a twice-punctured torus, and our

monodromy map φ consists of two negative Dehn twists along the curve τ in Figure 3.1(b). The

resulting doubly-pointed Heegaard diagram is shown in Figures 3.5 and 3.6.ON THE TRANSVERSE INVARIANT 11

a1,I

a2,I

a1,F

a2,F

(a1,I)

(a2,I)

(a1,F )

(a2,F )

−S1

U

R
γ

δ

Figure 6.

However, the curve γ intersects each α-curve (other than α0) in two points,
each with opposite sign. The boundary of a periodic domain must be a sum
of full α- and β-curves, so if the multiplicity increases (or decreases) by
a factor of n as γ passes one of the intersection points, it must decrease
(or increase) by that same factor as γ passes the other intersection point.
Therefore, the net change in multiplicity of the periodic domain P along γ
between the region R and the z-pointed region is zero. We have seen that
the multiplicity of the region R is +2, whereas the multiplicity of the z-
pointed region was assumed to be +1. From this contradiction, we conclude
that P must have multiplicity zero in the z-pointed region.

Since each α- and each β-curve bound the z-pointed region on either side,
and since P has multiplicity zero in the z-pointed region, we conclude that
P must have positive and negative coefficients. �

Figure 3.6: The page −S0
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Figure 3.5 shows the S1/2 page of our open book, while Figure 3.6 shows the −S1 page (note the

reversed orientation). The invariant appears in Figure 3.5 as the intersection point x = (x0, x1, x2).

Consider the small region southeast of x0 in Figure 3.5. This region is equal to the region R

in Figure 3.6. Let γ be the dashed arc connecting the region R to the z-pointed region. Denote

by (ai,∗), the intersection point between ai,∗ and γ.

Lemma 3.2.1. The doubly-pointed Heegaard diagram described above, and appearing in Figures

3.5 and 3.6, is weakly admissible.

Proof. Let P be a periodic domain for the pointed Heegaard diagram (Σ, β, α, w). Suppose P

has nonzero multiplicity in the z-pointed region. Without loss of generality, we assume that

this multiplicity is +1. In particular, the multiplicity of the region just above the point (a2,F ) in

Figure 3.6 is +1. In order for the w-pointed region to have multiplicity zero, the α0- and β0-curves

must be contained in the boundary of the periodic domain P and must appear with multiplicity

±1 (depending on the chosen orientations of α0 and β0). This forces the small region southeast of

x0 in Figure 3.5 to have multiplicity +2. Since this region is the same as the region R in Figure 3.6,

R must also have multiplicity +2.

Consider the dashed arc γ connecting R to the z-pointed region. In order for P to exist,

the multiplicities of the regions intersected by γ must go from +2 in the region R to +1 in the

z-pointed region.

However, the curve γ intersects each α-curve (other than α0) in two points, each with opposite

sign. The boundary of a periodic domain must be a sum of full α- and β-curves, so if the

multiplicity increases (or decreases) by a factor of n as γ passes one of the intersection points, it

must decrease (or increase) by that same factor as γ passes the other intersection point. Therefore,

the net change in multiplicity of the periodic domain P along γ between the region R and the

z-pointed region is zero. We have seen that the multiplicity of the region R is +2, whereas the

multiplicity of the z-pointed region was assumed to be +1. From this contradiction, we conclude
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that P must have multiplicity zero in the z-pointed region.

Since each α- and each β-curve bound the z-pointed region on either side, and since P has

multiplicity zero in the z-pointed region, we conclude that P must have positive and negative

coefficients.

3.3 Computing �T(T )

Let x = (x0, . . . , x2g); we show that the transverse invariant �T(T ) = [(x0, . . . , x2g)] is nonzero.

To prove this, we show that the set π2(y,x) has no holomorphic representatives unless y = x, in

which case we have only the trivial holomorphic disk. This is equivalent to showing that, if we

reverse the roles of the α- and β-curves, π2(x,y) has no holomorphic representatives for all y �= x.

Let D be a holomorphic representative of some homotopy class φ ∈ π2(y,y�) with nz(φ) = 0.

As is common in Heegaard Floer homology, we consider the “shadow” of D on our Heegaard surface

Σ. This shadow is a sum of regions in the complement of the α- and β-curves, and is denoted

D =
�

i ciDi. Because everything in this story is holomorphic, each of the ci are nonnegative.

Suppose R1 and R1 are two adjacent regions in a Heegaard diagram (i.e., R1 and R2 share

an edge), and D is as above. In general, the multiplicities of R1 and R2 can differ arbitrarily. In

our case, however, the multiplicities of any two adjacent regions can differ by at most one. This

is true because each of the α- and β-curves in a Heegaard diagram coming from an open book

decomposition bound the z-pointed region to either side. Therefore, the boundary of any such

region D can never contain a full α or β curve, and the multiplicities of R1 and R2 can differ by

at most one.

Consider the region R in Figure 3.6, and the curve γ connecting R to the z-pointed region.

Lemma 3.3.1. The net change in multiplicity between the region R and the z-pointed region along

γ is nonnegative.

Proof. The proof of Lemma 3.3.1 is similar to the proof of the admissibility lemma in Section 3.2.
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Recall that the curve γ intersects each αi-curve in two points: (ai,I) and (ai,F ). We show that if

the multiplicity of the regions intersected by γ decrease by a factor of −1 at the point (ai,I), then

there must be a corresponding increase in multiplicity at the point (ai,F ). Similarly, we show that

if the multiplicity of the regions intersected by γ decrease by a factor of −1 at the point (ai,F ),

then there must be a corresponding increase in multiplicity at the point (ai,I).

Observe that the multiplicity along γ cannot decrease as γ passes over the point (a1,I). Re-

call that we are only considering holomorphic disks which emanate from the intersection point

(x0, . . . , x2g). Thus, if there is a decrease in multiplicity at (a1,I), a segment of the α1-curve be-

tween the intersection point (a1,I) and x1 must be contained in the boundary of the holomorphic

disk. Looking at the diagram in Figure 3.6, we see that any such arc has z-pointed region to the

west, contradicting its existence.

In the genus one case, a similar argument shows that there can be no decrease in multiplicity

at the point (a2,I). So assume that either the genus of S is greater than one, or that we are

considering an intersection point (a) beyond (a2,I) along γ.

Suppose that (a) = (ai,I), and that the multiplicity along γ decreases by a factor −1 as it

passes over at the point (a). Then the segment of the αi-curve beginning at the point (a) and

traveling away from the center of the diagram to the point xi is contained in the boundary of the

holomorphic disk. This implies that the region just past the intersection point (ai,F ) along γ gains

a +1 boost in multiplicity. Therefore, the increase in multiplicity at the point (ai,F ) balances the

decrease in multiplicity at the point (ai,I).

Similarly, if (a) = (ai,F ) and if the multiplicity along γ decreases by a factor of −1 as γ passes

over (a), then the segment of the αi-curve beginning at the point (ai,I) and traveling away from

the center of the diagram to the point xi is contained in the boundary of the holomorphic disk.

This implies that the region just past the intersection point (ai,I) gains a +1 boost in multiplicity.

Thus, the decrease in multiplicity at the point (ai,F ) is balanced by the increase in multiplicity at

the point (ai,I).
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Since each decrease in multiplicity along γ is balanced by a corresponding increase in multi-

plicity somewhere else along γ, we have that the net change in multiplicity between the region R

and the z-pointed region along the curve γ is nonnegative.

Consider the region U in Figure 3.6, and the curve δ connecting U to the z-pointed region. By

an argument similar to the proof of Lemma 3.3.1, we have the following:

Lemma 3.3.2. The net change in multiplicity between the region U and the z-pointed region along

δ is nonnegative.

✷

Proof of Theorem 1. There are two main cases to consider.

Case 1: Assume that the holomorphic disk emanating from x = (x0, . . . , x2g) is nonconstant

near the intersection point x0. In this case, the region R in Figure 3.6 has multiplicity +1. By

Lemma 3.3.1, this implies that the multiplicity of the z-pointed region must be at least +1, a

contradiction.

Case 2: Now suppose that the holomorphic disk is constant at the point x0, meaning that

the multiplicity of the region R is zero. We investigate the possible ways that holomorphic disks

can emanate from the center of Figure 3.6.

Suppose, for the moment, that all the regions bordered by the β0-curve have zero multiplicity.

Then a holomorphic disk emanating from the center of Figure 3.6 is (locally) constrained to lie

within the strip bounded by the darkened portions of the β-curves.

In order for this to be the case, the boundary of the disk must have veered off the α-curves

while still contained within this strip. Therefore, all the α-curves are “used up” close to the center

of the diagram (i.e., by the time they first intersect a darkened β-curve). This, in turn, forces the

multiplicity of the region U in Figure 3.6 to be positive.

By Lemma 3.3.2, this implies that the multiplicity of the z-pointed region must be positive, a

contradiction. Therefore, in order for such a nontrivial holomorphic disk to exist, at least one of
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the regions bordered by β0 must have nonzero multiplicity.

Recall that in Case 2 we are assuming that the holomorphic disk is constant near x0. This

means that the curve β0 cannot be involved in the boundary of the holomorphic disk, so at least

one of the regions intersected by γ must have positive multiplicity. Let R� be the first region along

γ with positive multiplicity, and let (a) be the (ai,∗) immediately preceding R�.

If (a) = (ai,F ), then by an argument similar to the proof of Lemma 3.3.1, it can be shown that

the net change in multiplicity between the region R� and the z-pointed region must be nonnegative.

The fact that (a) is a final point ensures that there can be no decrease in multiplicity at the point

(ai,I) since, by the definition of R�, the regions to both sides of this point have multiplicity zero.

On the other hand, suppose (a) = (ai,I). An argument similar to that in Lemma 3.3.1 demon-

strates that for each decrease in multiplicity, there is a corresponding increase in multiplicity,

except possibly at the point (ai,F ). If the multiplicity decreases at the point (ai,F ), then the

segment of the αi-curve from (ai,F ) to (a) must be contained in the boundary of the holomorphic

disk. This then implies that the multiplicity of the region U is at least one.

Again, by Lemma 3.3.2, this forces the multiplicity of the z-pointed region to be positive, a

contradiction.

This completes the proof of Theorem 1.
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Chapter 4

A Vanishing Theorem for the

LOSS Invariants

In this chapter, we prove Theorem 2. The proof in this case is very similar to the proof of

Theorem 4.5 in [HKM07]. The key differences are that we must include the Legendrian knot L

when choosing a Legendrian skeleton for the complement of the submanifold N , and that we must

be cautious about the changes made to the diagram in the spinning process used to make the

diagram strongly admissible.

Proof of Theorem 2. We begin by constructing a partial open book decomposition for the contact

submanifold (N, ξ|N ), which can be extended to an open book decomposition for all of (Y, ξ).

Following [HKM07], we must show that the basis {a1, . . . , ar} for the partial open book decom-

position of (N, ξ|N ) can be extended to a basis {a1, . . . , ar, a�0, a
�
1, . . . , a

�
s} for the extended open

book decomposition of (Y, ξ), where L ∩ (
�

ai ∪
�

a�j) = L ∩ a�0 = 1pt.

Claim: We may assume without loss of generality that the complement of N is connected.
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Proof of claim. Let (M, ξ) be a compact manifold with possibly nonempty boundary, and let

(M �, ξ|M �) be a compact submanifold of (M, ξ) with convex boundary. In [HKM08], the authors

show that the vanishing of the contact invariant for (M �, ξ|M �) implies the vanishing of the contact

invariant for (M, ξ).

Suppose the complement of N is disconnected. Then, since c(N, ξ|N ) = 0, the contact manifold

obtained by gluing the components of Y − N not containing L to N must also have vanishing

contact invariant. In particular, we may assume without loss of generality that Y −N is connected.
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Proof of claim. Let (M, ξ) be a compact manifold with possibly nonempty
boundary, and let (M �, ξ|M �) be a compact submanifold of (M, ξ) with con-
vex boundary. In [HKM08], the authors show that the vanishing of the
contact invariant for (M �, ξ|M �) implies the vanishing of the contact invari-
ant for (M, ξ).

Suppose the complement of N is disconnected. Then, since c(N, ξ|N ) =
0, the contact manifold obtained by gluing the components of Y − N not
containing L to N must also have vanishing contact invariant. In particular,
we may assume without loss of generality that Y −N is connected. �

L

ν(K)

ν(K �)

N
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Figure 7.

Let K be a Legendrian skeleton for N , and let K � be an extension of the
Legendrian knot L to a Legendrian skeleton for N � = Y −N (see Figure 7).
Assume that the univalent vertices of K and K � in ∂N do not intersect.

The Legendrian skeleton K gives us a partial open book decomposition
for (N, ξ|N ). Let ν(K) be a standard neighborhood of K inside of N , and let
ν(K �) be a standard neighborhood of K � inside of Y −N . We can build an
open book decomposition for all of Y by considering the the handlebodies
(N �−ν(K �))∪ν(K) and ν(K �)∪ (N−ν(K)). By construction, each of these
handlebodies are disk decomposable. A page S of the open book for (Y, ξ) is
constructed from the page of the partial open book for (N, ξ|N ) by repeatedly
attaching 1-handles away from the portions of the open book coming from
the boundary of ν(K). A picture of this construction is depicted in Figure 8.

In Figure 8, the portion of the page of the open book coming from the
boundary of N is shown in black, and has its boundary lines thickened. The
portion of the page coming from the boundary of ν(K) is lightly colored
(orange), and appears in the lower right portion of the figure. Finally, the
portion of the page coming from the extension of the open book to all of
Y is also lightly colored (green), and appears in the lower left corner of the
figure.

Let {a1, . . . , an} be a basis for the partial open book coming from (N, ξ|N ),
and let φ be the corresponding partially defined monodromy map for this

Figure 4.1: Choosing a Legendrian skeleton

Let K be a Legendrian skeleton for N , and let K � be an extension of the Legendrian knot L

to a Legendrian skeleton for N � = Y −N (see Figure 4.1). Assume that the univalent vertices of

K and K � in ∂N do not intersect.

The Legendrian skeleton K gives us a partial open book decomposition for (N, ξ|N ). Let

ν(K) be a standard neighborhood of K inside of N , and let ν(K �) be a standard neighborhood

of K � inside of Y −N . We can build an open book decomposition for all of Y by considering the

the handlebodies (N � − ν(K �)) ∪ ν(K) and ν(K �) ∪ (N − ν(K)). By construction, each of these

handlebodies are disk decomposable. A page S of the open book for (Y, ξ) is constructed from

the page of the partial open book for (N, ξ|N ) by repeatedly attaching 1-handles away from the
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portions of the open book coming from the boundary of ν(K). A picture of this construction is

depicted in Figure 4.2.

In Figure 4.2, the portion of the page S coming from the boundary of N is shown in black,

and has its boundary lines thickened. The portion of S coming from the boundary of ν(K) is

lightly colored (orange), and appears in the lower right portion of the figure. Finally, the portion

of S coming from the extension of the open book to all of Y is also lightly colored (green), and

appears in the lower left corner of the figure.

Let {a1, . . . , an} be a basis for the partial open book coming from (N, ξ|N ), and let φ be

the corresponding partially defined monodromy map for this open book. Consider a new partial

open book, whose page is equal to S, and whose partially defined monodromy map is equal to φ.

Because this new partial open book only differs from the partial open book coming from (N, ξ|N )

by handle attachments away from ∂ν(K), the contact element for this new partial open book

vanishes along with c(N, ξ|N ).

Since Y −N is connected, the basis {a1, . . . , an} can, after a suitable number of stabilizations,

be extended to a basis for all of Y .
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open book. Consider a new partial open book, whose page is equal to S,
and whose partially defined monodromy map is equal to φ. Because this
new partial open book only differs from the partial open book coming from
(N, ξ|N ) by handle attachments away from ∂ν(K), the contact element for
this new partial open book vanishes along with c(N, ξ|N ).

Since Y − N is connected, the basis {a1, . . . , an} can, after a suitable
number of stabilizations, be extended to a basis for all of Y .
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By construction, the new monodromy map φ� extends φ, the monodromy
map for N . We can see our Legendrian L on the page S. The local picture
around L ⊂ S (shown in blue) must look like that in Figure 8.

As was observed in [LOSS08], the “spinning” isotopies needed to make
this Heegaard diagram strongly admissible can be performed on the por-
tion of the Heegaard diagram coming from the page S1. This changes the
monodromy map φ�, but only within its isotopy class.

If we delete the α- and β-curves coming from {a�0, a�1, . . . , a�s}, then we are
left with a diagram which is essentially equivalent to that coming from the
partial open book (S,φ), but whose monodromy has been changed by an
isotopy. Since altering the monodromy map by an isotopy cannot change
whether or not the contact element vanishes in sutured Floer homology,
we know that the contact element corresponding to the partial open book
(S,φ�) vanishes. That is, if x = (x1, . . . , xn), then there exist ci and yi such
that ∂(

�
i ciyi) = x in the sutured Floer homology of the manifold obtained

from the partial open book (S,φ�).
Let x� = (x�0, x�1, . . . , x�s); we claim that ∂(

�
i ci(yi,x�)) = (x,x�) in

HFK−(−Y,L). The intersection points coming from x� must map to them-
selves via the constant map. This allows us to ignore the α- and β-curves
corresponding to these intersection points, leaving us with a diagram which
is essentially equivalent to the partial open book (S,φ�). �

Figure 4.2: Viewing the resulting open book decomposition

By construction, the new monodromy map φ� extends φ, the monodromy map for N . We can

see our Legendrian knot L on the page S. The local picture around L ⊂ S (shown in blue) must
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look like that in Figure 4.2.

As was observed in [LOSS08], the “spinning” isotopies needed to make this Heegaard diagram

strongly admissible can be performed on the portion of the Heegaard diagram coming from the

page S1. This changes the monodromy map φ�, but only within its isotopy class.

If we delete the α- and β-curves coming from {a�0, a�1, . . . , a�s}, then we are left with a dia-

gram which is essentially equivalent to that coming from the partial open book (S, φ), but whose

monodromy has been changed by an isotopy. Since altering the monodromy map by an iso-

topy cannot change whether or not the contact element vanishes in sutured Floer homology, we

know that the contact element corresponding to the partial open book (S, φ�) vanishes. That is,

if x = (x1, . . . , xn), then there exist ci and yi such that ∂(
�

i ciyi) = x in the sutured Floer

homology of the manifold obtained from the partial open book (S, φ�).

Let x� = (x�0, x�1, . . . , x�s); we claim that ∂(
�

i ci(yi,x�)) = (x,x�) in HFK−(−Y, L). The

intersection points coming from x� must map to themselves via the constant map. This allows us

to ignore the α- and β-curves corresponding to these intersection points, leaving us with a diagram

which is essentially equivalent to the partial open book (S, φ�).
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Chapter 5

c-Bar and Bindings of Open Books

In this chapter, we prove Theorem 5. The effort in this proof is in showing that if (B,S) is an open

book decomposition of a given contact manifold (Y, ξ), then the invariant c(B) is nonvanishing.

Having established this, it follows easily from Ghiggini, Honda and Van Horn-Morris’s vanishing

theorem [GHV07] that the complement of B must be torsion-free.

Proof of Theorem 5. Let (B,S) be an open book decomposition for the contact manifold (Y, ξ),

and let LB be any Legendrian approximation of B. We must show that the contact manifold

(Y (LB), ξLB
), constructed in Section 2.4, has nonvanishing contact invariant.

As an intermediate step in proving c(Y (LB), ξLB
) is nonzero, we prove the following lemma:

Lemma 5.0.3. The contact manifold (Y (LB), ξLB
) is tight.

Proof of Lemma 5.0.3. To show that (Y (LB), ξLB
) is tight, we apply the Colin gluing theorem

(see [Col99]).

Colin’s gluing theorem states that if (Y1, ξ1) and (Y2, ξ2) are two universally tight contact

manifolds, and Ti ⊂ Yi are pre-Lagrangian, incompressible tori, then the contact manifold obtained

by gluing Y1 to Y2 along T1 and T2 is universally tight.
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Suppose for the moment that the binding B has a single component, and let T be the convex

torus bounding (Y − ν(LB), ξ|Y −ν(LB)). The contact manifold (Y (LB), ξLB
) is obtained from

(Y − ν(LB), ξ|Y −ν(LB)) by attaching a basic slices to the boundary torus T .

As observed in Section 2.4, this basic slice attachment factors as a composition of two basic

slice attachments. The first such attachment corresponds to a negative stabilization of LB

(Y − ν(LB), ξ|Y −ν(LB)) ❀ (Y − ν(L�
B), ξ|Y −ν(L�

B)),

while the second corresponds to the attachment,

(Y − ν(L�
B), ξ|Y −ν(L�

B)) ❀ (Y (L�
B), ξL�

B
) = (Y (LB), ξLB

).

Inside this first basic slice, we can find a pre-Lagrangian torus T � parallel to the original

boundary component T . The complement of this pre-Lagrangian torus has two components; the

first diffeomorphic to T 2 × I, and the other to Y −B.

The contact structure restricted to either of these subspaces is universally tight. In the case

of T 2 × I, this is true because it sits as a subspace of a basic slice, a universally tight contact

manifold. In a similar spirit, the second component is contained in complement of the binding,

(Y −B, ξ|Y −B), which is also universally tight.

In general, the binding B consists of many components. In that case, we apply the above argu-

ment inductively to each of the basic slice attachments yielding the contact manifold (Y (LB), ξLB
),

concluding that the result is universally tight.

All that remains to be checked before we can inductively apply the Colin gluing theorem is

that each of the boundary tori Ti ⊂ ∂ (Y −B) are incompressible.

To see that each Ti is incompressible, we consider its preimage inside the universal cover of

Y − ν(B). We claim that each preimage is homeomorphic to a copy of R2, immediately implying

incompressibility.

Recall that Y −ν(B) is a surface bundle over S1, fibered by oriented surfaces Sθ, whose oriented

boundary is B. Consider first the intermediate cover which unwraps the S1-factor. This cover is
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homeomorphic to S × R. In this intermediate cover, the preimage of each Ti is a cylinder.

The universal cover of Y − ν(B) is homeomorphic to the universal cover of S crossed with the

real line R. Passing to the full universal cover, we see that the preimage of each of the above

cylinders is homeomorphic to R2.

This shows that each of the Ti are incompressible, finishing the proof of Lemma 5.0.3.

Knowing that the contact manifold (Y (LB), ξLB
) is tight, we can proceed with showing that

its contact invariant is nonvanishing.

As we saw in Chapter 3, the Legendrian approximation LB can be chosen so that the twisting

of the contact planes with respect to the framing induced on each component of LB by the fiber

surface S is −1. In this case, the local picture around each boundary component of (Y (LB), ξLB
)

is shown in Figure 5.1(a).
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In this case, observe that the dividing set on a convex annulus extending
the page S to the meridian-sloped boundary component consists, up to
isotopy, of two horizontal dividing curves (see Figure 3(b)). Denote by S�

the extension of the convex surface S by this convex annulus.
The dividing set on S1 consists of a collection of boundary-parallel divid-

ing curves; one for each boundary component of Y (LB). Such a surface is
called well-groomed.

It was shown in [HKM07] that if (Y2, ξ2) is obtained from (Y1, ξ1) by
cutting along a well-groomed convex surface, then the contact invariant of
(Y2, ξ2) is nonvanishing if and only if the contact invariant of (Y1, ξ1) is
nonvanishing. Therefore, to prove Theorem 1.5, it suffices to show that the
contact manifold obtained by cutting along S� is nonzero.

Cutting along S�, we obtain the tight contact manifold (Y �, ξ�), whose
dividing set is shown in Figure 4.
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Figure 5.1: Constructing Y (LB) and viewing factor tori

In this case, observe that the dividing set on a convex annulus extending the page S to the

meridian-sloped boundary component consists, up to isotopy, of two horizontal dividing curves

(see Figure 5.1(b)). Denote by S� the extension of the convex surface S by this convex annulus.

The dividing set on S1 consists of a collection of boundary-parallel dividing curves; one for

each boundary component of Y (LB). Such a surface is called well-groomed.
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It was shown in [HKM07] that if (Y2, ξ2) is obtained from (Y1, ξ1) by cutting along a well-

groomed convex surface, then the contact invariant of (Y2, ξ2) is nonvanishing if and only if the

contact invariant of (Y1, ξ1) is nonvanishing. Therefore, to prove Theorem 1, it suffices to show

that the contact manifold obtained by cutting along S� is nonzero.

Cutting along S�, we obtain the tight contact manifold (Y �, ξ�), whose dividing set is shown in

Figure 5.2.
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Figure 5.2: Splitting Y (LB) along a page

This contact manifold with convex boundary is diffeomorphic to the surface S� × [0, 1]. The

dividing set is isotopic to the collection of curves ∂S� × 1/2.

Tight contact structures on such manifolds are unique. These contact structures are defor-

mations of foliations, and embed into closed, Stein fillable contact manifolds. Since the contact

invariant for closed manifolds is nonvanishing for Stein fillable manifold, it must be the case that

the sutured contact invariant for the contact manifold (Y �, ξ�) is nonvanishing.

This finishes the proof and shows that c(B) �= 0.
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Chapter 6

Sutured Floer Homology and

Contact Structures on Solid Tori

Consider two tight contact structures ξ1 and ξ2 on a solid torus with convex boundary and 2n

vertical dividing curves. Theorem 6 states that ξ1 and ξ2 are isotopic as contact structures if and

only if c(ξ1) = c(ξ2) inside the sutured Floer homology group SFH(−(S1 ×D2),−Γ2n).

We can understand such contact structures by focusing on convex meridional disks D ⊂ (S1×

D2, ξ2n). Since the contact structures we are interested in are tight, the dividing set on any such

D cannot contain embedded simple closed curves. Therefore it consists of precisely n properly

embedded arcs connecting 2n distinguished points on the boundary of D (points on ∂D which

intersect the dividing set Γ2n). Call such a collection of properly embedded arcs on a disk an

admissible dividing set.

The following proposition establishes a relationship between contact structures on solid tori

with the above boundary conditions and dividing sets on convex meridional disks.

Proposition 6.0.1. Let ξ1 and ξ2 be contact structures on S1×D2 with convex boundary and 2n

vertical dividing curves, and suppose that D1 and D2 are convex meridional disks for ξ1 and ξ2
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Figure 6.1: Convex meridional disks

respectively. If dividing sets on D1 and D2 are isotopic and if each ξi is tight in the complement

of Di, then ξ1 and ξ2 are isotopic.

Proof. Observe that there exists an isotopy φt of S1 ×D2 which fixes each of the dividing curves

on T = ∂(S1 ×D2) as a set and, at time one, maps D1 to D2. We can further assume that φ1 is

a contactomorphism of standard open neighborhoods N(Di ∪ T ). That is,

φ1 : N(D1 ∪ T ) → N(D2 ∪ T )

is a diffeomorphism, and

φ1∗ξ1|N(D1∪T ) = ξ2|N(D2∪T ).

Since ξ�1 = φ1∗ξ1 and ξ2 agree on N(D2 ∪T2), after cutting along D2 and rounding corners, we

get two tight contact structures ξ�1 and ξ2 on the ball B3 with convex boundary. All such tight

contact structures are isotopic, implying that the contact structures ξ�1 and ξ2 are isotopic away

from D2 ∪ T , finishing the proof.

Remark 6.0.2. For each admissible dividing set Γ, there exists a contact structure ξ on S1×D2

such that,
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• Γ as the dividing set on a convex meridional disk D ⊂ (S1 ×D2, ξ), and

• after cutting along D and rounding corners, the result is a tight contact structure with

convex boundary on the ball B3.

Proposition 6.0.1 asserts that this induced contact structure is unique up to a contact isotopy

preserving the dividing curves on ∂(S1 ×D2).

Figure 6.2 depicts the collection of all possible admissible dividing sets in the case n = 3.

Figure 6.2: Possible dividing sets on convex meridional disks when n = 3

Giroux and Honda independently proved the converse to Proposition 6.0.1, establishing a

one-to-one correspondence between the set tight contact structures on solid tori with 2n vertical

dividing curves and the set of admissible dividing sets on convex meridional disks. For example,

combining their result with the enumeration given in Figure 6.2, we see that there are precisely 5

distinct tight contact structures on (S1 ×D2,Γ6) up to isotopy.

We aim to proof of this fact directly using Heegaard Floer homology. This is accomplished by

explicitly computing the contact invariants for each of the (potentially) tight contact structures on

(S1 ×D2,Γ2n). After confirming that each contact invariant is nonvanishing (verifying tightness

of all relevant contact structures), we show that they are all pairwise distinct.
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6.1 Obtaining a Partial Open Book

The first step in our proof is to generate partial open book decompositions and, in turn, sutured

Heegaard diagrams for (−(S1 × D2),−Γ2n) corresponding to each admissible dividing set on a

convex meridional disk D. This construction is identical to that in [HKM07].

Fix a dividing set Γ on D, and let ξ2n be the contact structure on S1 ×D2 induced by Γ. A

Legendrian skeleton for (S1 ×D2, ξ2n) is obtained by choosing a suitable graph GD contained in

D.

1 2

3

45

6

1 2

3

45

6
GD

GD

Figure 6.3: Obtaining the graph GD

Each component of D − Γ is naturally a 2m-gon. For each 2m-gon which is not a bigon, there

is, unique up to isotopy, a tree which has a single interior vertex, one “boundary vertex” on each

of the m-boundary edges not contained in Γ, and m-edges beginning at the interior vertex and

terminating at each of the boundary vertices. Denote the union of such trees in D by GD (See

Figure 6.3).

Since each component of D − GD contains elements of the dividing set Γ, we can apply the

Legendrian realization principle to make GD Legendrian (see [Etn06]). Removing a standard open

tubular neighborhood of GD from (S1×D2, ξ2n), the the subdisks of D give a disk decomposition

of the result. Figure 6.4 depicts such disk decompositions in two main n = 3 cases.

From this disk decomposition, we can apply the method described in [HKM07] to obtain a

partial open book (S, P, φ) for (S1 × D2, ξ2n). The partial open books resulting from the disk
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Figure 6.4: Choosing a Legendrian skeleton and the resulting partial open book
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decompositions in Figure 6.4 are shown in the lower portion of that same figure.

Given an admissible dividing set Γ on D, denote the partial open book decomposition obtained

by applying the above procedure to the pair (D,Γ) by (SD, PD, φD). The subsurface PD consists

of a disjoint union of polygons, one for each component of the graph GD. The page SD is a union

of annuli connected to one another by components the subsurface PD. Each annulus intersects at

least one, but no more than two component of PD.

The next step is to choose a basis for the subsurface PD. Beginning with the simplest case

first, let (S, P, φ) be the partial open book obtained by applying the above algorithm to a convex

meridional disk with dividing set consisting of k boundary parallel curves. In this case, P has a

single component and the page S is equal to P with k annular strips glued to every other boundary

edge.

The basis {a1, . . . , ak−1} consists of properly embedded arcs in P parallel to the annular

components of S. One arc is placed next to the annular strip A12, which is boarded by the

number 1 and 2 sutures. From there, arcs are placed in counterclockwise order around P .

As discussed in Chapter 2, the contact invariant is specified by the (unique) collection of

intersection points (x1, . . . , xk) between the β and α curves on the “top copy” (hidden from view)

of the subsurface P .

In this restricted case, where the dividing set ΓD consists solely of boundary-parallel arcs,

we call the resulting sutured Heegaard diagram a basic initial diagram. Note that a basic initial

diagram comes equipped with an identification of the A12 annular component or, equivalently, an

identification of the number 1 and 2 boundary sutures.

Abstractly, partial open books yielding basic initial diagrams can be iteratively glued together

along their annular components, creating a “tree” of sorts. If Pi is a component of P , define the

distance from Pi to A12 to be the minimum number of components of P intersected by an arc

beginning inside Pi and terminating in A12.

After identifying the annular component A12, the basis choice convention can then be extended
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to this more general setting. First, we choose a basis on the distance-one components of P

(i.e., the components of P whose boundaries intersect A12). As before, basis arcs will consist of

properly embedded arcs parallel to the annular components of S. Place arcs parallel to A12 and

extend counterclockwise as before. Next, we consider the distance-two components of P . By the

constructing of (S, P ), each such component is connected by a unique annular strip to a distance

one component of P . Place an arc parallel to this annular component, and extend counterclockwise

as before. Now repeat this procedure for all the distance-three components, and so on.

The resulting sutured Heegaard diagram, together with an identification of the number 1 and

2 sutures is called an initial diagram.

An alternate example in the case n = 7 is shown in Figure 6.5. In this example, we start with

a dividing set on a convex meridional disk and immediately report the resulting initial diagram.
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Figure 6.5: Obtaining a partial open book from a convex meridional disk

We see immediately that the Heegaard diagrams generated from convex meridional disks ac-

cording to the above described procedure are examples of initial diagrams.

Observation 1: All initial diagrams come from a unique admissible dividing set on a convex

meridional disk. In other words, there is a one-to-one correspondence between the set of admissible
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dividing sets on convex meridional disks and the set of abstract initial diagrams.

The identification of the number 1 and 2 sutures determines a numbering on all the remain-

ing sutures in an initial diagram. Vice versa, identifying the intersections of the number 1 and

2 boundary sutures with a convex meridional disk D removes any rotational ambiguity in the

dividing set on D.

This first observation allows us to refocus our attention on particular diagrams, and show that

their corresponding contact invariants are pairwise distinct.

6.2 Standard Diagrams Part One

We now begin describing a handle-slide algorithm whose input is an initial diagram (see Sec-

tion 6.1), and whose output is a fixed sutured Heegaard diagram for (−S1 ×D2,−Γ2n).

To distinguish each of the relevant contact invariants, they must be simultaneously realized

on a common sutured Heegaard diagram. This common diagram is depicted in Figure 6.6. The

effort in subsequent sections is devoted to tracking the contact element through the various maps

induced by the handle-slides transforming a given initial diagram into standard form.

1 2 3 4 5 2n

Figure 6.6: A sutured Heegaard diagram in standard form

Focusing once again on a simple case first, consider an initial diagram which is built by gluing

together two basic initial diagrams along the A12 annular component, like the one shown in the

upper left portion of Figure 6.7.

Any initial diagram specifies a sutured Heegaard diagram, whose Heegaard surface Σ is topo-

logically a 2n-punctured sphere with one boundary component for each suture. Choose a point

p in the center of A12, then stereographically project Σ from p to the plane R2. An example of

39



the resulting Heegaard diagram in the case at hand is shown in the upper right corner of Fig-

ure 6.7. After an isotopy, we obtain the somewhat simpler diagram shown in the lower portion of

Figure 6.7.

We have identified the collection of intersection points between the lightly colored (blue) α

curves and the dark colored (maroon) β curves corresponding to the contact invariant by black

dots, a convention we will continue whenever possible.

1 2

p

1 2

1 2

A12

Figure 6.7: Construction of a basic H1-diagram

This sutured Heegaard diagram, together with this collection of intersection points is called

a stage one H1-diagram. The portion of a stage one initial diagram to the right of the number

one suture is a basic H1-diagram. The length of a basic H1-diagram is the number of α (or β) it

contains.

Note that after identifying the 1 and 2 boundary sutures (dividing curves), by the placement

of the α and β curves and the ordering of the dividing curves along the boundary of S1×D2, the

numbering on the remaining sutures in a stage one H1-diagram is uniquely determined.

In Figure 6.7, some of the regions bounded by sutures have been decorated with solid (purple)
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triangles. We call these regions receiving regions. Their purpose will shortly become apparent.

In the general case, an initial diagram is built by gluing together many basic initial diagrams

and identifying the annular strip A12. In this case, we apply the exact same procedure. First, we

choose a point p at the center of the annular strip A12. Next, we stereographically project from p

onto the plane R2 and simplify the result as above.

1 2
p 1 2

1 2

A12

Figure 6.8: Construction of an H1-diagram

Figure 6.8 depicts an example where the initial diagram consists of an n = 3 basic initial

diagram glued to an n = 4 basic initial diagram along the second annular boundary component

(according to the counterclockwise ordering used in Section 6.1). Following the above procedure,

we see that the result is stage one H1-diagram with the first receiving suture on the right-hand

side replaced by the inversion of a length two basic H1-diagram.

An H1-diagram is a sutured Heegaard diagram together with a collection of distinguished
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intersection points x which is built from a stage one H1-diagram by iteratively replacing receiving

sutures by the inversions of positive length basic H1-diagrams. The following observation is

immediate.

Observation 2: There is a one-to-one correspondence between the set of abstract initial diagrams

and the set of abstract H1-diagrams.

6.3 Admissibility

In what follows, we consider many different Heegaard double and triple diagrams. For our argu-

ments to hold, admissibility of each diagram is essential. Because the relevant Heegaard surfaces

possess many boundary components, the weak admissibility of each diagram is evident.

We leave this as a straightforward exercise to the reader with the following hint: any α- or

β-which bounds regions with boundary sutures on both sides cannot itself be contained in the

boundary of a periodic domain with all positive or all negative coefficients.

6.4 Nonvanishing of the Contact Invariants

We can now conclude that each of the contact invariants under consideration are nonzero. Because

of the abundance of sutures in each H1-diagram, the boundary map for such a Heegaard diagram

is identically zero. Therefore, every collection of intersection points, including the contact element,

which pairs the α and β curves represents a nonzero element in sutured Floer homology.

This, in particular, implies that any contact structure induced by an admissible dividing set

on a convex meridional disk MUST be tight.

6.5 Standard Diagrams Part Two

We now begin a simplification process that will transform an H1-diagram to standard form.
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The essential content of this section is captured in Figures 6.9 and 6.10. The top portion of

Figure 6.9 depicts a basic H1-diagram. The lower portion of this figure is obtained from the top

by handle-sliding the outermost (blue) curve α0 repeatedly over all other α curves until it becomes

α�0, swallowing only the two rightmost receiving suture and boundary suture.

α0

α�0

Figure 6.9: Simplifying a basic H1-diagram

For such a sutured Heegaard diagram, consider the distinguished collection of “upper” inter-

section points. Call the result of this sequence of handle-slides applied to a basic H1-diagram,

together with the collection of “upper” intersection points a basic H2-diagram.

This process can be generalized to an arbitrary H1-diagram in the following way. Order the

basic H1-diagrams constituting a given H1-diagram lexicographically, first by stage, then by their

left-to-right order in the diagram. Now, in lexicographic order, apply the above sequence of

handle-slides to each basic H1-diagram.

An example of this procedure is illustrated in Figure 6.10.

The resulting sutured Heegaard diagram, together with the obvious distinguished collection

of intersection points is called an H2-diagram. Abstractly, an H2-diagram can be constructed in

stages by iteratively replacing receiving sutures with inversions of basic H2-diagrams.

Observation 3: There is a one-to-one correspondence between the set of H1-diagrams and the

set of abstract H2-diagrams.
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1 2

1 2

Figure 6.10: Simplifying an H1-diagram

Our task now shifts to understanding how the contact invariant maps under the above sequence

handle-slides.

Lemma 6.5.1. Under the maps induced by the above handle-slides, the contact invariant is iden-

tified with the distinguished collection of intersection points in the resulting H2-diagram.

Proof. Given an H1-diagram (D,x), let (D1,x1), . . . (D�,x�) be a lexicographic enumeration of

the basic H1-diagrams constituting (D,x). Our proof is by induction on this collection of basic

H1-diagrams.

Let j ≥ 1 be given, and suppose that the handle-slide algorithm has been successfully applied

to (Di,xi) for i < j, and no intersection points have been changed for i > j.

Consider the first handle-slide applied to (Dj ,xj). We can view the corresponding Heegaard

triple by looking at its restrictions to (Di,xi) for each i. For i = j, a representative picture of this

Heegaard triple is given in Figure 6.11(a). If i > j, the restriction of the corresponding Heegaard

triple to (Di,xi) is depicted in Figure 6.12(a). Similarly, if i < j, Figure 6.12(b) depicts the

corresponding Heegaard triple restricted to (Di,xi).

These pictures are completely accurate, up to the length of a given (Di,xi). It is straightfor-

ward to check that the only holomorphic triangle with corners at θ and at the contact invariant

is the one shown. In particular, almost all the triangles are forced to be small triangles, with the
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(a) (Dj ,xj), first handle-slide

θ

θ

θ

(b) (Dj ,xj), second handle-slide

Figure 6.11: Holomorphic triangles for (Dj ,xj)

θ
θ θ

(a) (Di,xi), i > j

θ θ θ

(b) (Di,xi), i < j

Figure 6.12: Other holomorphic triangles for the H1 to H2 handle-slides

Figure 6.11(a) depicting the only exception.

Similar arguments apply as we continue to handle-slide this α curve further. Representative

pictures of subsequent Heegaard triple diagrams are obtained by combining Figure 6.11(b) for

(Dj ,xj) and Figures 6.12(a) and 6.12(b) for (Di,xi) where i �= j. Again, these figures are

completely accurate up to the length of each (Di,xi).

This completes the proof of Lemma 6.5.1

We finish this section by noting that each H2-diagram falls into one of three classes. In the

first class, the number 1 suture is isolated in the “unbounded” region of R2 (as in Figure 6.8). In

the second class, we have H2-diagrams where the number 2 suture is isolated in the “unbounded”

region of R2 (as would be the case if we generated an H2-diagram from the basic initial diagram

in Figure 6.4(b)). The last class consists of diagrams where neither the number 1 nor 2 sutures

are contained in the unbounded region (as in Figure 6.7).
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In Sections 6.6 through 6.8, we focus our attention on only the first of these three classes. The

information gathered in these sections will then be used to complete the proof of Theorem 6 in

Section 6.9.

6.6 Standard Diagrams Part Three

This section discusses the next step in the simplification process. We emphasize that the handle-

slides discussed in this section only involve α and β curves in the first two stages of the H2-diagram

obtained in Section 6.5. In particular, all α and β curves coming from basic H2-diagrams in stages

two and lower are fixed under these handle-slides.

Figure 6.13 depicts two diagrams. The first is an example of an H2-diagram from the previous

section (sans intersection points). The second is an alternate sutured Heegaard diagram, obtained

from the first by a sequence of handle-slides taking β0 to β�0 and α0 to α�0.

α0β0

α�0β�0

Figure 6.13: Combining stages one and two of an H2-diagram

First, the β0 curve in the first stage of this H2-diagram is handle-slid “leftward” over each of

the β curves contained in its receiving region. This process is then repeated for the α0 curve, now

handle-sliding it “rightward” over all the α curves in that same receiving region. In the end, this

process yields the sutured Heegaard diagram shown at the bottom of Figure 6.13.

This process is repeated (when applicable) for each of the other first stage α and β curves
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whose enclosed receiving region contains a positive length basic H2-diagram. In the end, the first

and second stages of the original H2-diagram are combined into a single first or “top” level portion

of the sutured Heegaard diagram. As before, our task shifts to understanding how the contact

invariant maps under this sequence of handle-slides.

The computation in this case is similar to that in Lemma 6.5.1. Let (D,x) be a given H2-

diagram, and let {(Di,xi)} be the basic H2-diagrams constituting (D,x), ordered lexicographi-

cally. Then (D1,x1) is the sole stage one basic H2-diagram, (D2,x2), . . . , (Dk,xk) are the stage

two basic H2-diagrams, and (Dk+1,xk+1), . . . , (D�,x�) are the rest.

The first in this sequence of handle-slides involves sliding a β curve from (D1,x1) over a β

curve in (D2,x2). A representative picture of this portion of the resulting Heegaard triple diagram

is shown in Figure 6.14(a). For i > 2, the Heegaard triple diagram restricted to (Di,xi) is similar

to Figure 6.14(c). As in the proof of Lemma 6.5.1, these figures are completely accurate up the

the lengths of a given (Di,xi).

θ

θ
θ

θ

(a) (D1,x1) and (D2,x2), first handle-slide

θ θ θ

θ

(b) (D1,x1) and (D2,x2), second handle-slide

θ θ θ

(c) (Di,xi), i ≥ 3

Figure 6.14: Holomorphic triangles for the β handle-slides

Focusing on the intersection points x corresponding to the contact element, we see that only

the small triangles shown have corners at θ and at x. Therefore, its image under the induced map

on homology is simple to compute.
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Again restricting our attention to (D1,x1) and (D2,x2), the Heegaard triple for subsequent

handle-slides in this sequence is shown in Figure 6.14(b). For (Di,xi), i ≥ 2, this Heegaard triple

diagram is similar to Figure 6.16(c). As before, only small triangles are possible if we are focusing

on how the contact element maps under these handle-slides.

The resulting Heegaard diagram and contact invariant after sliding β0 all the way to the left

is as depicted in Figure 6.15. We see that one passes from the original sutured Heegaard diagram

to the new one by exchanging β curves, and fixing intersection points which correspond to the

contact element.

Figure 6.15: Resulting Heegaard diagram after the β handle-slides

We now begin the process of handle-sliding the α0 curve rightward over what was formerly

(D2,x2). For the first such handle-slide, Figures 6.16(a) and 6.16(b) (together with Figure 6.16(c)

for (Di,xi), i > 2) depict the two possible holomorphic triangles with corners at θ and the contact

invariant.

Therefore, after this first handle-slide, the contact invariant is mapped to a sum of inter-

section points. A sensible way of describing this map would be to say that this map sends

“(up,down,down,up)” (alternatively, (u, d, d, u)) to the sum (u, d, d, u) + (d, u, d, u). All other

intersection points are fixed.

Following through with the second handle-slide, there will now be three holomorphic triangles

involved in the map. The first two will be similar to those in Figure 6.16, and will correspond

to the mapping (d, u, d, u) �→ (d, u, d, u) + (d, d, u, u). The third, shown in Figure 6.17, maps

(u, d, d, u) to (u, d, d, u), with all other intersection points fixed.

The final result of this procedure is shown in Figure 6.18. In the end, we see that the intersection
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θ
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(a) (D1,x1) and (D2,x2), first handle-slide,

first holomorphic triangle

θ

θ
θ

θ

(b) (D1,x1) and (D2,x2), first handle-slide,

second holomorphic triangle

θ θ θ

(c) (Di,xi), i ≥ 3

Figure 6.16: Holomorphic triangles for the first α handle-slide

θ

θ

θ

θ

Figure 6.17: An additional holomorphic triangles for subsequent α handle-slides
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points (u, d, d, u) are sent to the new collection of intersection points (u, d, d, u) + (d, u, d, u) +

(d, d, u, u), which can be obtained from (u, d, d, u) by permuting the first three entries and summing

the resulting elements.

Thus, if (D2,x2) has length �, then the resulting sum will have precisely � summands.

Figure 6.18: Resulting Heegaard diagram after the first sequence of α handle-slides

We repeat this same sequence of handle-slides for (D3,x3) through (Dk,xk). It is easy to see

that if handle-slides are being performed between “(D1,x1)” and (Di,xi), then intersection points

corresponding to handle-slides of “(D1,x1)” with (Dj ,xj), j < i, are left unchanged. The result

is a sum of collection of intersection points.

6.7 Standard Diagrams Part Four

Although the resulting maps on sutured Floer homology in this section are quite different, the

sequence of handle-slides performed here are nearly identical to those in Section 6.6.

We can view the handle-slides performed in Section 6.6 as bringing the second stage of our old

H2-diagram up to the first or “top” level. In a similar spirit, our goal here is to bring the third

stage of our original H2-diagram to this top level. An example is depicted in Figure 6.19.

The process involves handle-sliding the (formerly) stage two β0 curve repeatedly rightward

over the stage three β curves until it become β�0. Similarly, the α0 curve is handle-slid repeatedly

leftward until it becomes α�0.

We apply this sequence of handle-slides to each stage three basic H2-diagram, beginning with

the leftmost such diagram. As in previous sections, Figures 6.20 and 6.21, together with Fig-

ures 6.14(c) and 6.16(c), depict the holomorphic triangles involved in tracking how the contact
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α0 β0

α�0 β�0

Stage 3 H2-diagram

Figure 6.19: Lifting the third stage of an H2-diagram to the top

element maps.

θ θ θ

θ

θ

Figure 6.20: Holomorphic triangles for the β handle-slides

θ

θ θ θ θ

Figure 6.21: Holomorphic triangles for the α handle-slides

Because of the way the α and β curves intersect one another at the stage, the corresponding

maps consist only of small triangles. In particular, one passes from the old diagram to the new one

by simply exchanging the relevant α and β curves and leaving the intersection points corresponding

to the contact element untouched.

The third stage of our original diagram has now been brought, untouched, to the top level. We

now apply the handle-slides discussed in the previous two sections to this third-stage. A simple
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check shows that vertices coming from stage one and two portions of the original H2-diagram are

fixed.

We are now poised to apply the handle-slides discussed in this section and in Section 6.6 to

subsequent stages of our original H2-diagram. We observe that as each new odd stage of our

original H2-diagram is brought to the top level, intersection points of earlier stages are fixed (only

small triangles are allowed for those portions of future Heegaard triples).

6.8 Trees

Here, we complete the proof of Theorem 6 in the special case where the boundary suture (1) is

contained in the unbounded region. This is accomplished by describing a straightforward method

of tracking the contact element as we pass from an H2-diagram to one in standard form.

To show that each of the resulting contact elements are distinct, we prove that an H2-diagram

can be reconstructed from its corresponding contact invariant. This finishes the proof of Theorem 6

in Case 1.

Recall that a general H2-diagram is generated by iteratively replacing receiving sutures by

inverted basic H2-diagrams. The information content in specifying a generic H2-diagram can be

alternatively captured by a tree with “colored” vertices as shown in Figure 6.22

Figure 6.22: Obtaining a colored tree from an H2-diagram

This tree is built iteratively in the same manner as our H1- and H2-diagrams. We have one

zeroth level vertex, and one circular first level vertex for each of the receiving regions in the first

stage basic H2-diagram. The circular shape is used to indicate that only “up” intersections are

possible at this level.
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If the ith receiving region of the first stage basic H2-diagram is replaced by a length � basic

H2-diagram, then we place � solid vertices below the ith first level vertex and connect these new

vertices to their circular parent by edges. Solid vertices are used to indicate that only “down”

intersections are possible at even stages.

Iterating this process by using circular vertices for odd stage basic H2-diagrams and solid

vertices for even level basic H2-diagrams, we see that an H2-diagram uniquely determines a colored

tree and vice versa.

That this tree descends, reflects the fact that the intersection points corresponding to the

contact element in an H2-diagram are not initially naturally ordered. We will see a natural

ordering emerge as we apply the handle-slides described in Sections 6.6 through 6.7.

Figure 6.23 depicts the handle-slide algorithm defined in Sections 6.6 through 6.7 applied to a

specific example. The left-hand side tracks the effect of these handle-slides on the level of sutured

Heegaard diagrams, while the right-hand side tracks the resulting changes to the tree.

At various times in the algorithm, natural orderings of vertices appear. We take advantage

of this fact by “lifting” relevant vertices up so that they are on the same level and appropriately

ordered. As long as edges are kept intact, no information is lost.

The end result is a sum of colored trees, all of whose vertices have been lifted to the same

level. Forgetting edges, and only remembering the sequence of circles and dots (corresponding

to a sequence of up and down intersections), the result specifies an element in the sutured Floer

homology groups of the ambient sutured manifold. The sum of these elements is the contact

invariant for that particular H2-diagram.

Final Observation: The process described above can be inverted. In other words, even

after throwing away edge information about how vertices are connected, the original graph can be

reconstructed from the contact element alone.

Therefore, all the relevant contact elements MUST be unique since their corresponding H2-

diagrams are unique.
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Figure 6.23: Simplifying an H2-diagram and the resulting changes to the tree
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Proof of Final Key Observation. Let G be a colored graph coming from some H2-diagram. Con-

sider the collection {Gi} of all colored graphs that can be constructed from G by permutations of

circular vertices with their solid children.

We can describe an abstract “lifting process” as follows. Fix the position of the zeroth level

vertex. Now, from top down, iteratively lift odd-level vertices so that they lie immediately to the

right of their parent; lift even-level vertices so that they lie immediately to the left of their parent.

We can apply this abstract lifting process to the collection of graphs contained in {Gi} and sum

everything together. Forgetting about edges, the result is easily seen to be equal to the contact

element obtained above.

Let S be a sum of sequences of circles and dots obtained by applying the above process to

some colored graph G. The following steps reverse this process:

Step 1: If every ith element in each summand is circular, draw one small circle on your page

along the x-axis (at “hight” y = 0), and remove the ith element from each summand.

Remove repeat summands, and repeat this for every “fixed” circle (these correspond to the

lowest level circles at the ends of G), each time placing a new circle along the x-axis (matching

their order of appearance in each of the summands).

Go to Step 5 if the sum is empty.

Step 2: Look for a summand with two circles side-by-side, say the ith and (i+1)st elements in

this summand. Now progress rightward through each summand finding the next instance where

two circles occur side-by-side, say the kth and (k + 1)st elements. Now place i− k − 1 solid dots

at height y = 1 and one small circle above them at height y = 2. Add edges from this circle down

to each of the solid dots. Now remove the (i + 1)st through kth dots from each summand.

If any of the circles removed in Step 1 fell between the removed dots, place an edge connecting

that green dot to its “former” right neighbor.

Remove any repeat summands. Go to Step 5 if no dots remain.

Step 3: Repeat the procedure described in Step 2, now placing the new solid dots one level
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above the previously placed circles, and the new circles one level above the new solid dots.

If any of the previously removed collections of circles and dots fell between newly removed

circles and dots, place an edge connecting the top circle to their “former” right neighbor.

Step 4: If elements remain in the sum, go back to Step 3; otherwise, go to Step 5.

Step 5: Place one black dot above all others and connect it by edges to any circles with no

solid dots above them

The resulting colored tree is G.

6.9 Three Main Cases

We are now poised to finish the proof of our main theorem. The problem can be broken into three

main cases.

Case 1: In the H2-diagram, the number 1 suture is contained in the unbounded region.

This is precisely the case that was handled in Sections 6.5 through 6.8, where we saw that each

of the resulting contact invariants must be pairwise distinct.

Case 2: In the H2-diagram, the number 2 suture is contained in the unbounded region.

Rotate the H2-diagram by 180 degrees. The result will be a diagram similar to that in Case

1, but with the orders of sutures reversed. By an analysis similar to that in Case 1, we conclude

that each of the contact invariants in this Case are pairwise distinct. What remains is to check

that each of these elements are distinct from those in Case 1. To see that this is the case, consider

Figure 6.24.

In the top portion of Figure 6.24, we see an example of an H2-diagram from Case 2. Next,

in the middle of that same figure, we see the same diagram after an isotopy which sends the β0

curve around the other side of the spherical Heegaard surface. Last, the bottom portion of this

Figure 6.24 depicts that same sutured Heegaard diagram after handle-sliding the β0 curve leftward
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Figure 6.24: First simplification to an H2-diagram from Case 2

until it becomes β�0 and swallows only the second and third boundary sutures.

A simple computation, like that in Section 6.2, shows that this sequence of handle-slides maps

the contact invariant as shown in the bottom of Figure 6.25, leaving intersections at subsequent

stages of this diagram untouched.

The key observation is that if we now put this diagram into standard form, the contact element

will be a sum of collections of intersection points, each beginning with a “down” intersection. This

cannot happen in Case 1.

Case 3: In the H2-diagram, neither the number 1, nor the number 2 sutures are contained in

the unbounded region.

By an argument similar to that in Cases 1 and 2, it follows that distinct H2-diagrams falling

into Case 3 produce distinct contact invariants. As in Case 2, what remains to be seen is that

each these contact invariants are, in turn, also distinct from those in Cases 1 and 2. To see this is

the case, consider Figure 6.25.

In the top portion of Figure 6.25, we see an example of an H2-diagram falling into Case 3.

Next, in the middle of that same figure, we see that diagram after an isotopy sending the β0
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Figure 6.25: First simplification to an H2-diagram from Case 3

curve around the other side of the spherical Heegaard surface. Last, the bottom portion of this

Figure 6.24 depicts that same sutured Heegaard diagram after handle-sliding the β0 curve leftward

and rightward until it becomes β�0 and swallows only two boundary sutures in the middle.

A computation like those in previous sections shows that this sequence of handle-slides maps the

contact invariant as shown in the bottom of Figure 6.25. Again, the maps induced by this sequence

of handle-slides leave the intersections corresponding to the contact element at subsequent stages

of this diagram untouched.

What distinguishes the contact elements in this case from those in Case 1 is that if we now

put this diagram into standard form, the contact element will be a sum of intersection points,

all having at least one common “down” intersection. This cannot happen in Case 1. However,

although each collection of intersection points in this sum has a common “down” intersection, it

cannot be the first intersection. Thus, contact elements coming from diagrams in Case 3 cannot

agree with those coming from Case 2.

This concludes the proof of Theorem 6.

✷
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