## Lecture Notes 8

## 2 Surfaces

### 2.1 Definition of a regular embedded surface

An $n$-dimensional open ball of radius $r$ centered at $p$ is defined by

$$
B_{r}^{n}(p):=\left\{x \in \mathbf{R}^{n} \mid \operatorname{dist}(x, p)<r\right\} .
$$

We say a subset $U \subset \mathbf{R}^{n}$ is open if for each $p$ in $U$ there exists an $\epsilon>0$ such that $B_{\epsilon}^{n}(p) \subset U$. Let $A \subset \mathbf{R}^{n}$ be an arbitrary subset, and $U \subset A$. We say that $U$ is open in $A$ if there exists an open set $V \subset \mathbf{R}^{n}$ such that $U=A \cap V$. A mapping $f: A \rightarrow B$ between arbitrary subsets of $\mathbf{R}^{n}$ is said to be continuous if for every open set $U \subset B, f^{-1}(U)$ is open is $A$. Intuitively, we may think of a continuous map as one which sends nearby points to nearby points:

Exercise 1. Let $A, B \subset \mathbf{R}^{n}$ be arbitrary subsets, $f: A \rightarrow B$ be a continuous map, and $p \in A$. Show that for every $\epsilon>0$, there exists a $\delta>0$ such that whenever $\operatorname{dist}(x, p)<\delta$, then $\operatorname{dist}(f(x), f(p))<\epsilon$.

Two subsets $A, B \subset \mathbf{R}^{n}$ are said to be homeomorphic, or topologically equivalent, if there exists a mapping $f: A \rightarrow B$ such that $f$ is one-to-one, onto, continuous, and has a continuous inverse. Such a mapping is called a homeomorphism. We say a subset $M \subset \mathbf{R}^{3}$ is an embedded surface if every point in $M$ has an open neighborhood in $M$ which is homeomorphic to an open subset of $\mathbf{R}^{2}$.

Exercise 2. (Stereographic projection) Show that the standard sphere $\mathbf{S}^{2}:=\left\{p \in \mathbf{R}^{3} \mid\|p\|=1\right\}$ is an embedded surface (Hint: Show that the stereographic projection $\pi_{+}$form the north pole gives a homeomorphism between $\mathbf{R}^{2}$ and $\mathbf{S}^{2}-(0,0,1)$. Similarly, the stereographic projection $\pi_{-}$

[^0]from the south pole gives a homeomorphism between $\mathbf{R}^{2}$ and $\mathbf{S}^{2}-(0,0,-1)$;
$\pi_{+}(x, y, z):=\left(\frac{x}{1-z}, \frac{y}{1-z}, 0\right)$, and $\left.\pi_{-}(x, y, z):=\left(\frac{x}{z-1}, \frac{y}{z-1}, 0\right)\right)$.
Exercise 3. (Surfaces as graphs) Let $U \subset \mathbf{R}^{2}$ be an open subset and $f: U \rightarrow \mathbf{R}$ be a continuous map. Then
$$
\operatorname{graph}(f):=\{(x, y, f(x, y)) \mid(x, y) \in U\}
$$
is a surface. (Hint: Show that the orthogonal projection $\pi(x, y, z):=(x, y)$ gives the desired homeomorphism).

Note that by the above exercise the cone given by $z=\sqrt{x^{2}+y^{2}}$, and the troughlike surface $z=|x|$ are examples of embedded surfaces. These surfaces, however, are not "regular", as we will define below. From the point of view of differential geometry it is desirable that a surface be without sharp corners or vertices.

Let $U \subset \mathbf{R}^{n}$ be open, and $f: U \rightarrow \mathbf{R}^{m}$ be a map. Note that $f$ may be regarded as a list of $m$ functions of $n$ variables: $f(p)=\left(f^{1}(p), \ldots, f^{m}(p)\right)$, $f^{i}(p)=f^{i}\left(p^{1}, \ldots, p^{n}\right)$. The first order partial derivatives of $f$ are given by

$$
D_{j} f^{i}(p):=\lim _{h \rightarrow 0} \frac{f^{i}\left(p^{1}, \ldots, p^{j}+h, \ldots, p^{n}\right)-f^{i}\left(p^{1}, \ldots, p^{j}, \ldots, p^{n}\right)}{h} .
$$

If all the functions $D_{j} f^{i}: U \rightarrow \mathbf{R}$ exist and are continuous, then we say that $f$ is differentiable $\left(C^{1}\right)$. We say that $f$ is smooth $\left(C^{\infty}\right)$ if the partial derivatives of $f$ of all order exist and are continuous. These are defined by

$$
D j_{1}, j_{2}, \ldots, j_{k} f^{i}:=D_{j_{1}}\left(D_{j_{2}}\left(\cdots\left(D_{j_{k}} f^{i}\right) \cdots\right)\right)
$$

Let $f: U \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a differentiable map, and $p \in U$. Then the Jacobian of $f$ at $p$ is an $m \times n$ matrix defined by

$$
J_{p}(f):=\left(\begin{array}{ccc}
D_{1} f^{1}(p) & \cdots & D_{n} f^{1}(p) \\
\vdots & & \vdots \\
D_{1} f^{m}(p) & \cdots & D_{n} f^{m}(p)
\end{array}\right)
$$

We say that $p$ is a regular point of $f$ if the rank of $J_{p}(f)$ is equal to $n$. If $f$ is regular at all points $p \in U$, then we say that $f$ is regular.

Exercise 4 (Monge Patch). Let $f: U \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a differentiable map. Show that the mapping $X: U \rightarrow \mathbf{R}^{3}$, defined by $X\left(u^{1}, u^{2}\right):=\left(u^{1}, u^{2}, f\left(u^{1}, u^{2}\right)\right)$ is regular (the pair $(X, U)$ is called a Monge Patch).

If $f$ is a differentiable function, then we define,

$$
D_{i} f(p):=\left(D_{i} f^{1}(p), \ldots D_{i} f^{n}(p)\right)
$$

Exercise 5. Show that $f: U \subset \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ is regular at $p$ if and only if

$$
\left\|D_{1} f(p) \times D_{2} f(p)\right\| \neq 0
$$

Let $f: U \subset \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a differentiable map and $p \in U$. Then the differential of $f$ at $p$ is a mapping from $\mathbf{R}^{n}$ to $\mathbf{R}^{m}$ defined by

$$
d f_{p}(x):=\lim _{t \rightarrow 0} \frac{f(p+t x)-f(p)}{t} .
$$

Exercise 6. Show that (i)

$$
d f_{p}(x)=J_{p}(f)\left(\begin{array}{c}
x^{1} \\
\vdots \\
x^{n}
\end{array}\right)
$$

Conclude then that (ii) $d f_{p}$ is a linear map, and (iii) $p$ is a regular value of $f$ if and only if $d f_{p}$ is one-to-one. Further, (iv) show that if $f$ is a linear map, then $d f_{p}(x)=f(x)$, and $(\mathrm{v}) J_{p}(f)$ coincides with the matrix representation of $f$ with respect to the standard basis.

By a regular patch we mean a pair $(U, X)$ where $U \subset \mathbf{R}^{2}$ is open and $X: U \rightarrow \mathbf{R}^{3}$ is a one-to-one, smooth, and regular mapping. Furthermore, we say that the patch is proper if $X^{-1}$ is continuous. We say a subset $M \subset \mathbf{R}^{3}$ is a regular embedded surface, if for each point $p \in M$ there exists a proper regular patch $(U, X)$ and an open set $V \subset \mathbf{R}^{3}$ such that $X(U)=M \cap V$. The pair $(U, X)$ is called a local parameterization for $M$ at $p$.

Exercise 7. Let $f: U \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$ be a smooth map. Show that $\operatorname{graph}(f)$ is a regular embedded surface, see Exercise 4.

Exercise 8. Show that $\mathbf{S}^{2}$ is a regular embedded surface (Hint: (Method 1) Let $p \in \mathbf{S}^{2}$. Then $p^{1}, p^{2}$, and $p^{3}$ cannot vanish simultaneously. Suppose, for instance, that $p^{3} \neq 0$. Then, we may set $U:=\left\{u \in \mathbf{R}^{2} \mid\|u\|<1\right\}$, and let $X\left(u^{1}, u^{2}\right):=\left(u^{1}, u^{2}, \pm \sqrt{1-\left(u^{1}\right)^{2}-\left(u^{2}\right)^{2}}\right)$ depending on whether $p^{3}$ is positive or negative. The other cases involving $p^{1}$ and $p^{2}$ may be treated similarly. (Method 2) Write the inverse of the stereographic projection, see Exercise 2, and show that it is a regular map).

The following exercise shows that smoothness of a patch is not sufficient to ensure that the corresponding surface is without singularities (sharp edges or corners). Thus the regularity condition imposed in the definition of a regular embedded surface is not superfluous.

Exercise 9. Let $M \subset \mathbf{R}^{3}$ be the graph of the function $f(x, y)=|x|$. Sketch this surface, and show that there exists a smooth one-to-one map $X: \mathbf{R}^{2} \rightarrow$ $\mathbf{R}^{3}$ such that $X\left(\mathbf{R}^{2}\right)=M$ (Hint: Let $X(x, y):=\left(e^{-1 / x^{2}}, y, e^{-1 / x^{2}}\right)$, if $x>0$; $X(x, y):=\left(-e^{-1 / x^{2}}, y, e^{-1 / x^{2}}\right)$, if $X<0$; and, $X(x, y):=(0,0,0)$, if $\left.x=0\right)$.

The following exercise demonstrates the significance of the requirement in the definition of a regular embedded surface that $X^{-1}$ be continuous.

Exercise 10. Let $U:=\left\{(u, v) \in \mathbf{R}^{2} \mid-\pi<u<\pi, 0<v<1\right\}$, define $X: U \rightarrow \mathbf{R}^{3}$ by $X(u, v):=(\sin (u), \sin (2 u), v)$, and set $M:=X(U)$. Sketch $M$ and show that $X$ is smooth, one-to-one, and regular, but $X^{-1}$ is not continuous.

Exercise 11 (Surfaces of Revolution). Let $\alpha: I \rightarrow \mathbf{R}^{2}, \alpha(t)=(x(t), y(t))$, be a regular simple closed curve. Show that the image of $X: I \times \mathbf{R} \rightarrow \mathbf{R}^{3}$ given by

$$
X(t, \theta):=(x(t) \cos \theta, x(t) \sin \theta, y(t))
$$

is a regular embedded surface.


[^0]:    ${ }^{1}$ Last revised: October 8, 2004

