Lecture Notes 13

2.9 The Covariant Derivative, Lie Bracket, and Riemann Curvature Tensor of \mathbb{R}^n

Let $A \subset \mathbf{R}^n$, $p \in A$, and W be a tangent vector of A at p, i.e., suppose there exists a curve $\gamma \colon (-\epsilon, \epsilon) \to A$ with $\gamma(0) = p$ and $\gamma'(0) = W$. Then if $f \colon A \to \mathbf{R}$ is a function we define the (directional) derivative of f with respect to W at p as

$$W_p f := (f \circ \gamma)'(0) = df_p(W).$$

Similarly, if V is a vectorfield along A, i.e., a mapping $V: A \to \mathbf{R}^n$, $p \mapsto V_p$, we define the covariant derivative of V with respect to W at p as

$$\overline{\nabla}_{W_p}V := (V \circ \gamma)'(0) = dV_p(W).$$

Note that if f and V are C^1 , then by definition they may be extended to an open neighborhood of A. So df_p and dV_p , and consequently $W_p f$ and $\overline{\nabla}_{W_p} V$ are well defined. In particular, they do not depend on the choice of the curve γ or the extensions of f and V.

Exercise 1. Let E_i be the standard basis of \mathbf{R}^n , i.e., $E_1 := (1, 0, \dots, 0)$, $E_2 := (0, 1, 0, \dots, 0), \dots, E_n := (0, \dots, 0, 1)$. Show that for any functions $f : \mathbf{R}^n \to \mathbf{R}$ and vectorfield $V : \mathbf{R}^n \to \mathbf{R}^n$

$$(E_i)_p f = D_i f(p)$$
 and $\overline{\nabla}_{(E_i)_p} V = D_i V(p)$

(*Hint:* Let $u_i: (-\epsilon, \epsilon) \to \mathbf{R}^n$ be given by $u_i(t) := p + tE_i$, and observe that $(E_i)_p f = (f \circ u_i)'(0), \overline{\nabla}_{(E_i)_p} V = (V \circ u_i)'(0)$).

¹Last revised: November 29, 2004

The operation $\overline{\nabla}$ is also known as the standard *Levi-Civita* connection of \mathbf{R}^n . If W is a tangent vectorfield of A, i.e., a mapping $W: A \to \mathbf{R}^n$ such that W_p is a tangent vector of A for all $p \in A$, then we set

$$Wf(p) := W_p f$$
 and $(\overline{\nabla}_W V)_p := \overline{\nabla}_{W_p} V.$

Note that $Wf: A \to \mathbf{R}$ is a function and $\overline{\nabla}_W V$ is a vectorfield. Further, we define

$$(fW)_p := f(p)W_p.$$

Thus $fW: A \to \mathbf{R}^n$ is a also a vector field.

Exercise 2. Show that it $V = (V^1, \ldots, V^n)$, i.e., V^i are the component functions of V, then

$$\overline{\nabla}_W V = (WV^1, \dots, WV^n).$$

Exercise 3. Show that if Z is a tangent vectorfield of A and $f: A \to \mathbf{R}$ is a function, then

$$\overline{\nabla}_{W+Z}V = \overline{\nabla}_W V + \overline{\nabla}_Z V$$
, and $\overline{\nabla}_{fW}V = f\overline{\nabla}_W V$.

Further if $Z \colon A \to \mathbf{R}^n$ is any vector field, then

$$\overline{\nabla}_W(V+Z) = \overline{\nabla}_W V + \overline{\nabla}_W Z$$
, and $\overline{\nabla}_W(fV) = (Wf)V + f\overline{\nabla}_W V$.

Exercise 4. Note that if V and W are a pair of vectorfields on A then $\langle V, W \rangle \colon A \to \mathbf{R}$ defined by $\langle V, W \rangle_p := \langle V_p, W_p \rangle$ is a function on A, and show that

$$Z\langle V,W\rangle = \left\langle \overline{\nabla}_Z V,W\right\rangle + \left\langle V,\overline{\nabla}_Z W\right\rangle.$$

If $V, W: A \to \mathbf{R}^n$ are a pair of vector fields, then their *Lie bracket* is the vector filed on A defined by

$$[V,W]_n := \overline{\nabla}_{V_n}W - \overline{\nabla}_{W_n}V.$$

Exercise 5. Show that if $A \subset \mathbf{R}^n$ is open, $V, W \colon A \to \mathbf{R}^n$ are a pair of vector fields and $f \colon A \to \mathbf{R}$ is a scalar, then

$$[V, W]f = V(Wf) - W(Vf).$$

(*Hint*: First show that $Vf = \langle V, \operatorname{grad} f \rangle$ and $Wf = \langle W, \operatorname{grad} f \rangle$ where

$$\operatorname{grad} f := (D_1 f, \dots, D_n f).$$

Next define

Hess
$$f(V, W) := \langle V, \nabla_W \operatorname{grad} f \rangle$$
,

and show that $\operatorname{Hess} f(V, W) = \operatorname{Hess} f(W, V)$. In particular, it is enough to show that $\operatorname{Hess} f(E_i, E_j) = D_{ij} f$, where $\{E_1, \ldots, E_n\}$ is the standard basis for \mathbf{R}^n . Then Leibnitz rule yields that

$$V(Wf) - W(Vf)$$

$$= V\langle W, \operatorname{grad} f \rangle - W\langle V, \operatorname{grad} f \rangle$$

$$= \langle \nabla_V W, \operatorname{grad} f \rangle + \langle W, \nabla_V \operatorname{grad} f \rangle - \langle \nabla_W V, \operatorname{grad} f \rangle - \langle V, \nabla_W \operatorname{grad} f \rangle$$

$$= \langle [V, W], \operatorname{grad} f \rangle + \operatorname{Hess} f(W, V) - \operatorname{Hess} f(V, W)$$

$$= [V, W]f,$$

as desired.)

If V and W are tangent vectorfields on an open set $A \subset \mathbf{R}^n$, and $Z \colon A \to \mathbf{R}^n$ is any vectorfield, then

$$\overline{R}(V,W)Z := \overline{\nabla}_V \overline{\nabla}_W Z - \overline{\nabla}_W \overline{\nabla}_V Z - \overline{\nabla}_{[V,W]} Z$$

defines a vectorfield on A. If Y is another vectorfield on A, then we may also define an associated scalar quantity by

$$\overline{R}(V,W,Z,Y):=\big\langle\overline{R}(V,W)Z,Y\big\rangle,$$

which is known as the *Riemann curvature tensor* of \mathbb{R}^n .

Exercise 6. Show that $\overline{R} \equiv 0$.

2.10 The Induced Covariant Derivative on Surfaces; Gauss's Formulas revisited

Note that if $M \subset \mathbf{R}^3$ is a regular embedded surface and $V, W: M \to \mathbf{R}^3$ are vectorfields on M. Then $\overline{\nabla}_W V$ may no longer be tangent to M. Rather, in general we have

$$\overline{\nabla}_W V = \left(\overline{\nabla}_W V\right)^\top + \left(\overline{\nabla}_W V\right)^\perp,$$

where $(\overline{\nabla}_W V)^{\top}$ and $(\overline{\nabla}_W V)^{\perp}$ respectively denote the tangential and normal components of $\overline{\nabla}_W V$ with resect to M. More explicitly, if for each $p \in M$ we let n(p) be a unit normal vector to $T_p M$, then

$$(\overline{\nabla}_W V)_p^{\perp} := \langle \overline{\nabla}_{W_p} V, n(p) \rangle n(p) \text{ and } (\overline{\nabla}_W V)^{\top} := \overline{\nabla}_W V - (\overline{\nabla}_W V)^{\perp}.$$

Let $\mathcal{X}(M)$ denote the space of tangent vectorfield on M. Then We define the (induced) covariant derivative on M as the mapping $\nabla \colon \mathcal{X}(M) \times \mathcal{X}(M) \to \mathcal{X}(M)$ given by

$$\nabla_W V := \left(\overline{\nabla}_W V\right)^\top.$$

Exercise 7. Show that, with respect to tangent vectorfields on M, ∇ satisfies all the properties which were listed for $\overline{\nabla}$ in Exercises 3 and 4.

Next we derive an explicit expression for ∇ in terms of local coordinates. Let $X \colon U \to M$ be a proper regular patch centered at a point $p \in M$, i.e., X(0,0) = p, and set

$$\overline{X}_i := X_i \circ X^{-1}$$
.

Then \overline{X}_i are vector fields on X(U), and for each $q \in X(U)$, $(\overline{X}_i)_q$ forms a basis for T_qM . Thus on X(U) we have

$$V = \sum_{i} V^{i} \overline{X}_{i}, \quad \text{and} \quad W = \sum_{i} W^{i} \overline{X}_{i}$$

for some functions V^i , $W^i : X(U) \to \mathbf{R}$. Consequently, on X(U),

$$\nabla_W V = \nabla_{\left(\sum_j W^j \overline{X}_j\right)} \left(\sum_i V^i \overline{X}_i\right) \\
= \sum_j \left(W^j \nabla_{\overline{X}_j} \left(\sum_i V^i \overline{X}_i\right)\right) \\
= \sum_j \left(W^j \sum_i \left(\overline{X}_j V^i + V^i \nabla_{\overline{X}_j} \overline{X}_i\right)\right) \\
= \sum_j \sum_i \left(W^j (\overline{X}_j V^i) + W^j V^i \nabla_{\overline{X}_j} \overline{X}_i\right).$$

Next note that if we define $u_j: (-\epsilon, \epsilon) \to \mathbf{R}^2$ by $u_j(t) := tE_j$, where $E_1 := (1,0)$ and $E_2 := (0,1)$. Then $X \circ u_i: (-\epsilon, \epsilon) \to M$ are curves with $X \circ u_i(0) = (0,1)$.

p and $(X \circ u_i)'(0) = X_i(0,0) = \overline{X}_i(p)$. Thus by the definitions of ∇ and $\overline{\nabla}$ we have

$$\nabla_{(\overline{X}_j)_p} \overline{X}_i = \left(\overline{\nabla}_{(\overline{X}_j)_p} \overline{X}_i \right)^{\top}$$

$$= \left(\left(\overline{X}_i \circ (X \circ u_j) \right)'(0) \right)^{\top}$$

$$= \left((X_i \circ u_j)'(0) \right)^{\top}$$

Now note that, by the chain rule,

$$(X_i \circ u_j)'(0) = DX_i(u_j(0))Du_j(0) = X_{ij}(0,0).$$

Exercise 8. Verify the last equality above.

Thus, by Gauss's formula,

$$\nabla_{(\overline{X}_j)_p} \overline{X}_i = \left(X_{ij}(0,0) \right)^{\top}$$

$$= \left(\sum_k \Gamma_{ij}^k(0,0) X_k(0,0) + l_{ij}(0,0) N(0,0) \right)^{\top}$$

$$= \sum_k \Gamma_{ij}^k \left(X^{-1}(p) \right) X_k \left(X^{-1}(p) \right)$$

$$= \sum_k \Gamma_{ij}^k \left(X^{-1}(p) \right) \left(\overline{X}_k \right)_p.$$

In particular if we set $\overline{X}_{ij} := X_{ij} \circ X^{-1}$ and define $\overline{\Gamma}_{ij}^k \colon X(U) \to \mathbf{R}$ by $\overline{\Gamma}_{ij}^k := \Gamma_{ij}^k \circ X^{-1}$, then we have

$$\nabla_{\overline{X}_j} \overline{X}_i = \left(\overline{X}_{ij} \right)^{\top} = \sum_k \overline{\Gamma}_{ij}^k \overline{X}_k,$$

which in turn yields

$$\nabla_W V = \sum_i \sum_i \left(W^j \overline{X}_j V^i + W^j V^i \sum_k \overline{\Gamma}_{ij}^k \overline{X}_k \right).$$

Now recall that Γ_{ij}^k depends only on the coefficients of the first fundamental form g_{ij} . Thus it follows that ∇ is intrinsic:

Exercise 9. Show that if $f: M \to \widetilde{M}$ is an isometry, then

$$\widetilde{\nabla}_{df(W)}df(V) = df(\nabla_W V),$$

where $\widetilde{\nabla}$ denotes the covariant derivative on \widetilde{M} (*Hint:* It is enough to show that $\langle \widetilde{\nabla}_{df(\overline{X}_l)} df(\overline{X}_l) \rangle = \langle df(\nabla_{\overline{X}_l} \overline{X}_j), df(\overline{X}_l) \rangle$).

Next note that if $n \colon X(U) \to \mathbf{S}^2$ is a local Gauss map then

$$\langle \nabla_W V, n \rangle = -\langle V, \nabla_W n \rangle = -\langle V, dn(W) \rangle = \langle V, S(W) \rangle,$$

where, recall that, S is the shape operator of M. Thus

$$(\overline{\nabla}_{W_p}V)^{\perp} = \langle V, S(W_p) \rangle n(p),$$

which in turn yields

$$\overline{\nabla}_W V = \nabla_W V + \langle V, S(W) \rangle n.$$

This is Gauss's formula and implies the expression that we had derived earlier in local coordinates.

Exercise 10. Verify the last sentence.