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Curves and Surfaces
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Lecture Notes 11

2.4 Intrinsic Metric and Isometries of Surfaces

Let M ⊂ R3 be a regular embedded surface and p, q ∈ M , then we define

distM(p, q) := inf{Length[γ] | γ : [0, 1] → M, γ(0) = p, γ(1) = q}.

Exercise 1. Show that (M, distM) is a metric space.

Lemma 2. Show that if M is a C1 surface, and X ⊂ M is compact, then
for every ε > 0, there exists δ > 0 such that∣∣ distM(p, q) − ‖p − q‖

∣∣ ≤ ε‖p − q‖

for all p, q ∈ X, with distM(p, q) ≤ δ.

Proof. Define F : M × M → R by F (p, q) := distM(p, q)/‖p − q‖, if p �= q
and F (p, q) := 1 otherwise. We claim that F is continuous. To see this let
pi be a sequnce of points of M which converge to a point p ∈ M. We may
assume that pi are contained in a Monge patch of M centered at p given by

X(u1, u2) = (u1, u2, h(u1, u2)).

Let xi and yi be the x and y coorindates of pi. If pi is sufficiently close to
p = (0, 0), then, since ∇h(0, 0) = 0, we can make sure that

‖∇h(txi, tyi)‖2 ≤ ε,

for all t ∈ [0, 1] and ε > 0. Let γ : [0, 1] → R3 be the curve given by

γ(t) = (txi, tyi, h(txi, tyi)).
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Then, since γ is a curve on M ,

distM(p, pi) ≤ Length[γ]

=

∫ 1

0

√
x2

i + y2
i + 〈∇h(txi, tyi), (xi, yi)〉2 dt

≤
∫ 1

0

√
x2

i + y2
i + ε(x2

i + y2
i )

2 dt

≤
√

1 + ε
√

x2
i + y2

i

≤ (1 + ε)‖p − pi‖

So, for any ε > 0 we have

1 ≤ distM(p, pi)

‖p − pi‖
≤ 1 + ε

provided that pi is sufficiently close to p. We conclude then that F is con-
tinuous. So U := F−1([1, 1 + ε]) is an open subset of M ×M which contains
the diagonal ∆M := {(p, p) | p ∈ M}. Since ∆X ⊂ ∆M is compact, we may
then choose δ so small that Vδ(∆X) ⊂ U , where Vδ(∆X) denotes the open
neighborhood of ∆X in M × M which consists of all pairs of points (p, q)
with distM(p, q) ≤ δ.

Exercise 3. Does the above lemma hold also for C0 surfaces?

If γ : [a, b] → M is any curve then we may define

LengthM [γ] :=

sup

{
k∑

i=1

distM(γ(ti), γ(ti−1))
∣∣∣ {t0, . . . , tk} ∈ Partition[a, b]

}
.

Lemma 4. LengthM [γ] = Length[γ].

Proof. Note that

distM(γ(ti), γ(ti−1)) ≥ ‖γ(ti) − γ(ti−1)‖.

Thus LengthM [γ] ≥ Length[γ]. Further, by the previous lemma, we can make
sure that

distM(γ(ti), γ(ti−1)) ≤ (1 + ε)‖γ(ti) − γ(ti−1)‖,
which yields LengthM [γ] ≤ (1 + ε) Length[γ], for any ε > 0.
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We say that f : M → M is an isometry provided that

distM(f(p), f(q)) = distM(p, q).

Lemma 5. f : M → M is an isometry, if and only if Length[γ] = Length[f◦
γ] for all curves γ : [a, b] → M .

Proof. If f is an isometry, then, by the previous lemma,

Length[γ] = LengthM [γ] = LengthM [f ◦ γ] = LengthM [f ◦ γ].

The converse is clear.

Exercise 6. Justify the middle equality in the last espression displayed
above.

Theorem 7. f : M → M is an isometry if and only if for all p ∈ M , and
v, w ∈ TpM , 〈

dfp(v), dfp(w)
〉

= 〈v, w〉.
Proof. Suppose that f is an isometry. Let γ : (−ε, ε) → M be a curve with
γ(0) = p, and γ′(0) = v. Then, by the previous lemma∫ ε

−ε

‖γ′(t)‖ dt =

∫ ε

−ε

‖(f ◦ γ)′(t)‖ dt

Taking the limit of both sides as ε → 0 and applying the mean value theorem
for integrals, yields then that

‖v‖ = ‖γ′(0)‖ = ‖(f ◦ γ)′(0)‖ = ‖dfp(v)‖.

Thus df preserves the norm, which implies that it must preserve the inner-
product as well (see the following exercise).

Conversely, suppose that ‖v‖ = ‖dfp(v)‖. Then, if γ : [a, b] → M is any
curve, we have∫ b

a

‖(f ◦ γ)′(t)‖dt =

∫ b

a

‖dfγ(t)(γ
′(t))‖dt =

∫ b

a

‖γ′(t)‖dt.

So f preserves the length of all curves, which, by the previous Lemma, shows
that f is an isometry.

Exercise 8. Show that a function F : Rn → Rn preserves the norm ‖ · ‖ if
and only if it preserves the inner product 〈·, ·〉.
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2.5 Gauss’s Theorema Egregium

Lemma 9. Let X : U → M be a proper regular chart. Then X := f ◦
X : U → M is a proper regular chart as well and gij = gij on U .

Proof. Using the last theorem we have

gij(u1, u2) = 〈DiX(u1, u2), DjX(u1, u2)〉
= 〈Di(f ◦ X)(u1, u2), Dj(f ◦ X)(u1, u2)〉
= 〈dfX(u1,u2)(DiX(u1, u2)), dfX(u1,u2)(DjX(u1, u2))〉
= 〈DiX(u1, u2), DjX(u1, u2)〉
= gij(u1, u2).

Exercise 10. Justify the third equality in the last displayed expression above.

Let F denote the set of functions f : U → R where U ⊂ R2 is an open
neighborhood of the orgin.

Lemma 11. There exists a mapping Briochi : F ×F ×F → F such that for
any chart X : U → M centered at p ∈ M ,

K(p) = Briochi[g11, g12, g22](0, 0).

Proof. Recall that

K(p) =
det lij(0, 0)

det gij(0, 0)
,

and, by Lagrange’s identity,

lij =

〈
Xij,

X1 × X2

‖X1 × X2‖

〉
=

1√
det gij

〈Xij, X1 × X2〉 ,

where Xij := DijX, and Xi := DiX. Thus

K(p) =
det(〈Xij(0, 0), X1(0, 0) × X2(0, 0)〉)

(det gij(0, 0))2
.

Next note that

det(〈Xij, X1 × X2〉) = 〈X11, X1 × X2〉〈X21, X1 × X2〉 − 〈X12, X1 × X2〉2
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The right hand side of the last expression may be rewritten as

det(X11, X1, X2) det(X22, X1, X2) − (det(X12, X1, X2))
2,

where (u, v, w) here denotes the matrix with columns u, v, and w. Recall
that if A is a square matrix with transpose AT , then det A = det AT . Thus
the last expression displayed above is equivalent to

det((X11, X1, X2)
T (X22, X1, X2)) − det((X12, X1, X2)

T (X12, X1, X2)),

which in turn can be written as

det

〈X11, X22〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

〈X12, X12〉 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

If we expand the above determinants along their first rows, then 〈X11, X22〉
and 〈X12, X22〉 will have the same coefficients. This implies that we can
rewrite the last expression as

det

〈X11, X22〉 − 〈X12, X12〉 〈X11, X1〉 〈X11, X2〉
〈X1, X22〉 〈X1, X1〉 〈X1, X2〉
〈X2, X22〉 〈X2, X1〉 〈X2, X2〉


− det

 0 〈X12, X1〉 〈X12, X2〉
〈X1, X12〉 〈X1, X1〉 〈X1, X2〉
〈X2, X12〉 〈X2, X1〉 〈X2, X2〉

 .

Now note that each of the entries in the above matrices can be expressed
purely in terms of gij, since

〈Xii, Xj〉 =
1

2
〈Xi, Xi〉j =

1

2
(gii)j,

〈Xij, Xi〉 = 〈Xi, Xj〉i − 〈Xi, Xji〉 = (gij)i −
1

2
(gii)j,

and

〈X11, X22〉 − 〈X12, X12〉 = 〈X1, X22〉1 − 〈X1, X12〉2
= (g21)21 −

1

2
(g11)21 −

1

2
(g11)2.
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Substituting the above values in the previous matrices, we define

Briochi[g11, g22, g33] :=

1

(det(gij))2

(
det

(g21)21 − 1
2
(g11)21 − 1

2
(g11)2

1
2
(g11)1

1
2
(g11)2

(g21)2 − 1
2
(g11)2 g11 g12

1
2
(g22)2 g21 g22


− det

 0 1
2
(g11)2

1
2
(g22)1

1
2
(g11)2 g11 g12

1
2
(g22)1 g21 g22

 )
.

Evaluating the above expression at (0, 0) yields that Gaussian curvature
K(p).

Theorem 12. If f : M → M is an isometry, then K(f(p)) = K(p), where
K and K denote the Gaussian curvatures of M and M respectively.

Proof. Let X : U → M be a chart centered at p, then X := f ◦ X is a chart
of M centered at f(p). Let gij and gij denote the coefficients of the first

fundemental form with respect to the chartst X and X respectively. Then,
using the previous two lemmas, we have

K(f(p)) = Briochi[g11, g12, g22](0, 0)

= Briochi[g11, g12, g22](0, 0)

= K(p).

Exercise 13. Let M ⊂ R3 be a regular embedded surface and p ∈ M .
Suppose that K(p) �= 0. Does there exist a chart X : U → M such that D1X
and D2X are orthonormal at all points of U .
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