Curves and Surfaces
Fall 2004, PSU

Lecture Notes 3

1.8 The general definition of curvature;
 Fox-Milnor's Theorem

Let $\alpha:[a, b] \rightarrow \mathbf{R}^{n}$ be a curve and $P=\left\{t_{0}, \ldots, t_{n}\right\}$ be a partition of $[a, b]$, then (the approximation of) the total curvature of α with respect to P is defined as

$$
\text { total } \kappa[\alpha, P]:=\sum_{i=1}^{n-1} \text { angle }\left(\alpha\left(t_{i}\right)-\alpha\left(t_{i-1}\right), \alpha\left(t_{i+1}\right)-\alpha\left(t_{i}\right)\right),
$$

and the total curvature of α is given by

$$
\text { total } \kappa[\alpha]:=\sup \{\kappa[\alpha, P] \mid P \in \text { Partition }[a, b]\} .
$$

Our main aim here is to prove the following observation due to Ralph Fox and John Milnor:

Theorem 1 (Fox-Minor). If $\alpha:[a, b] \rightarrow \mathbf{R}^{n}$ is a C^{2} unit speed curve, then

$$
\text { total } \kappa[\alpha]=\int_{a}^{b}\left\|\alpha^{\prime \prime}(t)\right\| d t
$$

This theorem implies, by the mean value theorem for integrals, that for any $t \in(a, b)$,

$$
\kappa(t)=\lim _{\epsilon \rightarrow 0} \frac{1}{2 \epsilon} \text { total } \kappa\left[\left.\alpha\right|_{t-\epsilon} ^{t+\epsilon}\right] .
$$

The above formula may be taken as the definition of curvature for general (not necessarily C^{2}) curves. To prove the above theorem first we need to develop some basic spherical geometry. Let

$$
\mathbf{S}^{n}:=\left\{p \in \mathbf{R}^{n+1} \mid\|p\|=1\right\}
$$

[^0]denote the n-dimensional unit sphere in \mathbf{R}^{n+1}. Define a mapping from $\mathbf{S}^{n} \times \mathbf{S}^{n}$ to \mathbf{R} by
$$
\operatorname{dist}_{\mathbf{S}^{n}}(p, q):=\operatorname{angle}(p, q)
$$

Exercise 2. Show that $\left(\mathbf{S}^{n}\right.$, dist $\left._{\mathbf{S}^{n}}\right)$ is a metric space.
The above metric has a simple geometric interpretation described as follows. By a great circle $C \subset \mathbf{S}^{n}$ we mean the intersection of \mathbf{S}^{n} with a two dimensional plane which passes through the origin of \mathbf{R}^{n+1}. For any pair of points $p, q \in \mathbf{S}^{2}$, there exists a plane passing through them and the origin. When $p \neq \pm q$ this plane is given by the linear combinations of p and q and thus is unique; otherwise, p, q and o lie on a line and there exists infinitely many two dimensional planes passing through them. Thus through every pairs of points of \mathbf{S}^{n} there passes a great circle, which is unique whenever $p \neq \pm q$.

Exercise 3. For any pairs of points $p, q \in \mathbf{S}^{n}$, let C be a great circle passing through them. If $p \neq q$, let ℓ_{1} and ℓ_{2} denote the length of the two segments in C determined by p and q, then $\operatorname{dist}_{\mathbf{S}^{n}}(p, q)=\min \left\{\ell_{1}, \ell_{2}\right\}$. (Hint: Let $p^{\perp} \in C$ be a vector orthogonal to p, then C may be parametrized as the set of points traced by the curve $p \cos (t)+p^{\perp} \sin (t)$.)

Let $\alpha:[a, b] \rightarrow \mathbf{S}^{n}$ be a spherical curve, i.e., a Euclidean curve $\alpha:[a, b] \rightarrow$ \mathbf{R}^{n+1} with $\|\alpha\|=1$. For any partition $P=\left\{t_{0}, \ldots, t_{n}\right\}$ of $[a, b]$, the spherical length of α with respect the partition P is defined as

$$
\operatorname{length}_{\mathbf{S}^{n}}[\alpha, P]=\sum_{i=1}^{n} \operatorname{dist}_{\mathbf{S}^{n}}\left(\alpha\left(t_{i}\right), \alpha\left(t_{i-1}\right)\right)
$$

The norm of any partition P of $[a, b]$ is defined as

$$
|P|:=\max \left\{t_{i}-t_{i-1} \mid 1 \leq i \leq n\right\} .
$$

If P^{1} and P^{2} are partions of $[a, b]$, we say that P^{2} is a refinement of P^{1} provided that $P^{1} \subset P^{2}$.
Exercise 4. Show that if P^{2} is a refinement of P^{1}, then

$$
\operatorname{length}_{\mathbf{S}^{n}}\left[\alpha, P^{2}\right] \geq \operatorname{length}_{\mathbf{S}^{n}}\left[\alpha, P^{1}\right] .
$$

(Hint:Use the fact that dist \mathbf{s}^{n} satisfies the triangle inequality, see Exc. 2).

The spherical length of α is defined by

$$
\operatorname{length}_{\mathbf{S}^{n}}[\alpha]=\sup \left\{\text { length }_{\mathbf{S}^{n}}[\alpha, P] \mid P \in \operatorname{Partition}[a, b]\right\}
$$

Lemma 5. If $\alpha:[a, b] \rightarrow \mathbf{S}^{n}$ is a unit speed spherical curve, then

$$
\operatorname{length}_{\mathbf{S}^{n}}[\alpha]=\text { length }[\alpha] .
$$

Proof. Let $P^{k}:=\left\{t_{0}^{k}, \ldots, t_{n}^{k}\right\}$ be a sequence of partitions of $[a, b]$ with

$$
\lim _{k \rightarrow \infty}\left|P^{k}\right|=0
$$

and

$$
\theta_{i}^{k}:=\operatorname{dist}_{\mathbf{S}^{n}}\left(\alpha^{k}\left(t_{i}\right), \alpha^{k}\left(t_{i-1}\right)\right)=\operatorname{angle}\left(\alpha^{k}\left(t_{i}\right), \alpha^{k}\left(t_{i-1}\right)\right)
$$

be the corresponding spherical distances. Then, since α has unit speed,

$$
2 \sin \left(\frac{\theta_{i}^{k}}{2}\right)=\left\|\alpha\left(t_{i}^{k}\right)-\alpha\left(t_{i-1}^{k}\right)\right\| \leq t_{i}^{k}-t_{i-1}^{k} \leq\left|P^{k}\right|
$$

In particular,

$$
\lim _{k \rightarrow \infty} 2 \sin \left(\frac{\theta_{i}^{k}}{2}\right)=0
$$

Now, since $\lim _{x \rightarrow 0} \sin (x) / x=1$, it follows that, for any $\epsilon>0$, there exists $N>0$, depending only on $\left|P^{k}\right|$, such that if $k>N$, then

$$
(1-\epsilon) \theta_{i}^{k} \leq 2 \sin \left(\frac{\theta_{i}^{k}}{2}\right) \leq(1+\epsilon) \theta_{i}^{k}
$$

which yields that

$$
(1-\epsilon) \operatorname{length}_{\mathbf{S}^{n}}\left[\alpha, P^{k}\right] \leq \operatorname{length}\left[\alpha, P^{k}\right] \leq(1+\epsilon) \text { length }_{\mathbf{S}^{n}}\left[\alpha, P^{k}\right]
$$

The above inequalities are satisfied by any $\epsilon>0$ provided that k is large enough. Thus

$$
\lim _{k \rightarrow \infty} \operatorname{length}_{\mathbf{S}^{n}}\left[\alpha, P^{k}\right]=\text { length }[\alpha] .
$$

Further, note that if P is any partitions of $[a, b]$ we may construct a sequnce of partitions by successive refinements of P so that $\lim _{k \rightarrow \infty}\left|P^{k}\right|=0$. By Exercise 4, length ${\mathbf{\mathbf { S } ^ { n }}}\left[\alpha, P^{k}\right] \leq \operatorname{length}_{\mathbf{S}^{n}}\left[\alpha, P^{k+1}\right]$. Thus the above expression shows that, for any partition P of $[a, b]$,

$$
\operatorname{length}_{\mathbf{S}^{n}}[\alpha, P] \leq \operatorname{length}[\alpha]
$$

The last two expressions now yied that

$$
\sup \left\{\operatorname{length}_{\mathbf{S}^{n}}[\alpha, P] \mid P \in \operatorname{Partition}[a, b]\right\}=\operatorname{length}[\alpha]
$$

which completes the proof.
Exercise 6. Show that if P^{2} is a refinement of P^{1}, then

$$
\text { total } \kappa\left[\alpha, P^{2}\right] \geq \text { total } \kappa\left[\alpha, P^{1}\right]
$$

Now we are ready to prove the theorem of Fox-Milnor:
Proof of Theorem 1. As in the proof of the previous lemma, let $P^{k}=\left\{t_{0}^{k}, \ldots, t_{n}^{k}\right\}$ be a sequence of partitions of $[a, b]$ with $\lim _{k \rightarrow \infty}\left|P^{k}\right|=0$. Set

$$
\theta_{i}^{k}:=\operatorname{angle}\left(\alpha\left(t_{i}^{k}\right)-\alpha\left(t_{i-1}^{k}\right), \alpha\left(t_{i+1}^{k}\right)-\alpha\left(t_{i}^{k}\right)\right)
$$

where $i=1, \ldots, n-1$. Further, set

$$
\bar{t}_{i}^{k}:=\frac{t_{i}^{k}+t_{i-1}^{k}}{2}
$$

and

$$
\phi_{i}^{k}:=\operatorname{angle}\left(\alpha^{\prime}\left(\bar{t}_{i}^{k}\right), \alpha^{\prime}\left(\bar{t}_{i+1}^{k}\right)\right) .
$$

Recall that, by the previous lemma,

$$
\lim _{k \rightarrow \infty} \sum_{i} \phi_{i}^{k}=\operatorname{length}_{\mathbf{S}^{n-1}}\left[\alpha^{\prime}\right]=\operatorname{length}\left[\alpha^{\prime}\right]=\int_{a}^{b}\left\|\alpha^{\prime \prime}(t)\right\| d t
$$

Thus to complete the proof it suffices to show that, for every $\epsilon>0$, there exists N such that for all $k \geq N$,

$$
\begin{equation*}
\left|\theta_{i}^{k}-\phi_{i}^{k}\right| \leq \epsilon\left(t_{i+1}^{k}-t_{i-1}^{k}\right) ; \tag{1}
\end{equation*}
$$

for then it would follow that

$$
2 \epsilon[a, b] \leq \sum_{i} \theta_{i}^{k}-\sum_{i} \phi_{i}^{k} \leq 2 \epsilon[a, b]
$$

which would in turn yield

$$
\lim _{k \rightarrow \infty} \text { total } \kappa\left[\alpha, P^{k}\right]=\lim _{k \rightarrow \infty} \sum_{i} \theta_{i}^{k}=\lim _{k \rightarrow \infty} \sum_{i} \phi_{i}^{k}=\int_{a}^{b}\left\|\alpha^{\prime \prime}(t)\right\| d t
$$

Now, similar to the proof of Lemma 5, note that given any partition P of $[a, b]$, we may construct by subsequent refinements a sequance of partitions P^{k}, with $P^{0}=P$, such that $\lim _{k \rightarrow \infty}\left|P^{k}\right|=0$. Thus the last expression, together with Excercise 6, yields that

$$
\text { total } \kappa[\alpha, P] \leq \int_{a}^{b}\left\|\alpha^{\prime \prime}(t)\right\| d t
$$

The last two expressions complete the proof; so it remains to establish (1). To this end let

$$
\beta_{i}^{k}:=\operatorname{angle}\left(\alpha^{\prime}\left(t_{i}^{k}\right), \alpha\left(t_{i}^{k}\right)-\alpha\left(t_{i-1}^{k}\right)\right)
$$

By the triangle inequality for angles (Exercise 2).

$$
\phi_{i}^{k} \leq \beta_{i}^{k}+\theta_{i}^{k}+\beta_{i+1}^{k}, \quad \text { and } \quad \theta_{i}^{k} \leq \beta_{i}^{k}+\phi_{i}^{k}+\beta_{i+1}^{k},
$$

which yields

$$
\left|\phi_{i}^{k}-\theta_{i}^{k}\right| \leq \beta_{i}^{k}+\beta_{i+1}^{k} .
$$

So to prove (1) it is enough to show that for every $\epsilon>0$

$$
\beta_{i}^{k} \leq \frac{\epsilon}{2}\left(t_{i}-t_{i-1}\right)
$$

provided that k is large enough. See Exercise 7.
Exercise* 7. Let $\alpha:[a, b] \rightarrow \mathbf{R}^{n}$ be a C^{2} curve. For every $t, s \in[a, b], t \neq s$, define

$$
f(t, s):=\text { angle }\left(\alpha^{\prime}\left(\frac{t+s}{2}\right), \alpha(t)-\alpha(s)\right)
$$

Show that

$$
\lim _{t \rightarrow s} \frac{f(t, s)}{t-s}=0
$$

In particular, if we set $f(t, t)=0$, then the resulting function $f:[a, b] \times$ $[a, b] \rightarrow \mathbf{R}$ is continuous. So, since $[a, b]$ is compact, f is uniformly continuous, i.e., for every $\epsilon>0$, there is a δ such that $\|f(t)-f(s)\| \leq \epsilon$, whever $|t-s| \leq \delta$. Does this result hold for C^{1} curves as well?

[^0]: ${ }^{1}$ Last revised: September 17, 2004

