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2.11 The Induced Lie Bracket on Surfaces; The Self-
Adjointness of the Shape Operator Revisited

If V , W are tangent vectorfields on M , then we define

[V, W ]M := ∇V W −∇W V,

which is again a tangent vector field on M . Note that since, as we had verified
in an earlier exercise, S is self-adjoint, the Gauss’s formula yields that

[V, W ] = ∇V W −∇W V

= ∇W V −∇V W +
(〈

V, S(W )
〉
−

〈
W, S(V )

〉)
n

= [V, W ]M .

In particular if V and W are tangent vectorfields on M , then [V, W ] is also
a tangent vectorfield.

Let us also recall here, for the sake of completeness, the proof of the self-
adjointness of S. To this end it suffices to show that if Ei, i = 1, 2, is a
basis for TpM , then 〈Ei, Sp(Ej)〉 = 〈Sp(Ei), Ej〉. In particular we may let
Ei = Xi(0, 0), where X : U → M is a regular patch of M centered at p. Now
note that〈

Xi, Sp(Xj)
〉

= −
〈
Xi, dnp(Xj)

〉
= −

〈
Xi, (n ◦ X)j

〉
=

〈
Xij, (n ◦ X)

〉
.

Since the right hand side of the above expression is symmetric with respect
to i and j, the right hand side must be symmetric as well, which completes
the proof that S is self-adjoint.

Note that while the above proof is short and elegant one might object to
it on the ground that it uses local coordinates. On the other hand, if we can
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give an independent proof that [V, W ]M = [V, W ], then we would have an
alternative proof that S is self-adjoint. To this end note that

[V, W ]� =
(
∇V W

)� −
(
∇W V

)�
= ∇V W −∇W V = [V, W ]M .

Thus to prove that [V, W ]M = [V, W ] it is enough to show that [V, W ]� =
[V, W ], i.e., [V, W ] is tangent to M . To see this note that if f : M → R is any
function, and f : U → R denoted an extension of f to an open neighborhood
of M , then

[V, W ]f = [V, W ]�f + [V, W ]⊥f = [V, W ]�f + [V, W ]⊥f.

So if we can show that the left hand side of the above expression depends
only on f (not f), then it would follow that the right hand side must also
be independent of f , which can happen only if [V, W ]⊥ vanishes. Hence it
remains to show that [V, W ]f = [V, W ]f . To see this recall that by a previous
exercise

[V, W ]f = V (Wf) − W (V f).

But since V and W are tangent to M , V f = V f and Wf = Wf . Thus the
right hand side of the above equality depends only on f , which completes
the proof.

Exercise 1. Verifythe next to last statement.

2.12 The Riemann Curvature Tensor of Surfaces; The
Gauss and Codazzi Mainardi Equations, and The-
orema Egregium Revisited

If V , W , Z are tangent vectorfields on M , then

R(V, W )Z := ∇V ∇W Z −∇W∇V Z −∇[V,W ]Z

gives a tangent vectorfield on M . Note that this operation is well defined,
because, as we verified in the previous section, [V, W ] is tangent to M . If Y
is another tangent vectorfield on M , then we may also define an associated
scalar quantity by

R(V, W, Z, Y ) :=
〈
R(V, W )Z, Y

〉
,
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which is the Riemann curvature tensor of M , and, as we show below, co-
incides with the quantity of the same name which we had defined earlier in
terms of local coordinates. To this end fitst recall that

R(V, W )Z := ∇V ∇W Z −∇W∇V Z −∇[V,W ]Z = 0

as we had shown in an earlier exercise. Next note that, by Gauss’s formula,

∇V ∇W Z = ∇V

(
∇W Z + 〈S(W ), Z〉n

)
= ∇V

(
∇W Z

)
+ ∇V

(
〈S(W ), Z〉n

)
= ∇V ∇W Z + 〈S(V ),∇W Z〉n + V 〈S(W ), Z〉n + 〈S(W ), Z〉∇V n.

Also recal that, since 〈n, n〉 = 1,

∇V n := (∇V n)� = ∇V n = dn(V ) = S(V ).

Thus

∇V ∇W Z = ∇V ∇W Z + 〈S(W ), Z〉S(V )

+
(
〈S(V ),∇W Z〉 + 〈∇V S(W ), Z〉 + 〈S(W ),∇V Z〉

)
n.

Simlilarly,

−∇W∇V Z = −∇W∇V Z − 〈S(V ), Z〉S(W )

−
(
〈S(W ),∇V Z〉 + 〈∇W S(V ), Z〉 + 〈S(V ),∇W Z〉

)
n.

Also note that

−∇[V,W ]Z = −∇[V,W ]Z − 〈S([V, W ]), Z〉n.

Adding the last three equations yield

R(V, W )Z = R(V, W )Z + 〈S(W ), Z〉S(V ) − 〈S(V ), Z〉S(W )

+
(
〈∇V S(W ), Z〉 − 〈∇W S(V ), Z〉 − 〈S([V, W ]), Z〉

)
n.

Since the left hand side of the above equation is zero, each of the tangential
and normal components of the right hand side must vanish as well. These
respectively yield:

R(V, W )Z = 〈S(W ), Z〉S(V ) − 〈S(V ), Z〉S(W )
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and
∇V S(W ) −∇W S(V ) = S([V, W ]),

which are the Gauss and Codazzi-Mainardi equations respectively. In par-
ticular, in local coordinates they take on the forms which we had derived
earlier.

Exercise 2. Verify the last sentence above.

Finally note that by Gauss’s equation

〈R(V, W )W, V 〉 = 〈S(V ), V 〉〈S(W ), W 〉 − 〈S(W ), V 〉〈S(V ), W 〉

In particular, if V and W are orthonormal, then

〈R(V, W )W, V 〉 = det(S) = K.

Thus we obtain yet another proof of the Theorema Egregium, which, in this
latest reincarnation, does not use local coordinates.

Exercise 3. Show that if V and W are general vectorfields (not necessarily
orthonormal), then

K =
R(V, W, W, V )

‖V × W‖
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