Lecture Notes 15

2.13 The Geodesic Curvature

Let $\alpha: I \rightarrow M$ be a unit speed curve lying on a surface $M \subset \mathbf{R}^{3}$. Then the absolute geodesic curvature of α is defined as

$$
\left|\kappa_{g}\right|:=\left\|\left(\alpha^{\prime \prime}\right)^{\top}\right\|=\left\|\alpha^{\prime \prime}-\left\langle\alpha^{\prime \prime}, n(\alpha)\right\rangle n(\alpha)\right\|,
$$

where n is a local Gauss map of M in a neighborhood of $\alpha(t)$. In particular note that if $M=\mathbf{R}^{2}$, then $\left|\kappa_{g}\right|=\kappa$, i.e., absolute geodesic curvature of a curve on a surface is a gneralization of the curvature of curves in the plane.

Exercise 1. Show that the absolute geodesic curvature of great circles in a sphere and helices on a cylinder are zero.

Similarly, the (signed) geodesic curvature generalizes the notion of the signed curvature of planar curves and may be defined as follows.

We say that a surface $M \subset \mathbf{R}^{3}$ is orientable provided that there exists a (global) Gauss map $n: M \rightarrow \mathbf{S}^{2}$, i.e., a continuous mapping which satisfies $n(p) \in T_{p} M$, for all $p \in M$. Note that if n is a global Gauss map, then so is $-n$. In particular, any orientable surface admits precisely two choices for its global Gauss map. Once we choose a Gauss map n for an orientable surface, then M is said to be oriented.

If M is an oriented surface (with global Gauss map n), then, for every $p \in M$, we define a mapping $J: T_{p} M \rightarrow T_{p} M$ by

$$
J V:=n \times V .
$$

Exercise 2. Show that if $M=\mathbf{R}^{2}$, and $n=(0,0,1)$, then J is clockwise rotation about the origin by $\pi / 2$.

[^0]Then the geodesic curvature of a unit speed curve $\alpha: I \rightarrow M$ is given by

$$
\kappa_{g}:=\left\langle\alpha^{\prime \prime}, J \alpha^{\prime}\right\rangle .
$$

Note that, since $J \alpha^{\prime}$ is tangent to M,

$$
\left\langle\alpha^{\prime \prime}, J \alpha^{\prime}\right\rangle=\left\langle\left(\alpha^{\prime \prime}\right)^{\top}, J \alpha^{\prime}\right\rangle
$$

Further, since $\left\|\alpha^{\prime}\right\|=1, \alpha^{\prime \prime}$ is orthogonal to α^{\prime}, which in turn yields that the projection of $\alpha^{\prime \prime}$ into the tangent plane is either parallel or antiparallel to $J \alpha^{\prime}$. Thus $\kappa_{g}>0$ when the projection of $\alpha^{\prime \prime}$ is parallel to $J \alpha^{\prime}$ and is negative otherwise.

Note that if the curvature of α does not vanish (so that the principal normal N is well defined), then

$$
\kappa_{g}=\kappa\langle N, J T\rangle .
$$

In particular geodesic curvature is invariant under reparametrizations of α.
Exercise 3. Let \mathbf{S}^{2} be oriented by its outward unit normal, i.e., $n(p)=p$, and compute the geodesic curvature of the circles in \mathbf{S}^{2} which lie in planes $z=h,-1<h<1$. Assume that all these circles are oriented consistenly with respect to the rotation about the z-axis.

Next we derive an expression for κ_{g} which does not require that α have unit speed. To this end, let $s: I \rightarrow[0, L]$ be the arclength function of α, and recall that $\bar{\alpha}:=\alpha \circ s^{-1}:[0, L] \rightarrow M$ has unit speed. Thus

$$
\kappa_{g}=\bar{\kappa}_{g}(s)=\left\langle\bar{\alpha}^{\prime \prime}(s), J \alpha^{\prime}(s)\right\rangle
$$

Now recall that $\left(s^{-1}\right)^{\prime}=1 /\left\|\alpha^{\prime}\right\|$. Thus by chain rule.

$$
\bar{\alpha}^{\prime}(t)=\alpha^{\prime}\left(s^{-1}(t)\right) \cdot \frac{1}{\left\|\alpha^{\prime}\left(s^{-1}(t)\right)\right\|}
$$

Further, differentiating both sides of the above equation yields

$$
\bar{\alpha}^{\prime \prime}=\alpha^{\prime \prime}\left(s^{-1}\right) \cdot \frac{1}{\left\|\alpha^{\prime}\left(s^{-1}\right)\right\|^{2}}+\alpha^{\prime}\left(s^{-1}\right) \cdot \frac{-\left\langle\alpha^{\prime}\left(s^{-1}\right), \alpha\left(s^{-1}\right)\right\rangle}{\left\|\alpha^{\prime}\left(s^{-1}\right)\right\|}
$$

Substituting these values into the last expression for $\bar{\kappa}_{g}$ above yiels

$$
\kappa_{g}=\frac{\left\langle\alpha^{\prime \prime}, J \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{3}}
$$

Exercise 4. Verify the last two equations.
Next we show that the geodesic curvature is intrinsic, i.e., it is invariant under isometries of the surface. To this end define $\tilde{\alpha}^{\prime}: \alpha(I) \rightarrow \mathbf{R}^{3}$ be the vectorfiled along $\alpha(I)$ given by

$$
\tilde{\alpha}^{\prime}(\alpha(t))=\alpha^{\prime}(t) .
$$

Then one may immediatley check that

$$
\alpha^{\prime \prime}(t)=\bar{\nabla}_{\alpha^{\prime}(t)} \tilde{\alpha}^{\prime} .
$$

Thus

$$
\left\langle\alpha^{\prime \prime}, J \alpha^{\prime}\right\rangle=\left\langle\left(\alpha^{\prime \prime}\right)^{\top}, J \alpha^{\prime}\right\rangle=\left\langle\nabla_{\alpha^{\prime}} \tilde{\alpha}^{\prime}, J \alpha^{\prime}\right\rangle .
$$

and it follows that

$$
\kappa_{g}=\frac{\left\langle\nabla_{\alpha^{\prime}} \tilde{\alpha}^{\prime}, J \alpha^{\prime}\right\rangle}{\left\|\alpha^{\prime}\right\|^{3}} .
$$

Now recall that ∇ is intrinic. Thus to complete the proof that κ_{g} is irinsic it remains to show that J is intrinsic. To see this let $X: U \rightarrow M$ be a local patch, then

$$
J X_{i}=\sum_{j=1}^{2} b_{i j} X_{j} .
$$

In particular,

$$
J X_{1}=b_{11} X_{1}+b_{12} X_{2} .
$$

Now note that

$$
0=\left\langle J X_{1}, X_{1}\right\rangle=b_{11} g_{11}+b_{12} g_{21} .
$$

Further,

$$
g_{11}=\left\langle X_{1}, X_{1}\right\rangle=\left\langle J X_{1}, J X_{1}\right\rangle=b_{11}^{2} g_{11}+2 b_{11} b_{12} g_{12}+b_{12}^{2} g_{22} .
$$

Solving for b_{21} in the next to last equation, and substituting in the last equation yields

$$
g_{11}=b_{11}^{2} g_{11}-2 b_{11}^{2} g_{11}+b_{11}^{2} \frac{g_{11}^{2}}{g_{21}^{2}} g_{22}=b_{11}^{2}\left(-g_{11}+\frac{g_{11}^{2}}{g_{21}^{2}} g_{22}\right) .
$$

Thus b_{11} may be computed in terms of $g_{i j}$ which in turn yiels that b_{12} may be computed in terms of $g_{i j}$ as well. So $J X_{1}$ nay be expressed intrinsically. Similarly, $J X_{2}$ may be exressed intrinsically as well. So we conclude that J is intrinsic.

[^0]: ${ }^{1}$ Last revised: December 8, 2004

