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Curves and Surfaces
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Lecture Notes 11

2.4 Intrinsic Metric and Isometries of Surfaces

Let M ⊂ R3 be a regular embedded surface and p, q ∈ M , then we define

distM(p, q) := inf{Length[γ] | γ : [0, 1] → M, γ(0) = p, γ(1) = q}.

Exercise 1. Show that (M, distM) is a metric space.

Lemma 2. Show that if M is a C1 surface, and X ⊂ M is compact, then
for every ε > 0, there exists δ > 0 such that∣∣ distM(p, q) − ‖p − q‖

∣∣ ≤ ε‖p − q‖

for all p, q ∈ X, with distM(p, q) ≤ δ.

Proof. Define F : M × M → R by F (p, q) := distM(p, q)/‖p − q‖, if p �= q
and F (p, q) := 1 otherwise. We claim that F is continuous. To see this let
pi be a sequnce of points of M which converge to a point p ∈ M. We may
assume that pi are contained in a Monge patch of M centered at p given by

X(u1, u2) = (u1, u2, h(u1, u2)).

Let xi and yi be the x and y coorindates of pi. If pi is sufficiently close to
p = (0, 0), then, since ∇h(0, 0) = 0, we can make sure that

‖∇h(txi, tyi)‖2 ≤ ε,

for all t ∈ [0, 1] and ε > 0. Let γ : [0, 1] → R3 be the curve given by

γ(t) = (txi, tyi, h(txi, tyi)).
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Then, since γ is a curve on M ,

distM(p, pi) ≤ Length[γ]

=

∫ 1

0

√
x2

i + y2
i + 〈∇h(txi, tyi), (xi, yi)〉2 dt

≤
∫ 1

0

√
x2

i + y2
i + ε(x2

i + y2
i )

2 dt

≤
√

1 + ε
√

x2
i + y2

i

≤ (1 + ε)‖p − pi‖

So, for any ε > 0 we have

1 ≤ distM(p, pi)

‖p − pi‖
≤ 1 + ε

provided that pi is sufficiently close to p. We conclude then that F is con-
tinuous. So U := F−1([1, 1 + ε]) is an open subset of M ×M which contains
the diagonal ∆M := {(p, p) | p ∈ M}. Since ∆X ⊂ ∆M is compact, we may
then choose δ so small that Vδ(∆X) ⊂ U , where Vδ(∆X) denotes the open
neighborhood of ∆X in M × M which consists of all pairs of points (p, q)
with distM(p, q) ≤ δ.

Exercise 3. Does the above lemma hold also for C0 surfaces?

If γ : [a, b] → M is any curve then we may define

LengthM [γ] :=

sup

{
k∑

i=1

distM(γ(ti), γ(ti−1))
∣∣∣ {t0, . . . , tk} ∈ Partition[a, b]

}
.

Lemma 4. LengthM [γ] = Length[γ].

Proof. Note that

distM(γ(ti), γ(ti−1)) ≥ ‖γ(ti) − γ(ti−1)‖.

Thus LengthM [γ] ≥ Length[γ]. Further, by the previous lemma, we can make
sure that

distM(γ(ti), γ(ti−1)) ≤ (1 + ε)‖γ(ti) − γ(ti−1)‖,
which yields LengthM [γ] ≤ (1 + ε) Length[γ], for any ε > 0.
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We say that f : M → M is an isometry provided that

distM(f(p), f(q)) = distM(p, q).

Lemma 5. f : M → M is an isometry, if and only if Length[γ] = Length[f◦
γ] for all curves γ : [a, b] → M .

Proof. If f is an isometry, then, by the previous lemma,

Length[γ] = LengthM [γ] = LengthM [f ◦ γ] = LengthM [f ◦ γ].

The converse is clear.

Exercise 6. Justify the middle equality in the last espression displayed
above.

Theorem 7. f : M → M is an isometry if and only if for all p ∈ M , and
v, w ∈ TpM , 〈

dfp(v), dfp(w)
〉

= 〈v, w〉.
Proof. Suppose that f is an isometry. Let γ : (−ε, ε) → M be a curve with
γ(0) = p, and γ′(0) = v. Then, by the previous lemma∫ ε

−ε

‖γ′(t)‖ dt =

∫ ε

−ε

‖(f ◦ γ)′(t)‖ dt

Taking the limit of both sides as ε → 0 and applying the mean value theorem
for integrals, yields then that

‖v‖ = ‖γ′(0)‖ = ‖(f ◦ γ)′(0)‖ = ‖dfp(v)‖.

Thus df preserves the norm, which implies that it must preserve the inner-
product as well (see the following exercise).

Conversely, suppose that ‖v‖ = ‖dfp(v)‖. Then, if γ : [a, b] → M is any
curve, we have∫ b

a

‖(f ◦ γ)′(t)‖dt =

∫ b

a

‖dfγ(t)(γ
′(t))‖dt =

∫ b

a

‖γ′(t)‖dt.

So f preserves the length of all curves, which, by the previous Lemma, shows
that f is an isometry.

Exercise 8. Show that a function F : Rn → Rn preserves the norm ‖ · ‖ if
and only if it preserves the inner product 〈·, ·〉.
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2.5 Gauss’s Theorema Egregium

Lemma 9. Let X : U → M be a proper regular chart. Then X := f ◦
X : U → M is a proper regular chart as well and gij = gij on U .

Proof. Using the last theorem we have

gij(u1, u2) = 〈DiX(u1, u2), DjX(u1, u2)〉
= 〈Di(f ◦ X)(u1, u2), Dj(f ◦ X)(u1, u2)〉
= 〈dfX(u1,u2)(DiX(u1, u2)), dfX(u1,u2)(DjX(u1, u2))〉
= 〈DiX(u1, u2), DjX(u1, u2)〉
= gij(u1, u2).

Exercise 10. Justify the third equality in the last displayed expression above.

Let F denote the set of functions f : U → R where U ⊂ R2 is an open
neighborhood of the orgin.

Lemma 11. There exists a mapping Briochi : F ×F ×F → F such that for
any chart X : U → M centered at p ∈ M ,

K(p) = Briochi[g11, g12, g22](0, 0).

Proof. Recall that

K(p) =
det lij(0, 0)

det gij(0, 0)
,

and, by Lagrange’s identity,

lij =

〈
Xij,

X1 × X2

‖X1 × X2‖

〉
=

1√
det gij

〈Xij, X1 × X2〉 ,

where Xij := DijX, and Xi := DiX. Thus

K(p) =
det(〈Xij(0, 0), X1(0, 0) × X2(0, 0)〉)

(det gij(0, 0))2
.

Next note that

det(〈Xij, X1 × X2〉) = 〈X11, X1 × X2〉〈X21, X1 × X2〉 − 〈X12, X1 × X2〉2

4



The right hand side of the last expression may be rewritten as

det(X11, X1, X2) det(X22, X1, X2) − (det(X12, X1, X2))
2,

where (u, v, w) here denotes the matrix with columns u, v, and w. Recall
that if A is a square matrix with transpose AT , then det A = det AT . Thus
the last expression displayed above is equivalent to

det((X11, X1, X2)
T (X22, X1, X2)) − det((X12, X1, X2)

T (X12, X1, X2)),

which in turn can be written as

det

〈X11, X22〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

〈X12, X12〉 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

If we expand the above determinants along their first rows, then 〈X11, X22〉
and 〈X12, X22〉 will have the same coefficients. This implies that we can
rewrite the last expression as

det

〈X11, X22〉 − 〈X12, X12〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

 0 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

Now note that each of the entries in the above matrices can be expressed
purely in terms of gij, since

〈Xii, Xj〉 =
1

2
〈Xi, Xi〉j =

1

2
(gii)j,

〈Xij, Xi〉 = 〈Xi, Xj〉i − 〈Xi, Xji〉 = (gij)i −
1

2
(gii)j,

and

〈X11, X22〉 − 〈X12, X12〉 = 〈X1, X22〉1 − 〈X1, X12〉2
= (g21)21 −

1

2
(g11)21 −

1

2
(g11)2.
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Substituting the above values in the previous matrices, we define

Briochi[g11, g22, g33] :=

1

(det(gij))2

(
det

(g21)21 − 1
2
(g11)21 − 1

2
(g11)2

1
2
(g11)1

1
2
(g11)2

(g21)2 − 1
2
(g11)2 g11 g12

1
2
(g22)2 g21 g22


− det

 0 1
2
(g11)2

1
2
(g22)1

1
2
(g11)2 g11 g12

1
2
(g22)1 g21 g22

 )
.

Evaluating the above expression at (0, 0) yields that Gaussian curvature
K(p).

Theorem 12. If f : M → M is an isometry, then K(f(p)) = K(p), where
K and K denote the Gaussian curvatures of M and M respectively.

Proof. Let X : U → M be a chart centered at p, then X := f ◦ X is a chart
of M centered at f(p). Let gij and gij denote the coefficients of the first

fundemental form with respect to the chartst X and X respectively. Then,
using the previous two lemmas, we have

K(f(p)) = Briochi[g11, g12, g22](0, 0)

= Briochi[g11, g12, g22](0, 0)

= K(p).

Exercise 13. Let M ⊂ R3 be a regular embedded surface and p ∈ M .
Suppose that K(p) �= 0. Does there exist a chart X : U → M such that D1X
and D2X are orthonormal at all points of U .
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