Lecture Notes 12

2.6 Gauss's formulas, and Christoffel Symbols

Let $X: U \rightarrow \mathbf{R}^{3}$ be a proper regular patch for a surface M, and set $X_{i}:=$ $D_{i} X$. Then

$$
\left\{X_{1}, X_{2}, N\right\}
$$

may be regarded as a moving bases of frame for \mathbf{R}^{3} similar to the Frenet Serret frames for curves. We should emphasize, however, two important differences: (i) there is no canonical choice of a moving bases for a surface or a piece of surface $\left(\left\{X_{1}, X_{2}, N\right\}\right.$ depends on the choice of the chart $\left.X\right)$; (ii) in general it is not possible to choose a patch X so that $\left\{X_{1}, X_{2}, N\right\}$ is orthonormal (unless the Gaussian curvature of M vanishes everywhere).

The following equations, the first of which is known as Gauss's formulas, may be regarded as the analog of Frenet-Serret formulas for surfaces:

$$
X_{i j}=\sum_{k=1}^{2} \Gamma_{i j}^{k} X_{k}+l_{i j} N, \quad \text { and } \quad N_{i}=-\sum_{j=1}^{2} l_{i}^{j} X_{j} .
$$

The coefficients $\Gamma_{i j}^{k}$ are known as the Christoffel symbols, and will be determined below. Recall that $l_{i j}$ are just the coefficients of the second fundamental form. To find out what l_{i}^{j} are note that

$$
-l_{i k}=-\left\langle N, X_{i k}\right\rangle=\left\langle N_{i}, X_{k}\right\rangle=-\sum_{j=1}^{2} l_{i}^{j}\left\langle X_{j}, X_{k}\right\rangle=-\sum_{j=1}^{2} l_{i}^{j} g_{j k}
$$

Thus $\left(l_{i j}\right)=\left(l_{i}^{j}\right)\left(g_{i j}\right)$. So if we let $\left(g^{i j}\right):=\left(g_{i j}\right)^{-1}$, then $\left(l_{i}^{j}\right)=\left(l_{i j}\right)\left(g^{i j}\right)$, which yields

$$
l_{i}^{j}=\sum_{k=1}^{2} l_{i k} g^{k j} .
$$

[^0]Exercise 1. What is $\operatorname{det}\left(l_{i}^{j}\right)$ equal to?.
Exercise 2. Show that $N_{i}=-d n\left(X_{i}\right)=S\left(X_{i}\right)$.
Next we compute the Christoffel symbols. To this end note that

$$
\left\langle X_{i j}, X_{k}\right\rangle=\sum_{l=1}^{2} \Gamma_{i j}^{l}\left\langle X_{l}, X_{k}\right\rangle=\sum_{l=1}^{2} \Gamma_{i j}^{l} g_{l k},
$$

which in matrix notation reads

$$
\binom{\left\langle X_{i j}, X_{1}\right\rangle}{\left\langle X_{i j}, X_{2}\right\rangle}=\binom{\Gamma_{i j}^{1} g_{11}+\Gamma_{i j}^{2} g_{21}}{\Gamma_{i j}^{2} g_{12}+\Gamma_{i j}^{2} g_{22}}=\left(\begin{array}{ll}
g_{11} & g_{21} \\
g_{12} & g_{22}
\end{array}\right)\binom{\Gamma_{i j}^{1}}{\Gamma_{i j}^{2}} .
$$

So

$$
\binom{\Gamma_{i j}^{1}}{\Gamma_{i j}^{2}}=\left(\begin{array}{ll}
g_{11} & g_{21} \\
g_{12} & g_{22}
\end{array}\right)^{-1}\binom{\left\langle X_{i j}, X_{1}\right\rangle}{\left\langle X_{i j}, X_{2}\right\rangle}=\left(\begin{array}{ll}
g^{11} & g^{21} \\
g^{12} & g^{22}
\end{array}\right)\binom{\left\langle X_{i j}, X_{1}\right\rangle}{\left\langle X_{i j}, X_{2}\right\rangle},
$$

which yields

$$
\Gamma_{i j}^{k}=\sum_{l=1}^{2}\left\langle X_{i j}, X_{l}\right\rangle g^{l k}
$$

In particular, $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$. Next note that

$$
\begin{aligned}
\left(g_{i j}\right)_{k} & =\left\langle X_{i k}, X_{j}\right\rangle+\left\langle X_{i}, X_{j k}\right\rangle, \\
\left(g_{j k}\right)_{i} & =\left\langle X_{j i}, X_{k}\right\rangle+\left\langle X_{j}, X_{k i}\right\rangle \\
\left(g_{k i}\right)_{j} & =\left\langle X_{k j}, X_{i}\right\rangle+\left\langle X_{k}, X_{i j}\right\rangle .
\end{aligned}
$$

Thus

$$
\left\langle X_{i j}, X_{k}\right\rangle=\frac{1}{2}\left(\left(g_{k i}\right)_{j}+\left(g_{j k}\right)_{i}-\left(g_{i j}\right)_{k}\right) .
$$

So we conclude that

$$
\Gamma_{i j}^{k}=\sum_{l=1}^{2} \frac{1}{2}\left(\left(g_{l i}\right)_{j}+\left(g_{j l}\right)_{i}-\left(g_{i j}\right)_{l}\right) g^{l k}
$$

Note that the last equation shows that $\Gamma_{i j}^{k}$ are intrinsic quantities, i.e., they depend only on $g_{i j}$ (and derivatives of $g_{i j}$), and so are preserved under isometries.

Exercise 3. Compute the Christoffel symbols of a surface of revolution.

2.7 The Gauss and Codazzi-Mainardi Equations, Riemann Curvature Tensor, and a Second Proof of Gauss's Theorema Egregium

Here we shall derive some relations between $l_{i j}$ and $g_{i j}$. Our point of departure is the simple observation that if $X: U \rightarrow \mathbf{R}^{3}$ is a C^{3} regular patch, then, since partial derivatives commute,

$$
X_{i j k}=X_{i k j}
$$

Note that

$$
\begin{aligned}
X_{i j k} & =\left(\sum_{l=1}^{2} \Gamma_{i j}^{l} X_{l}+l_{i j} N\right)_{k} \\
& =\sum_{l=1}^{2}\left(\Gamma_{i j}^{l}\right)_{k} X_{l}+\sum_{l=1}^{2} \Gamma_{i j}^{l} X_{l k}+\left(l_{i j}\right)_{k} N+l_{i j} N_{k} \\
& =\sum_{l=1}^{2}\left(\Gamma_{i j}^{l}\right)_{k} X_{l}+\sum_{l=1}^{2} \Gamma_{i j}^{l}\left(\sum_{m=1}^{2} \Gamma_{l k}^{m} X_{m}+l_{l k} N\right)+\left(l_{i j}\right)_{k} N-l_{i j} \sum_{l=1}^{2} l_{k}^{l} X_{l} \\
& =\sum_{l=1}^{2}\left(\Gamma_{i j}^{l}\right)_{k} X_{l}+\sum_{l=1}^{2} \sum_{m=1}^{2} \Gamma_{i j}^{l} \Gamma_{l k}^{m} X_{m}+\sum_{l=1}^{2} \Gamma_{i j}^{l} l_{l k} N+\left(l_{i j}\right)_{k} N-\sum_{l=1}^{2} l_{i j} l_{k}^{l} X_{l} \\
& =\sum_{l=1}^{2}\left(\left(\Gamma_{i j}^{l}\right)_{k}+\sum_{p=1}^{2} \Gamma_{i j}^{p} \Gamma_{p k}^{l}-l_{i j} l_{k}^{l}\right) X_{l}+\left(\sum_{l=1}^{2} \Gamma_{i j}^{l} l_{l k}+\left(l_{i j}\right)_{k}\right) N .
\end{aligned}
$$

Switching k and j yields,

$$
X_{i k j}=\sum_{l=1}^{2}\left(\left(\Gamma_{i k}^{l}\right)_{j}+\sum_{p=1}^{2} \Gamma_{i k}^{p} \Gamma_{p j}^{l}-l_{i k} l_{j}^{l}\right) X_{l}+\left(\sum_{l=1}^{2} \Gamma_{i k}^{l} l_{l j}+\left(l_{i k}\right)_{j}\right) N .
$$

Setting the normal and tangential components of the last two equations equal to each other we obtain

$$
\begin{aligned}
\left(\Gamma_{i j}^{l}\right)_{k}+ & \sum_{p=1}^{2} \Gamma_{i j}^{p} \Gamma_{p k}^{l}-l_{i j} l_{k}^{l}=\left(\Gamma_{i k}^{l}\right)_{j}+\sum_{p=1}^{2} \Gamma_{i k}^{p} \Gamma_{p j}^{l}-l_{i k} l_{j}^{l} \\
& \sum_{l=1}^{2} \Gamma_{i j}^{l} l_{l k}+\left(l_{i j}\right)_{k}=\sum_{l=1}^{2} \Gamma_{i k}^{l} l_{l j}+\left(l_{i k}\right)_{j}
\end{aligned}
$$

These equations may be rewritten as

$$
\begin{gather*}
\left(\Gamma_{i k}^{l}\right)_{j}-\left(\Gamma_{i j}^{l}\right)_{k}+\sum_{p=1}^{2}\left(\Gamma_{i k}^{p} \Gamma_{p j}^{l}-\Gamma_{i j}^{p} \Gamma_{p k}^{l}\right)=l_{i k} l_{j}^{l}-l_{i j} l_{k}^{l}, \quad \text { (Gaus } \tag{Gauss}\\
\sum_{l=1}^{2}\left(\Gamma_{i k}^{l} l_{l j}-\Gamma_{i j}^{l} l_{l k}\right)=\left(l_{i j}\right)_{k}-\left(l_{i k}\right)_{j}, \quad \text { (Codazzi-Mainardi) }
\end{gather*}
$$

and are known as the Gauss's equations and the Codazzi-Mainardi equations respectively. If we define the Riemann curvature tensor as

$$
R_{i j k}^{l}:=\left(\Gamma_{i k}^{l}\right)_{j}-\left(\Gamma_{i j}^{l}\right)_{k}+\sum_{p=1}^{2}\left(\Gamma_{i k}^{p} \Gamma_{p j}^{l}-\Gamma_{i j}^{p} \Gamma_{p k}^{l}\right),
$$

then Gauss's equation may be rewritten as

$$
R_{i j k}^{l}=l_{i k} l_{j}^{l}-l_{i j} l_{k}^{l} .
$$

Now note that

$$
\sum_{l=1}^{2} R_{i j k}^{l} g_{l m}=l_{i k} \sum_{l=1}^{2} l_{j}^{l} g_{l m}-l_{i j} \sum_{l=1}^{2} l_{k}^{l} g_{l m}=l_{i k} l_{j m}-l_{i j} l_{k m}
$$

In particular, if $i=k=1$ and $j=m=2$, then

$$
\sum_{l=1}^{2} R_{121}^{l} g_{l 2}=l_{11} l_{22}-l_{12} l_{21}=\operatorname{det}\left(l_{i j}\right)=K \operatorname{det}\left(g_{i j}\right)
$$

So it follows that

$$
K=\frac{R_{121}^{1} g_{12}+R_{121}^{2} g_{22}}{\operatorname{det}\left(g_{i j}\right)}
$$

which shows that K is intrinsic and gives another proof of Gauss's Theorema Egregium.
Exercise 4. Show that if $M=\mathbf{R}^{2}$, hen $R_{i j k}^{l}=0$ for all $1 \leq i, l, j, k \leq 2$ both intrinsically and extrinsically.

Exercise 5. Show that (i) $R_{i j k}^{l}=-R_{i k j}^{l}$, hence $R_{i j j}^{l}=0$, and (ii) $R_{i j k}^{l}+$ $R_{j k i}^{l}+R_{k i j}^{l} \equiv 0$.
Exercise 6. Compute the Riemann curvature tensor for \mathbf{S}^{2} both intrinsically and extrinsically.

2.8 Fundamental Theorem of Surfaces

In the previous section we showed that if $g_{i j}$ and $l_{i j}$ are the coefficients of the first and second fundamental form of a patch $X: U \rightarrow M$, then they must satisfy the Gauss and Codazzi-Maindardi equations. These conditions turn out to be not only necessary but also sufficient in the following sense.

Theorem 7 (Fundamental Theorem of Surfaces). Let $U \subset \mathbf{R}^{2}$ be an open neighborhood of the origin $(0,0)$, and $g_{i j}: U \rightarrow \mathbf{R}, l_{i j}: U \rightarrow \mathbf{R}$ be differentiable functions for $i, j=1,2$. Suppose that $g_{i j}=g_{j i}, l_{i j}=l_{j i}$, $g_{11}>0, g_{22}>0$ and $\operatorname{det}\left(g_{i j}\right)>0$. Further suppose that $g_{i j}$ and $l_{i j}$ satisfy the Gauss and Codazzi-Mainardi equations. Then there exists and open set $V \subset U$, with $(0,0) \in V$ and a regular patch $X: V \rightarrow \mathbf{R}$ with $g_{i j}$ and $l_{i j}$ as its first and second fundamental forms respectively. Further, if $Y: V \rightarrow \mathbf{R}^{3}$ is another regular patch with first and second fundamental forms $g_{i j}$ and $l_{i j}$, then Y differs from X by a rigid motion.

[^0]: ${ }^{1}$ Last revised: November 12, 2004

