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Orientability

Any ordered basis (b1, . . . , bn) of Rn may be viewed as a matrix B ∈ GL(n) whose ith

column is bi. Thus the set of ordered basis of Rn are in one-to-one correspondence
with elements of GL(n), and so we may partition them into two subsets: those
whose corresponding matrices have positive determinant, GL(n)+, and those whose
corresponding matrices have negative determinant, GL(n)−. By an orientation for
Rn we mean the choice of GL(n)+ or GL(n)− as the preferred source for picking a
basis for Rn. The standard orientation for Rn is that determined by GL(n)+.

Lemma 0.0.1. GL(n) has exactly two path-connected components: GL(n)+ and
GL(n)−.

Proof. First note that since det : GL(n) → Rn − {0} is continuous, and R− {0} is
not connected, then GL(n) is not connected. So it must have at least two compo-
nents GL(n)+ = det−1((0,∞)), and GL(n)− = det−1((−∞, 0)). Secondly note that
multiplying the first row of any element of GL(n)+ yields an element of GL(n)−.
This implies that GL(n)+ and GL(n)− are homeomorphic. So we just need to check
that GL(n)+ is path connected. This may be achieved in two steps: first we deform
each element of GL(n)+ to an element of SO(n) and then show that SO(n) is path
connected.

Step 1: This may be achieved with the aid of the Gram-Schmidt process. In
particular recall that if (b1, . . . , bn) is any basis of Rn and (b′1, . . . , b

′
n) is the corre-

sponding orthonormalizaion of it, then b′i is never antiparallel to bi and each pair bi
and b′i span a subspace which does not include any other of the elements of the basis.
Thus tbi + (1 − t)b′i yields a continuous deformation of (b1, . . . , bn) to (b′1, . . . , b

′
n)

through a family of basis.
Step 2: Let B ∈ SO(n + 1), then we may write B = (b1, . . . , bn) where bi are

the columns of B. We may rotate B until bn coincides with (0, . . . , 0, 1). Then
b1, . . . , bn−1 lie in Rn−1 × {0}, and by a rotation in Rn−1 we may bring bn−1 in
coincidence with (0, . . . , 0, 1, 0). Continuing this procedure we may continuously
deform (b1, . . . , bn) through a family of orthonormal basis until b2, . . . , bn coincide
with the last n − 1 elements of the standard basis of Rn. At that point we must
either have b1 = (1, 0, . . . , 0) or b1 = (−1, 0, . . . , 0). But the latter is impossible
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because B has positive determinant, and continuous deformations of it through a
family of basis preserve the sign of the determinant. So b1 = (1, 0, . . . , 0) and we are
done.

This immediately yields that

Corollary 0.0.2. Two basis of Rn can be continuously transformed to each other,
through a family of basis, if and only if they belong to the same orientation class.

We may also define an orientation for an abstract finite dimensional vector space
V over R: we say that a pair of ordered basis of V are equivalent provided that
their image, under an isomorphism f : V → Rn belong to the same orientation class.
This is an equivalence relation which partitions the set of ordered basis of V into
two subsets which we call orientation classes of V .

Exercise 0.0.3. Check that the notion of the orientation for an abstract vector
space V is well defined, i.e., it does not depend on the choice of the isomorphism
f : V → Rn.

We say that a smooth manifold M is orientable provided that we can orient each
tangent space of M in a continuos way, i.e., we can choose an orientation class for
each tangent space, which satisfies the following property: for each p ∈ M there
exists an open neighborhood U and linearly independent vector fields X1, . . . , Xn

on U such that, for every q ∈ U , (X1(q), . . . Xn(q)) belongs to the orientation class
of TqM . If M is an orientable manifold then by an orientation of M we mean a
continuous choice of orientations for the tangent planes of M .

Let M and N be oriented manifolds. We say that a diffeomorphism f : M → N
is orientation preserving provided dfp preserves orientation at each point p of M , i.e.,
whenever (X1, . . . Xn) is in the orientation class of TpM then (dfp(X1), . . . dfp(Xn))
is in the orientation class of Tf(p)N .

Lemma 0.0.4. If M is orientable, then at each point p ∈ M there exists a local
chart (U, φ) such that φ : U → Rn is orientation preserving.

Proof. Suppose that M is orientable, and let (U, φ) be a local chart of M , where we
choose U sufficiently small so that there exist continuous vector fields (X1, . . . , Xn)
which lie in the orientation class ofM at each point of U . Then (dφ(X1), . . . , dφ(Xn))
is a continuous basis for Rn and thus (dφ(X1)(q), . . . , dφ(Xn)(q)) lies in the same
orientation class of Rn for all q ∈ U . After replacing φ by a composition of φ with
a reflection in Rn if necessary, we may assume that (dφ(X1)(q), . . . , dφ(Xn)(q)) all
lie in the standard orientation class of Rn.

Corollary 0.0.5. Every connected orientable manifold admits exactly two different
orientations.
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Proof. Suppose we are given two orientations for a connected manifold M . Let
A ⊂ M be the set of points p such that these two orientations agree on TpM .
By the previous lemma there exists a local chart (U, φ) centered at p such that
φ : U → Rn is orientation preserving for each of the orientations classes of M . This
implies that A is open. Similarly, it can be shown that M − A is open as well. So,
since M is connected, we either have A = M or A = ∅. So any two orientations of
M must either agree on every tangent space, or be different on every tangent space.
Since each tangent space can be oriented in exactly two different ways, it follows
then that M also admits exactly two different orientation classes.

Proposition 0.0.6. M is orientable if an only if it admits an atlas so that for every
pair of charts (U, φ) (V, ψ) of M , φ ◦ ψ−1 is orientation preserving.

Proof. Suppose that M is orientable. Then we may cover M by a collection of
orientation preserving charts. We claim that this yields the desired atlas. To see
this let (U, φ) and (V, ψ) belong to this atlas, and observe that

dφ = d(φ ◦ ψ−1) ◦ dψ.

Now let (X1, . . . , Xn) be a basis in the orientation class of M at p ∈ U ∩ V . Then
(dφ(X1), . . . , dφ(Xn)) and (dψ(X1), . . . , dψ(Xn)) belong to the same orientation
class, and thus the above expression implies that the determinant of d(φ ◦ ψ−1)
must be positive.

Conversely, suppose that an atlas as in the statement of the proposition exists.
Then, at each point of M we define an orientation of TpM by pulling back the
standard basis of Rn via a local chart centered at p. This gives a well defined
orientation at each point. To see this let p ∈ U ∩ V for a pair of local charts (U, φ)
and (V, ψ) of M . We need to check that

(dφ−1
φ(p)(e1), . . . , dφ

−1
φ(p)(en)) and (dψ−1

ψ(p)(e1), . . . , dψ
−1
ψ(p)(en))

belong to the same orientation class of TpM . To this end we push forward these
basis via dφp. Then we obtain

(e1, . . . , en) and (dφ ◦ ψ−1
ψ(p)(e1), . . . , dφ ◦ ψ

−1
ψ(p)(en))

which belong to the same orientation class since φ ◦ ψ−1 is orientation preserving
by assumption. So the orientation we have assigned to each TpM is well defined.
It remains only to show that this orientation is continuous. But this is immediate
from our definition because (dφ−1

φ(p)(e1), . . . , dφ
−1
φ(p)(en)) are continuous vector fields

on U which belong to the orientation class of TpM for each p ∈ U .

Lemma 0.0.7. Let M and N be connected orientable manifolds and f : M → N be a
diffeomorphism. Then either f is orientation preserving or is orientation reversing.
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Proof. Let p ∈ M , choose local charts (U, φ), (V, ψ) centered at p and f(p) which
are orientation preserving, and let f̃ := ψ ◦ f ◦ φ−1. Then f̃ : Rn → Rn is a
diffeomorphism, so the determinant of its jacobian is either everywhere positive or
everywhere negative. So either f̃ preserves orientation everywhere or else reverses
orientation everywhere. Since φ and ψ both preserve orientation, this implies that
either f preserves orientation throughout U or reverses orientation throughout U .
So the set of points in M where f preserves orientation and the set of points where
f reverses orientation are both open. So since these sets are complements of each
other they are both closed as well. Thus one of these sets must be empty and the
other has to coincide with all of M , since M is connected.

Corollary 0.0.8. If M can be covered by only two charts (U, φ) and (V, ψ), and
(U ∩ V ) is connected then M is orientable. In particular, Sn is orientable.

Proof. Since ψ(U∩V ) is connected and φ◦ψ−1 : ψ(U∩V ) → φ(U∩V ) is a diffeomor-
phism, then either it is orientation preserving or orientation reversing everywhere by
the previous lemma. If φ◦ψ−1 is orientation preserving then we are done; otherwise,
we may replace φ by its composition with a reflection.

Next we show that the mobius strip is not orientable. To this end we first need:

Lemma 0.0.9. Let (b1, . . . , bn) and (b′1, . . . , b
′
n) be a pair of basis in the same ori-

entation class of Rn. Further suppose that (b1, . . . , bn−1) and (b′1, . . . , b
′
n−1) belong

to the same orientation class of Rn−1. Then bn and b′n point to the same side of
Rn−1 × {0} in Rn.

Proof. Since (b1, . . . , bn−1) and (b′1, . . . , b
′
n−1) belong to the same orientation class of

Rn−1, we may continuously transform (b1, . . . , bn−1, bn) to (b′1, . . . , b
′
n−1, bn) through

a family of basis. So (b′1, . . . , b
′
n−1, bn) and (b′1, . . . , b

′
n−1, b

′
n) belong to the same

orientation class. Next, note that we may continuously deform these basis, through
a family of basis, to (b′1, . . . , b

′
n−1, bn) and (b′1, . . . , b

′
n−1, b

′
n), respectively, where bn

and b′n are unit vectors orthogonal to Rn−1 × {0}. Then bn = ±b′n. If bn = −b′n,
then (b′1, . . . , b

′
n−1, bn) and (b′1, . . . , b

′
n−1, b

′
n) lie in different orientation classes, which

is not possible, since they are obtained by a continuous transformation, through a
family of basis, from a pair of basis which where in the same orientation class. So
we must have bn = b′n. This implies that bn and b′n must have been pointing into
the same side of Rn−1 × {0}.

Proposition 0.0.10. Let M be an orientable manifold and N ⊂M be an embedded
submanifold. Suppose that dim(N) = dim(M)−1. Then N is orientable if and only
if there exists a vectorfield in M defined along N which is continuous and is never
tangent to N .

Proof. We may equip M with a Riemannian metric. Suppose that M and N are
both orientable, then we may define a normal vector field along N as follows. For
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every p ∈ N , let (X1(p), . . . , Xn−1(p)) be an ordered basis in the orientation class
of TpN . Then, since orthogonal complement of TpN in TpM is one dimensional,
there exists only two vectors Y1(p), Y2(p) ∈ TpM which have unit length, and
are orthogonal to TpN . Since, Y1(p) = −Y2(p), (X1(p), . . . , Xn−1(p), Y1(p)) and
(X1(p), . . . , Xn−1(p), Y2(p)) belong to different orientation classes of TpM . In par-
ticular, only one of these two vector fields, which we rename Y (p), satisfies the
condition that (X1(p), . . . , Xn−1(p), Y (p)) belongs to the preferred orientation class
of TpM .

Next we show that Y is continuous. To see this recall that since N is ori-
entable, by definition there exists for every p in N an open neighborhood U of
p in N and continuous linearly independent vectorfields X1(q), . . . , Xn−1(q) in M
tangent to N at each q ∈ U such that (X1(q), . . . , Xn−1(q)) belongs to the ori-
entation class of TqN . By the rank theorem, there exists an open neighborhood
V of p in M and a diffeomorphism φ : V → Rn such that φ(V ∩ N) = Rn−1 ×
{0}. Choosing U and V sufficiently small we may assume that U ∩ N = V .
Note that (dφq(X1(q)), . . . , dφq(Xn−1(q))) gives a continuous basis for Rn−1. So
(dφq(X1(q)), . . . , dφq(Xn−1(q))) all belong to the same orientation class of Rn−1.
Similarly (dφq(X1(q)), . . . , dφq(Xn−1(q)), dφqY (q)) all belong to the same orienta-
tion class of Rn. This implies, by the previous lemma, that dφqY (q) always points
to the same side of Rn−1 × {0}. So Y (q) must always point to the same side of N .

Conversely suppose that there exists a continuous vector field Y along N which
is never tangent to N . Then we may assume that Y is normal to N , after a contin-
uous deformation of Y . Now we pick an orientation for each TpN as follows. Let
(X1(p), . . . , Xn−1(p)) be an ordered basis of TpN such that (X1(p), . . . , Xn−1(p), Y (p))
is in the orientation class of TpM . We claim that defines an orientation on N . To see
this let (U, φ) be an orientation preserving local chart of M centered at p such that
φ(U ∩N) = Rn−1×{0}. Then dφ(Y ) is a continuous vector field along Rn−1×{0}
which is never tangent to it. So we may continuously transform dφ(Y ) without
ever making it tangent to Rn−1 × {0} until it coincides everywhere either with
(0, . . . , 0, 1) or (0, . . . , 0,−1). We may assume, after replacing Y with −Y if nec-
essary, that dφ(Y ) coincides with (0, . . . , 0, 1). Now let (b1, . . . bn−1) be a basis for
Rn−1 such that (b1, . . . bn−1, (0, . . . , 0, 1)) lies in the standard orientation class of Rn.
Then (dφ−1(b1), . . . dφ−1(bn−1), dφ−1((0, . . . , 0, 1))) lie in the orientation class of M ,
and consequently (dφ−1(b1), . . . dφ−1(bn−1)) lie in the orientation class of N because
dφ−1((0, . . . , 0, 1)) may be continuously deformed to Y without every being tan-
gent to N (recall that (0, . . . , 0, 1) may be continuously deformed to dφ(Y )). Since
(dφ−1(b1), . . . dφ−1(bn−1)) is continuous, we conclude that the orientation defined
on N is continuous.

Corollary 0.0.11. The mobius strip is not orientable.

Proof. The center circle in a mobius strip is an orientable submanifold, but it does
not admit a continuous vectorfield which is nowhere tangent to it. Hence the mobius
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strip cannot be orientable.

There is another way to show that the mobius strip is not orientable as we discuss
next.

Exercise 0.0.12. Let M be a two dimensional smooth manifold which admits a
smooth triangulation. Show that M is orientable if and only if we may orient each
triangle, i.e., order its vertices so that the orientations induced on each edge by the
neighboring triangles are the opposite of each other. Check that this implies that
the mobius strip is not orientable.

Exercise 0.0.13. Show that RP2 is not orientable in two ways: (1) show that RP2

contains a mobius strip; (2) use the triangulation argument of the previous exercise.

There is still a third way to show that RP2 is not orientable, and this argument
applies to all RPn when n is even:

Lemma 0.0.14. The reflection r : Sn → Sn given by r(x) = −x is orientation
reversing when n is even and is orientation preserving when n is odd.

Proof. Define a continuous normal vectorfield on Sn by n(p) := p. Then we may
define an orientation on Sn by stating that a basis (b1(p), . . . , bn(p)) of TpSn lies in
the orientation class of TpSn provided that

(b1(p), . . . , bn(p), n(p))

lies in the standard orientation class of Rn+1. Then, to decide whether or not r is
orientation preserving, we just have to check whether

(dr(b1(p)), . . . , dr(bn(p)), n(r(p)))

lies in the orientation class of Rn+1 or not. But dr is just the restriction of dr to
Sn where r : Rn → Rn is the reflection through the origin of Rn. Since r is linear
dr = r. So dr = r. Further note that n(r(p)) = n(−p) = −p = −n(p) = r(n(p)).
Thus the last displayed expression may be rewritten as

(r(b1(p)), . . . , r(bn(p)), r(n(p))).

Since the standard orientation class of Rn+1 contains (b1(p), . . . , bn(p), n(p)) by as-
sumption, the above basis belongs to the orientation class of Rn+1 if and only if r is
orientation preserving, which is the case only when n is even (or n+ 1 is odd).

Theorem 0.0.15. RPn is orientable if and only if n is odd.
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Proof. Recall that we have a natural mapping π : Sn → RPn which is a local dif-
feomorphism, and is given simply by π(p) = {p,−p}. Now let r : Sn → Sn be the
reflection through the origin. Then

π ◦ r = π.

If RPn is orientable then we may assume that π preserves orientation. Then the
above inequality implies that π ◦ r preserves orientation as well. This is not possible
only if r preserves orientation which is the case only when n is odd. Thus RPn is
not orientable when n is even.

It remains to show that RPn is orientable when n is odd. In this we may orient
each tangent space T[p]RPn is as follows: take a representative from q ∈ [p] =
{p,−p}. Choose a basis of TqSn which is in its orientation class, and let the image
of this basis under dπ determine the orientation class of T[p]RPn. This orientation
is well defined because it not effected by whether q = p or q = −p. Indeed, in
(b1, . . . , bn) is a basis in the orientation class of TpSn and (b′1, . . . , b

′
n) is a basis in

the orientation class of T−pSn then

(dπp(b1), . . . , dπ(bn)) and (dπ−p(b′1), . . . , dπ(b′n))

belong in the same orientation class of T[p]RPn; because,

dπp(bi) = d(π ◦ r)p(bi) = dπr(p) ◦ drp(bi) = dπ−p ◦ drp(bi)

and r preserves orientation, i.e., (drp(b1), . . . , drp(bn)) belongs in the same orienta-
tion class as (b′1, . . . , b

′
n).

Exercise 0.0.16. Show that RP2 cannot be embedded in R3 by using the Jordan-
Brouwer separation theorem which states that if Mn ⊂ Rn+1 is an embedded
compact submanifold then Rn+1 −M has exactly two components A and B and
∂A = M = ∂B. So we just need to check that this allows us to define a continuous
normal vector field along M .

Exercise 0.0.17. Show that the tangent bundle of any manifold is orientable. (So-
lution: We show that the tangent bundle admits an atlas such that the transition
functions are all orientation preserving. In particular we may use the atlas which
is induced on TM by any choice of an atlas on M . Recall that if (U, φ) is any
local chart of M , then the corresponding chart of TM is given by (U, φ) where
U = ∪p∈UTpM , and φ(p, v) = (φ(p), dφ(v)). So if (V , ψ) is another such chart for
TM then

φ ◦ ψ−1(x1, . . . , x2n) = (φ ◦ ψ−1(x1, . . . , xn), d(φ ◦ ψ−1)(xn+1, . . . , x2n)).

This implies that

d(φ ◦ ψ−1)(x1, . . . , x2n) = (d(φ ◦ ψ−1)(x1, . . . , xn), d(φ ◦ ψ−1)(xn+1, . . . , x2n)).
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Consequently eigenvectors of d(φ ◦ψ−1) are (0, vi) and (vi, 0) where vi are eigenvec-
tors of d(φ ◦ψ−1). This yields that each eigenvalue of d(φ ◦ψ−1) occurs twice in the
in the list of the eigenvalues of d(φ ◦ ψ−1) . Thus

det(d(φ ◦ ψ−1)) = det(d(φ ◦ ψ−1))2 > 0.)

Exercise 0.0.18. Show that a minfold M is orientable if and only if there does not
exits a continuous family of immersions ft : Bn → M , t ∈ [0, 1], such that f0 and
f1 are embeddings, they have the same image, i.e., f0(Bn) = f1(Bn), and f0 ◦ f−1

1

is orientation reversing. (Recall that Bn denotes the unit ball in Rn; we say that
ft : Bn →M is a continuous family of immersions, if each ft is an immersion, an if
F : [0, 1]×Bn →M , defined by F (t, p) := ft(p) is continuous.)

Note 0.0.19. The last exercise suggests how one may extend the definition of
orientability to topological manifolds: we say that M is orientable if and only there
does not exist a cotinuous family of (topological)immersions ft : Bn →M , t ∈ [0, 1],
such that f0 and f1 are embeddings, they have the same image, i.e., f0(Bn) =
f1(Bn), and f0 ◦ f−1

1 is isotopic to the identity. A homeomorphism h : Bn → Bn is
said to be isotopic to the identity provided that there exist a continuous family of
homeomorphisms ht : Bn → Bn such that h0 = h and h1 is the identity map.
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