Lecture Notes 11

2.4 Intrinsic Metric and Isometries of Surfaces

Let $M \subset \mathbf{R}^{3}$ be a regular embedded surface and $p, q \in M$, then we define

$$
\operatorname{dist}_{M}(p, q):=\inf \{\operatorname{Length}[\gamma] \mid \gamma:[0,1] \rightarrow M, \gamma(0)=p, \gamma(1)=q\}
$$

Exercise 1. Show that $\left(M, \operatorname{dist}_{M}\right)$ is a metric space.
Lemma 2. Show that if M is a C^{1} surface, and $X \subset M$ is compact, then for every $\epsilon>0$, there exists $\delta>0$ such that

$$
\left|\operatorname{dist}_{M}(p, q)-\|p-q\|\right| \leq \epsilon\|p-q\|
$$

for all $p, q \in X$, with $\operatorname{dist}_{M}(p, q) \leq \delta$.
Proof. Define $F: M \times M \rightarrow \mathbf{R}$ by $F(p, q):=\operatorname{dist}_{M}(p, q) /\|p-q\|$, if $p \neq q$ and $F(p, q):=1$ otherwise. We claim that F is continuous. To see this let p_{i} be a sequence of points of M which converge to a point $p \in M$. We may assume that p_{i} are contained in a Monge patch of M centered at p given by

$$
X\left(u_{1}, u_{2}\right)=\left(u_{1}, u_{2}, h\left(u_{1}, u_{2}\right)\right)
$$

Let x_{i} and y_{i} be the x and y coordinates of p_{i}. If p_{i} is sufficiently close to $p=(0,0)$, then, since $\nabla h(0,0)=0$, we can make sure that

$$
\left\|\nabla h\left(t x_{i}, t y_{i}\right)\right\|^{2} \leq \epsilon
$$

for all $t \in[0,1]$ and $\epsilon>0$. Let $\gamma:[0,1] \rightarrow \mathbf{R}^{3}$ be the curve given by

$$
\gamma(t)=\left(t x_{i}, t y_{i}, h\left(t x_{i}, t y_{i}\right)\right) .
$$

[^0]Then, since γ is a curve on M,

$$
\begin{aligned}
\operatorname{dist}_{M}\left(p, p_{i}\right) & \leq \text { Length }[\gamma] \\
& =\int_{0}^{1} \sqrt{x_{i}^{2}+y_{i}^{2}+\left\langle\nabla h\left(t x_{i}, t y_{i}\right),\left(x_{i}, y_{i}\right)\right\rangle^{2}} d t \\
& \leq \int_{0}^{1} \sqrt{x_{i}^{2}+y_{i}^{2}+\epsilon\left(x_{i}^{2}+y_{i}^{2}\right)^{2}} d t \\
& \leq \sqrt{1+\epsilon} \sqrt{x_{i}^{2}+y_{i}^{2}} \\
& \leq(1+\epsilon)\left\|p-p_{i}\right\|
\end{aligned}
$$

So, for any $\epsilon>0$ we have

$$
1 \leq \frac{\operatorname{dist}_{M}\left(p, p_{i}\right)}{\left\|p-p_{i}\right\|} \leq 1+\epsilon
$$

provided that p_{i} is sufficiently close to p. We conclude then that F is continuous. So $U:=F^{-1}([1,1+\epsilon])$ is an open subset of $M \times M$ which contains the diagonal $\Delta_{M}:=\{(p, p) \mid p \in M\}$. Since $\Delta_{X} \subset \Delta_{M}$ is compact, we may then choose δ so small that $V_{\delta}\left(\Delta_{X}\right) \subset U$, where $V_{\delta}\left(\Delta_{X}\right)$ denotes the open neighborhood of Δ_{X} in $M \times M$ which consists of all pairs of points (p, q) with $\operatorname{dist}_{M}(p, q) \leq \delta$.
Exercise 3. Does the above lemma hold also for C^{0} surfaces?
If $\gamma:[a, b] \rightarrow M$ is any curve then we may define

$$
\begin{aligned}
& \operatorname{Length}_{M}[\gamma]:= \\
& \qquad \sup \left\{\sum_{i=1}^{k} \operatorname{dist}_{M}\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right) \mid\left\{t_{0}, \ldots, t_{k}\right\} \in \operatorname{Partition}[a, b]\right\} .
\end{aligned}
$$

Lemma 4. Length ${ }_{M}[\gamma]=$ Length $[\gamma]$.
Proof. Note that

$$
\operatorname{dist}_{M}\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right) \geq\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\| .
$$

Thus Length ${ }_{M}[\gamma] \geq$ Length $[\gamma]$. Further, by the previous lemma, we can make sure that

$$
\operatorname{dist}_{M}\left(\gamma\left(t_{i}\right), \gamma\left(t_{i-1}\right)\right) \leq(1+\epsilon)\left\|\gamma\left(t_{i}\right)-\gamma\left(t_{i-1}\right)\right\|,
$$

which yields Length ${ }_{M}[\gamma] \leq(1+\epsilon)$ Length $[\gamma]$, for any $\epsilon>0$.

We say that $f: M \rightarrow \bar{M}$ is an isometry provided that

$$
\operatorname{dist}_{\bar{M}}(f(p), f(q))=\operatorname{dist}_{M}(p, q)
$$

Lemma 5. $f: M \rightarrow \bar{M}$ is an isometry, if and only if Length $[\gamma]=$ Length $[f \circ$ $\gamma]$ for all curves $\gamma:[a, b] \rightarrow M$.

Proof. If f is an isometry, then, by the previous lemma,

$$
\operatorname{Length}[\gamma]=\operatorname{Length}_{M}[\gamma]=\operatorname{Length}_{\bar{M}}[f \circ \gamma]=\operatorname{Length}_{M}[f \circ \gamma] .
$$

The converse is clear.
Exercise 6. Justify the middle equality in the last expression displayed above.

Theorem 7. $f: M \rightarrow \bar{M}$ is an isometry if and only if for all $p \in M$, and $v, w \in T_{p} M$,

$$
\left\langle d f_{p}(v), d f_{p}(w)\right\rangle=\langle v, w\rangle
$$

Proof. Suppose that f is an isometry. Let $\gamma:(-\epsilon, \epsilon) \rightarrow M$ be a curve with $\gamma(0)=p$, and $\gamma^{\prime}(0)=v$. Then, by the previous lemma

$$
\int_{-\epsilon}^{\epsilon}\left\|\gamma^{\prime}(t)\right\| d t=\int_{-\epsilon}^{\epsilon}\left\|(f \circ \gamma)^{\prime}(t)\right\| d t
$$

Taking the limit of both sides as $\epsilon \rightarrow 0$ and applying the mean value theorem for integrals, yields then that

$$
\|v\|=\left\|\gamma^{\prime}(0)\right\|=\left\|(f \circ \gamma)^{\prime}(0)\right\|=\left\|d f_{p}(v)\right\| .
$$

Thus $d f$ preserves the norm, which implies that it must preserve the innerproduct as well (see the following exercise).

Conversely, suppose that $\|v\|=\left\|d f_{p}(v)\right\|$. Then, if $\gamma:[a, b] \rightarrow M$ is any curve, we have

$$
\int_{a}^{b}\left\|(f \circ \gamma)^{\prime}(t)\right\| d t=\int_{a}^{b}\left\|d f_{\gamma(t)}\left(\gamma^{\prime}(t)\right)\right\| d t=\int_{a}^{b}\left\|\gamma^{\prime}(t)\right\| d t
$$

So f preserves the length of all curves, which, by the previous Lemma, shows that f is an isometry.
Exercise 8. Show that a linear function $F: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ preserves the norm $\|\cdot\|$ if and only if it preserves the inner product $\langle\cdot, \cdot\rangle$.

2.5 Gauss's Theorem Egregium

Lemma 9. Let $X: U \rightarrow M$ be a proper regular chart. Then $\bar{X}:=f \circ X: U \rightarrow$ \bar{M} is a proper regular chart as well and $g_{i j}=\bar{g}_{i j}$ on U.

Proof. Using the last theorem we have

$$
\begin{aligned}
\bar{g}_{i j}\left(u_{1}, u_{2}\right) & =\left\langle D_{i} \bar{X}\left(u_{1}, u_{2}\right), D_{j} \bar{X}\left(u_{1}, u_{2}\right)\right\rangle \\
& =\left\langle D_{i}(f \circ X)\left(u_{1}, u_{2}\right), D_{j}(f \circ X)\left(u_{1}, u_{2}\right)\right\rangle \\
& =\left\langle d f_{X\left(u_{1}, u_{2}\right)}\left(D_{i} X\left(u_{1}, u_{2}\right)\right), d f_{X\left(u_{1}, u_{2}\right)}\left(D_{j} X\left(u_{1}, u_{2}\right)\right)\right\rangle \\
& =\left\langle D_{i} X\left(u_{1}, u_{2}\right), D_{j} X\left(u_{1}, u_{2}\right)\right\rangle \\
& =g_{i j}\left(u_{1}, u_{2}\right) .
\end{aligned}
$$

Exercise 10. Justify the third equality in the last displayed expression above.

Let \mathcal{F} denote the set of functions $f: U \rightarrow \mathbf{R}$ where $U \subset \mathbf{R}^{2}$ is an open neighborhood of the origin.

Lemma 11. There exists a mapping Briochi: $\mathcal{F} \times \mathcal{F} \times \mathcal{F} \rightarrow \mathcal{F}$ such that for any chart $X: U \rightarrow M$ centered at $p \in M$,

$$
K(p)=\operatorname{Briochi}\left[g_{11}, g_{12}, g_{22}\right](0,0)
$$

Proof. Recall that

$$
K(p)=\frac{\operatorname{det} l_{i j}(0,0)}{\operatorname{det} g_{i j}(0,0)},
$$

and, by Lagrange's identity,

$$
l_{i j}=\left\langle X_{i j}, \frac{X_{1} \times X_{2}}{\left\|X_{1} \times X_{2}\right\|}\right\rangle=\frac{1}{\sqrt{\operatorname{det} g_{i j}}}\left\langle X_{i j}, X_{1} \times X_{2}\right\rangle,
$$

where $X_{i j}:=D_{i j} X$, and $X_{i}:=D_{i} X$. Thus

$$
K(p)=\frac{\operatorname{det}\left(\left\langle X_{i j}(0,0), X_{1}(0,0) \times X_{2}(0,0)\right\rangle\right)}{\left(\operatorname{det} g_{i j}(0,0)\right)^{2}} .
$$

Next note that

$$
\operatorname{det}\left(\left\langle X_{i j}, X_{1} \times X_{2}\right\rangle\right)=\left\langle X_{11}, X_{1} \times X_{2}\right\rangle\left\langle X_{22}, X_{1} \times X_{2}\right\rangle-\left\langle X_{12}, X_{1} \times X_{2}\right\rangle^{2}
$$

The right hand side of the last expression may be rewritten as

$$
\operatorname{det}\left(X_{11}, X_{1}, X_{2}\right) \operatorname{det}\left(X_{22}, X_{1}, X_{2}\right)-\left(\operatorname{det}\left(X_{12}, X_{1}, X_{2}\right)\right)^{2}
$$

where (u, v, w) here denotes the matrix with columns u, v, and w. Recall that if A is a square matrix with transpose A^{T}, then $\operatorname{det} A=\operatorname{det} A^{T}$. Thus the last expression displayed above is equivalent to

$$
\operatorname{det}\left(\left(X_{11}, X_{1}, X_{2}\right)^{T}\left(X_{22}, X_{1}, X_{2}\right)\right)-\operatorname{det}\left(\left(X_{12}, X_{1}, X_{2}\right)^{T}\left(X_{12}, X_{1}, X_{2}\right)\right)
$$

which in turn can be written as

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
\left\langle X_{11}, X_{22}\right\rangle & \left\langle X_{11}, X_{1}\right\rangle & \left\langle X_{11}, X_{2}\right\rangle \\
\left\langle X_{1}, X_{22}\right\rangle & \left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle \\
\left\langle X_{2}, X_{22}\right\rangle & \left\langle X_{2}, X_{1}\right\rangle & \left\langle X_{2}, X_{2}\right\rangle
\end{array}\right) \\
&-\operatorname{det}\left(\begin{array}{cccc}
\left\langle X_{12}, X_{12}\right\rangle & \left\langle X_{12}, X_{1}\right\rangle & \left\langle X_{12}, X_{2}\right\rangle \\
\left\langle X_{1}, X_{12}\right\rangle & \left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle \\
\left\langle X_{2}, X_{12}\right\rangle & \left\langle X_{2}, X_{1}\right\rangle & \left\langle X_{2}, X_{2}\right\rangle
\end{array}\right) .
\end{aligned}
$$

If we expand the above determinants along their first rows, then $\left\langle X_{11}, X_{22}\right\rangle$ and $\left\langle X_{12}, X_{22}\right\rangle$ will have the same coefficients. This implies that we can rewrite the last expression as

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccc}
\left\langle X_{11}, X_{22}\right\rangle-\left\langle X_{12}, X_{12}\right\rangle & \left\langle X_{11}, X_{1}\right\rangle & \left\langle X_{11}, X_{2}\right\rangle \\
\left\langle X_{1}, X_{22}\right\rangle & \left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle \\
\left\langle X_{2}, X_{22}\right\rangle & \left\langle X_{2}, X_{1}\right\rangle & \left\langle X_{2}, X_{2}\right\rangle
\end{array}\right) \\
& \\
&-\operatorname{det}\left(\begin{array}{ccc}
0 & \left\langle X_{12}, X_{1}\right\rangle & \left\langle X_{12}, X_{2}\right\rangle \\
\left\langle X_{1}, X_{12}\right\rangle & \left\langle X_{1}, X_{1}\right\rangle & \left\langle X_{1}, X_{2}\right\rangle \\
\left\langle X_{2}, X_{12}\right\rangle & \left\langle X_{2}, X_{1}\right\rangle & \left\langle X_{2}, X_{2}\right\rangle
\end{array}\right) .
\end{aligned}
$$

Now note that each of the entries in the above matrices can be expressed purely in terms of $g_{i j}$, since

$$
\begin{gathered}
\left\langle X_{i i}, X_{j}\right\rangle=\left\langle X_{i}, X_{j}\right\rangle_{i}-\left\langle X_{i}, X_{j i}\right\rangle=\left(g_{i j}\right)_{i}-\frac{1}{2}\left(g_{i i}\right)_{j}, \\
\left\langle X_{i j}, X_{i}\right\rangle=\frac{1}{2}\left\langle X_{i}, X_{i}\right\rangle_{j}=\frac{1}{2}\left(g_{i i}\right)_{j},
\end{gathered}
$$

and

$$
\begin{aligned}
\left\langle X_{11}, X_{22}\right\rangle-\left\langle X_{12}, X_{12}\right\rangle & =\left\langle X_{1}, X_{22}\right\rangle_{1}-\left\langle X_{1}, X_{12}\right\rangle_{2} \\
& =\left(g_{21}\right)_{21}-\frac{1}{2}\left(g_{11}\right)_{21}-\frac{1}{2}\left(g_{11}\right)_{2} .
\end{aligned}
$$

Substituting the above values in the previous matrices, we define

$$
\begin{aligned}
& \operatorname{Briochi}\left[g_{11}, g_{22}, g_{33}\right]:= \\
& \frac{1}{\left(\operatorname{det}\left(g_{i j}\right)\right)^{2}}\left(\operatorname{det}\left(\begin{array}{ccc}
\left(g_{21}\right)_{21}-\frac{1}{2}\left(g_{11}\right)_{21}-\frac{1}{2}\left(g_{11}\right)_{2} & \frac{1}{2}\left(g_{11}\right)_{1} & \frac{1}{2}\left(g_{11}\right)_{2} \\
\left(g_{21}\right)_{2}-\frac{1}{2}\left(g_{11}\right)_{2} & g_{11} & g_{12} \\
\frac{1}{2}\left(g_{22}\right)_{2} & g_{21} & g_{22}
\end{array}\right)\right. \\
& \left.-\operatorname{det}\left(\begin{array}{ccc}
0 & \frac{1}{2}\left(g_{11}\right)_{2} & \frac{1}{2}\left(g_{22}\right)_{1} \\
\frac{1}{2}\left(g_{11}\right)_{2} & g_{11} & g_{12} \\
\frac{1}{2}\left(g_{22}\right)_{1} & g_{21} & g_{22}
\end{array}\right)\right) .
\end{aligned}
$$

Evaluating the above expression at $(0,0)$ yields that Gaussian curvature $K(p)$.

Theorem 12. If $f: M \rightarrow \bar{M}$ is an isometry, then $\bar{K}(f(p))=K(p)$, where K and \bar{K} denote the Gaussian curvatures of M and \bar{M} respectively.

Proof. Let $X: U \rightarrow M$ be a chart centered at p, then $\bar{X}:=f \circ X$ is a chart of \bar{M} centered at $f(p)$. Let $g_{i j}$ and $\bar{g}_{i j}$ denote the coefficients of the first fundamental form with respect to the charts X and \bar{X} respectively. Then, using the previous two lemmas, we have

$$
\begin{aligned}
\bar{K}(f(p)) & =\operatorname{Briochi}\left[\bar{g}_{11}, \bar{g}_{12}, \bar{g}_{22}\right](0,0) \\
& =\operatorname{Briochi}\left[g_{11}, g_{12}, g_{22}\right](0,0) \\
& =K(p) .
\end{aligned}
$$

Exercise 13. Let $M \subset \mathbf{R}^{3}$ be a regular embedded surface and $p \in M$. Suppose that $K(p) \neq 0$. Does there exist a chart $X: U \rightarrow M$ such that $D_{1} X$ and $D_{2} X$ are orthonormal at all points of U.

[^0]: ${ }^{1}$ Last revised: October 27, 2021

