Lecture Notes 13

2.9 The Covariant Derivative, Lie Bracket, and Riemann Curvature Tensor of \mathbf{R}^{n}

Let $A \subset \mathbf{R}^{n}, p \in A$, and W be a tangent vector of A at p, i.e., suppose there exists a curve $\gamma:(-\epsilon, \epsilon) \rightarrow A$ with $\gamma(0)=p$ and $\gamma^{\prime}(0)=W$. Then if $f: A \rightarrow \mathbf{R}$ is a function we define the (directional) derivative of f with respect to W at p as

$$
W_{p} f:=(f \circ \gamma)^{\prime}(0)=d f_{p}(W)
$$

Similarly, if V is a vectorfield along A, i.e., a mapping $V: A \rightarrow \mathbf{R}^{n}, p \mapsto V_{p}$, we define the covariant derivative of V with respect to W at p as

$$
\bar{\nabla}_{W_{p}} V:=(V \circ \gamma)^{\prime}(0)=d V_{p}(W)
$$

Note that if f and V are C^{1}, then by definition they may be extended to an open neighborhood of A. So $d f_{p}$ and $d V_{p}$, and consequently $W_{p} f$ and $\bar{\nabla}_{W_{p}} V$ are well defined. In particular, they do not depend on the choice of the curve γ or the extensions of f and V.

Exercise 1. Let E_{i} be the standard basis of \mathbf{R}^{n}, i.e., $E_{1}:=(1,0, \ldots, 0)$, $E_{2}:=(0,1,0, \ldots, 0), \ldots, E_{n}:=(0, \ldots, 0,1)$. Show that for any functions $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ and vectorfield $V: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$

$$
\left(E_{i}\right)_{p} f=D_{i} f(p) \quad \text { and } \quad \bar{\nabla}_{\left(E_{i}\right)_{p}} V=D_{i} V(p)
$$

(Hint: Let $u_{i}:(-\epsilon, \epsilon) \rightarrow \mathbf{R}^{n}$ be given by $u_{i}(t):=p+t E_{i}$, and observe that $\left.\left(E_{i}\right)_{p} f=\left(f \circ u_{i}\right)^{\prime}(0), \bar{\nabla}_{\left(E_{i}\right)_{p}} V=\left(V \circ u_{i}\right)^{\prime}(0)\right)$.

[^0]The operation $\bar{\nabla}$ is also known as the standard Levi-Civita connection of \mathbf{R}^{n}. If W is a tangent vectorfield of A, i.e., a mapping $W: A \rightarrow \mathbf{R}^{n}$ such that W_{p} is a tangent vector of A for all $p \in A$, then we set

$$
W f(p):=W_{p} f \quad \text { and } \quad\left(\bar{\nabla}_{W} V\right)_{p}:=\bar{\nabla}_{W_{p}} V
$$

Note that $W f: A \rightarrow \mathbf{R}$ is a function and $\bar{\nabla}_{W} V$ is a vectorfield. Further, we define

$$
(f W)_{p}:=f(p) W_{p}
$$

Thus $f W: A \rightarrow \mathbf{R}^{n}$ is a also a vector field.
Exercise 2. Show that it $V=\left(V^{1}, \ldots, V^{n}\right)$, i.e., V^{i} are the component functions of V, then

$$
\bar{\nabla}_{W} V=\left(W V^{1}, \ldots, W V^{n}\right)
$$

Exercise 3. Show that if Z is a tangent vectorfield of A and $f: A \rightarrow \mathbf{R}$ is a function, then

$$
\bar{\nabla}_{W+Z} V=\bar{\nabla}_{W} V+\bar{\nabla}_{Z} V, \quad \text { and } \quad \bar{\nabla}_{f W} V=f \bar{\nabla}_{W} V
$$

Further if $Z: A \rightarrow \mathbf{R}^{n}$ is any vectorfield, then

$$
\bar{\nabla}_{W}(V+Z)=\bar{\nabla}_{W} V+\bar{\nabla}_{W} Z, \quad \text { and } \quad \bar{\nabla}_{W}(f V)=(W f) V+f \bar{\nabla}_{W} V
$$

Exercise 4. Note that if V and W are a pair of vectorfields on A then $\langle V, W\rangle: A \rightarrow \mathbf{R}$ defined by $\langle V, W\rangle_{p}:=\left\langle V_{p}, W_{p}\right\rangle$ is a function on A, and show that

$$
Z\langle V, W\rangle=\left\langle\bar{\nabla}_{Z} V, W\right\rangle+\left\langle V, \bar{\nabla}_{Z} W\right\rangle
$$

If $V, W: A \rightarrow \mathbf{R}^{n}$ are a pair of vector fields, then their Lie bracket is the vector filed on A defined by

$$
[V, W]_{p}:=\bar{\nabla}_{V_{p}} W-\bar{\nabla}_{W_{p}} V
$$

Exercise 5. Show that if $A \subset \mathbf{R}^{n}$ is open, $V, W: A \rightarrow \mathbf{R}^{n}$ are a pair of vector fields and $f: A \rightarrow \mathbf{R}$ is a scalar, then

$$
[V, W] f=V(W f)-W(V f)
$$

(Hint: First show that $V f=\langle V, \operatorname{grad} f\rangle$ and $W f=\langle W, \operatorname{grad} f\rangle$ where

$$
\operatorname{grad} f:=\left(D_{1} f, \ldots, D_{n} f\right)
$$

Next define

$$
\text { Hess } f(V, W):=\left\langle V, \nabla_{W} \operatorname{grad} f\right\rangle
$$

and show that Hess $f(V, W)=$ Hess $f(W, V)$. In particular, it is enough to show that Hess $f\left(E_{i}, E_{j}\right)=D_{i j} f$, where $\left\{E_{1}, \ldots, E_{n}\right\}$ is the standard basis for \mathbf{R}^{n}. Then Leibnitz rule yields that

$$
\begin{gathered}
V(W f)-W(V f) \\
=V\langle W, \operatorname{grad} f\rangle-W\langle V, \operatorname{grad} f\rangle \\
=\left\langle\nabla_{V} W, \operatorname{grad} f\right\rangle+\left\langle W, \nabla_{V} \operatorname{grad} f\right\rangle-\left\langle\nabla_{W} V, \operatorname{grad} f\right\rangle-\left\langle V, \nabla_{W} \operatorname{grad} f\right\rangle \\
=\langle[V, W], \operatorname{grad} f\rangle+\operatorname{Hess} f(W, V)-\operatorname{Hess} f(V, W) \\
=[V, W] f,
\end{gathered}
$$

as desired.)
If V and W are tangent vectorfields on an open set $A \subset \mathbf{R}^{n}$, and $Z: A \rightarrow$ \mathbf{R}^{n} is any vectorfield, then

$$
\bar{R}(V, W) Z:=\bar{\nabla}_{V} \bar{\nabla}_{W} Z-\bar{\nabla}_{W} \bar{\nabla}_{V} Z-\bar{\nabla}_{[V, W]} Z
$$

defines a vectorfield on A. If Y is another vectorfield on A, then we may also define an associated scalar quantity by

$$
\bar{R}(V, W, Z, Y):=\langle\bar{R}(V, W) Z, Y\rangle
$$

which is known as the Riemann curvature tensor of \mathbf{R}^{n}.
Exercise 6. Show that $\bar{R} \equiv 0$.

2.10 The Induced Covariant Derivative on Surfaces; Gauss's Formulas revisited

Note that if $M \subset \mathbf{R}^{3}$ is a regular embedded surface and $V, W: M \rightarrow \mathbf{R}^{3}$ are vectorfields on M. Then $\bar{\nabla}_{W} V$ may no longer be tangent to M. Rather, in general we have

$$
\bar{\nabla}_{W} V=\left(\bar{\nabla}_{W} V\right)^{\top}+\left(\bar{\nabla}_{W} V\right)^{\perp}
$$

where $\left(\bar{\nabla}_{W} V\right)^{\top}$ and $\left(\bar{\nabla}_{W} V\right)^{\perp}$ respectively denote the tangential and normal components of $\bar{\nabla}_{W} V$ with resect to M. More explicitly, if for each $p \in M$ we let $n(p)$ be a unit normal vector to $T_{p} M$, then

$$
\left(\bar{\nabla}_{W} V\right)_{p}^{\perp}:=\left\langle\bar{\nabla}_{W_{p}} V, n(p)\right\rangle n(p) \quad \text { and } \quad\left(\bar{\nabla}_{W} V\right)^{\top}:=\bar{\nabla}_{W} V-\left(\bar{\nabla}_{W} V\right)^{\perp}
$$

Let $\mathcal{X}(M)$ denote the space of tangent vectorfield on M. Then We define the (induced) covariant derivative on M as the mapping $\nabla: \mathcal{X}(M) \times \mathcal{X}(M) \rightarrow$ $\mathcal{X}(M)$ given by

$$
\nabla_{W} V:=\left(\bar{\nabla}_{W} V\right)^{\top}
$$

Exercise 7. Show that, with respect to tangent vectorfields on M, ∇ satisfies all the properties which were listed for $\bar{\nabla}$ in Exercises 3 and 4.

Next we derive an explicit expression for ∇ in terms of local coordinates. Let $X: U \rightarrow M$ be a proper regular patch centered at a point $p \in M$, i.e., $X(0,0)=p$, and set

$$
\bar{X}_{i}:=X_{i} \circ X^{-1}
$$

Then \bar{X}_{i} are vectorfields on $X(U)$, and for each $q \in X(U),\left(\bar{X}_{i}\right)_{q}$ forms a basis for $T_{q} M$. Thus on $X(U)$ we have

$$
V=\sum_{i} V^{i} \bar{X}_{i}, \quad \text { and } \quad W=\sum_{i} W^{i} \bar{X}_{i}
$$

for some functions $V^{i}, W^{i}: X(U) \rightarrow \mathbf{R}$. Consequently, on $X(U)$,

$$
\begin{aligned}
\nabla_{W} V & =\nabla_{\left(\sum_{j} W^{j} \bar{X}_{j}\right)}\left(\sum_{i} V^{i} \bar{X}_{i}\right) \\
& =\sum_{j}\left(W^{j} \nabla_{\bar{X}_{j}}\left(\sum_{i} V^{i} \bar{X}_{i}\right)\right) \\
& =\sum_{j}\left(W^{j} \sum_{i}\left(\bar{X}_{j} V^{i}+V^{i} \nabla_{\bar{X}_{j}} \bar{X}_{i}\right)\right) \\
& =\sum_{j} \sum_{i}\left(W^{j}\left(\bar{X}_{j} V^{i}\right)+W^{j} V^{i} \nabla_{\bar{X}_{j}} \bar{X}_{i}\right) .
\end{aligned}
$$

Next note that if we define $u_{j}:(-\epsilon, \epsilon) \rightarrow \mathbf{R}^{2}$ by $u_{j}(t):=t E_{j}$, where $E_{1}:=$ $(1,0)$ and $E_{2}:=(0,1)$. Then $X \circ u_{i}:(-\epsilon, \epsilon) \rightarrow M$ are curves with $X \circ u_{i}(0)=$
p and $\left(X \circ u_{i}\right)^{\prime}(0)=X_{i}(0,0)=\bar{X}_{i}(p)$. Thus by the definitions of ∇ and $\bar{\nabla}$ we have

$$
\begin{aligned}
\nabla_{\left(\bar{X}_{j}\right)_{p}} \bar{X}_{i} & =\left(\bar{\nabla}_{\left(\bar{X}_{j}\right)_{p}} \bar{X}_{i}\right)^{\top} \\
& =\left(\left(\bar{X}_{i} \circ\left(X \circ u_{j}\right)\right)^{\prime}(0)\right)^{\top} \\
& =\left(\left(X_{i} \circ u_{j}\right)^{\prime}(0)\right)^{\top}
\end{aligned}
$$

Now note that, by the chain rule,

$$
\left(X_{i} \circ u_{j}\right)^{\prime}(0)=D X_{i}\left(u_{j}(0)\right) D u_{j}(0)=X_{i j}(0,0) .
$$

Exercise 8. Verify the last equality above.
Thus, by Gauss's formula,

$$
\begin{aligned}
\nabla_{\left(\bar{X}_{j}\right)_{p}} \bar{X}_{i} & =\left(X_{i j}(0,0)\right)^{\top} \\
& =\left(\sum_{k} \Gamma_{i j}^{k}(0,0) X_{k}(0,0)+l_{i j}(0,0) N(0,0)\right)^{\top} \\
& =\sum_{k} \Gamma_{i j}^{k}\left(X^{-1}(p)\right) X_{k}\left(X^{-1}(p)\right) \\
& =\sum_{k} \Gamma_{i j}^{k}\left(X^{-1}(p)\right)\left(\bar{X}_{k}\right)_{p} .
\end{aligned}
$$

In particular if we set $\bar{X}_{i j}:=X_{i j} \circ X^{-1}$ and define $\bar{\Gamma}_{i j}^{k}: X(U) \rightarrow \mathbf{R}$ by $\bar{\Gamma}_{i j}^{k}:=\Gamma_{i j}^{k} \circ X^{-1}$, then we have

$$
\nabla_{\bar{X}_{j}} \bar{X}_{i}=\left(\bar{X}_{i j}\right)^{\top}=\sum_{k} \bar{\Gamma}_{i j}^{k} \bar{X}_{k},
$$

which in turn yields

$$
\nabla_{W} V=\sum_{j} \sum_{i}\left(W^{j} \bar{X}_{j} V^{i}+W^{j} V^{i} \sum_{k} \bar{\Gamma}_{i j}^{k} \bar{X}_{k}\right)
$$

Now recall that $\Gamma_{i j}^{k}$ depends only on the coefficients of the first fundamental form $g_{i j}$. Thus it follows that ∇ is intrinsic:

Exercise 9. Show that if $f: M \rightarrow \widetilde{M}$ is an isometry, then

$$
\widetilde{\nabla}_{d f(W)} d f(V)=d f\left(\nabla_{W} V\right)
$$

where $\widetilde{\nabla}$ denotes the covariant derivative on \widetilde{M} (Hint: It is enough to show that $\left.\left\langle\widetilde{\nabla}_{d f\left(\bar{X}_{i}\right)} d f\left(\bar{X}_{j}\right), d f\left(\bar{X}_{l}\right)\right\rangle=\left\langle d f\left(\nabla_{\bar{X}_{i}} \bar{X}_{j}\right), d f\left(\bar{X}_{l}\right)\right\rangle\right)$.

Next note that if $n: X(U) \rightarrow \mathbf{S}^{2}$ is a local Gauss map then

$$
\left\langle\nabla_{W} V, n\right\rangle=-\left\langle V, \nabla_{W} n\right\rangle=-\langle V, d n(W)\rangle=\langle V, S(W)\rangle
$$

where, recall that, S is the shape operator of M. Thus

$$
\left(\bar{\nabla}_{W_{p}} V\right)^{\perp}=\left\langle V, S\left(W_{p}\right)\right\rangle n(p)
$$

which in turn yields

$$
\bar{\nabla}_{W} V=\nabla_{W} V+\langle V, S(W)\rangle n
$$

This is Gauss's formula and implies the expression that we had derived earlier in local coordinates.

Exercise 10. Verify the last sentence.

[^0]: ${ }^{1}$ Last revised: November 29, 2004

