Lecture Notes 12

Riemannian Metrics

0.1 Definition

If M is a smooth manifold then by a Riemannian metric g on M we mean a smooth assignment of an innerproduct to each tangent space of M. This means that, for each $p \in M, g_{p}: T_{p} M \times T_{p} M \rightarrow \mathbf{R}$ is a symmetric, positive definite, bilinear map, and furthermore the assignment $p \mapsto g_{p}$ is smooth, i.e., for any smooth vector fields X and Y on $M, p \mapsto g_{p}\left(X_{p}, Y_{p}\right)$ is a smooth function. The pair (M, g) then will be called a Riemannian manifold. We say that a diffeomorphism $f: M \rightarrow N$ between a pair of Riemannian manifolds (M, g) and (N, h) is an isometry provided that

$$
g_{p}(X, Y)=h_{f(p)}\left(d f_{p}(X), d f_{p}(Y)\right)
$$

for all $p \in M$ and $X, Y \in T_{p} M$.
Exercise 0.1.1. Show that the antipodal reflection $a: \mathbf{S}^{n} \rightarrow \mathbf{S}^{n}, a(x):=-x$ is an isometry.

0.2 Examples

0.2.1 The Euclidean Space

The simplest example of a Riemannian manifold is \mathbf{R}^{n} with its standard Euclidean innerproduct, $g(X, Y):=\langle X, Y\rangle$.

0.2.2 Submanifolds of a Riemannian manifold

A rich source of examples are generated by immersions $f: N \rightarrow M$ of any manifold N into a Riemannian manifold M (with metric g); for this induces a metric h on N given by

$$
h_{p}(X, Y):=g_{f(p)}\left(d f_{p}(X), d f_{p}(Y)\right) .
$$

In particular any manifold may be equipped with a Riemannian metric since every manifold admits an embedding into \mathbf{R}^{n}.

[^0]
0.2.3 Quotient of a Riemannian manifold by a group of isometries

Note that the set of isometries $f: M \rightarrow M$ forms a group. Another source of examples of Riemannian manifolds are generated by taking the quotient of a Riemannian manifold (M, g) by a subgroup G of its isometries which acts properly discontinuously on M. Recall that if G acts properly discontinuously, then M / G is indeed a manifold. Then we may define a metric h on M / G by setting $h_{[p]}:=g_{p}$. More precisely recall that the projections $\pi: M \rightarrow M / G$, given by $\pi(p):=[p]$ is a local diffeomorphism, i.e., for any $q \in[p]$ there exists an open neighborhood U of p in M and an open neighborhood V of $[p]$ in M / G such that $\pi: U \rightarrow V$ is a diffeomorphism. Then we may define

$$
h_{[p]}(X, Y):=g_{q}\left(\left(d \pi_{q}\right)^{-1}(X),\left(d \pi_{q}\right)^{-1}(Y)\right) .
$$

One can immediately check that h does not depend on the choice of $q \in[p]$ and is thus well defined.A specific example of proper discontinuous action of isometries is given by translations $f_{z}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ given by $f_{z}(p):=p+z$ where $z \in \mathbf{Z}^{n}$. Recall that $\mathbf{R}^{n} / \mathbf{Z}^{n}$ is the torus T^{n}, which may now be equipped with the metric induced by this group action. Similarly $\mathbf{R P}^{n}$ admits a canonical metric, since $\mathbf{R} \mathbf{P}^{n}=\mathbf{S}^{n} /\{ \pm 1\}$, and reflections of a sphere are isometries.

0.2.4 Conformal transformations

As another set of examples note that if (M, g) is any Riemannian manifold, then $(M, \lambda g)$ is also a Riemannian manifold where $\lambda: M \rightarrow \mathbf{R}^{+}$is any smooth positive function. Note that this change of metric does not effect the angles between any pair of vectors in a tangent space of M. Thus $(M, \lambda g)$ is said to be conformal to (M, g).

Exercise 0.2.1. Show that the inversion $i: \mathbf{R}^{n}-\{o\} \rightarrow \mathbf{R}^{n}$ given by $i(x):=x /\|x\|^{2}$ is a conformal transformation.

Exercise 0.2.2. Show that the stereographic projection π : $\mathbf{S}^{2}-\{(0,0,1)\} \rightarrow \mathbf{R}^{2}$ is a conformal transformation.

0.2.5 The hyperbolic space

Finally, an important example is the hyperbolic space which may be represented by a number of models. One model, known as Poincare's half space model, is to take the open upper half space of \mathbf{R}^{n} and define there a metric via

$$
g_{p}(X, Y):=\frac{\langle X, Y\rangle}{\left(p_{n}\right)^{2}},
$$

where p_{n} denotes the $n^{\text {th }}$ coordinate of p. Another description of the hyperbolic space may be given by taking the open unit ball if \mathbf{R}^{n} and defining

$$
g_{p}(X, Y):=\frac{\langle X, Y\rangle}{\left(1-\|p\|^{2}\right)^{2}}
$$

This is known as Poincare's ball model.
Exercise 0.2.3. Show that the the Poincare half-plane and the half-disk are isometric (Hint: identify the Poincare half-plane with the region $y>1$ in \mathbf{R}^{2} and do an inversion).

0.3 Metric in local coordinates

Let (U, ϕ) be a local chart for (M, g). Then, recall that if $e_{1}, \ldots e_{n}$ denote the standard basis of \mathbf{R}^{n}, we obtain a basis for each $T_{p} M$, for $p \in U$ by setting

$$
E_{i}(p):=d \phi_{\phi(p)}^{-1}\left(e_{i}\right) .
$$

Now if $X, Y \in T_{p} M$, then $X=\sum_{i=1}^{n} X^{i} E_{i}$ and $Y=\sum_{i=1}^{n} Y^{i} E_{i}$. Further, if we set

$$
g_{i j}(p):=g_{p}\left(E_{i}, E_{j}\right),
$$

then, since g is bilinear we have

$$
g_{p}(X, Y)=\sum_{i, j=1}^{n} X^{i} Y^{j} g_{p}\left(E_{i}, E_{j}\right)=\sum_{i, j=1}^{n} X^{i} Y^{j} g_{i j}(p)
$$

Thus in any local coordinate (U, ϕ) a metric is completely determined by the functions $g_{i j}$ which may be regarded as the coefficients of a positive definite matrix.

To obtain a concrete example, note that if $M \subset \mathbf{R}^{n}$ is a submanifold, with the induce metric from \mathbf{R}^{n}, and (ϕ, U) is a local chart of M, then if we set $f:=\phi^{-1}$, $f: \phi(U) \rightarrow \mathbf{R}^{n}$ is a parametrization for U, and $d(f)\left(e_{i}\right)=D_{i} f$. Consequently,

$$
g_{i j}(p)=\left\langle D_{i} f\left(f^{-1}(p)\right), D_{j} f\left(f^{-1}(p)\right)\right\rangle
$$

For instance, note that a surface of revolution in \mathbf{R}^{3} which is given by rotating the curve $(r(t), z(t))$ in the $x z$-plane about the z axis can be parametrized by

$$
f(t, \theta)=(r(t) \cos \theta, r(t) \sin \theta, z(t)) .
$$

So
$D_{1} f(t, \theta)=\left(r^{\prime}(t) \cos \theta, r^{\prime}(t) \sin \theta, z^{\prime}(t)\right) \quad$ and $\quad D_{2} f(t, \theta)=(-r(t) \sin \theta, r(t) \cos \theta, 0)$, and consequently $g_{i j}(f(t, \theta))$ is given by

$$
\left(\begin{array}{cc}
\left(r^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2} & 0 \\
0 & r^{2}
\end{array}\right)
$$

Note that if we assume that the curve in the $x z$-plane is parametrized by arclength, then $\left(r^{\prime}\right)^{2}+\left(z^{\prime}\right)^{2}=1$, so the above matrix becomes more simple to work with.

Exercise 0.3.1. Compute the metric of \mathbf{S}^{2} in terms of spherical coordinates θ and ϕ.

Exercise 0.3.2. Compute the metric of the surface given by the graph of a function $f: \Omega \subset \mathbf{R}^{2} \rightarrow \mathbf{R}$.

0.4 Length of Curves

In a Riemannian manifold (M, g), the length of any piecewise smooth curves $c:[a, b] \rightarrow$ M with $c(a)=p$ and $c(b)=q$ is defined as

$$
\operatorname{Length}[c]:=\int_{a}^{b} \sqrt{g_{c(t)}\left(c^{\prime}(t), c^{\prime}(t)\right)} d t
$$

where

$$
c^{\prime}(t):=d c_{t}(1)
$$

Note that the definition for the length of curves here is a generalization of the Euclidean case where we integrate the speed of the curve. Indeed the last formula above coincides with the regular notion of derivative when M is just \mathbf{R}^{n}. To see this, recall that $d c_{t}(1)=(c \circ \gamma)^{\prime}(0)$ where $\gamma:(\epsilon, \epsilon) \rightarrow[a, b]$ is a curve with $\gamma(0)=t$ and $\gamma^{\prime}(0)=1$, e.g., $\gamma(u)=t+u$. Thus by the chain rule $(c \circ \gamma)^{\prime}(0)=c^{\prime}(\gamma(0)) \gamma^{\prime}(0)=c^{\prime}(t)$.

Exercise 0.4.1. Compute the length of the radius of the Poincare-disk (with respect to the Poincare metric).

0.5 The classical notation for metric

For any curve $c:[a, b] \rightarrow \mathbf{R}^{n}$ we may write $c(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$. Consequently, if we define $g_{i j}(p):=g_{p}\left(e_{i}, e_{j}\right)$ where e_{1}, \ldots, e_{n} is the standard basis for \mathbf{R}^{n}, then bilinearity of g yields that

$$
g_{c(t)}\left(c^{\prime}(t), c^{\prime}(t)\right)=\sum_{i, j=1}^{n} g_{c(t)}\left(e_{i}, e_{j}\right) x_{i}^{\prime}(t) x_{j}^{\prime}(t)=\sum_{i, j=1}^{n} g_{i j}(c(t)) x_{i}^{\prime}(t) x_{j}^{\prime}(t) .
$$

Thus we may write

$$
\operatorname{Length}[c]:=\int_{a}^{b} \sqrt{\sum_{i, j=1}^{n} g_{i j}(c(t)) \frac{d x_{i}}{d t} \frac{d x_{j}}{d t}} d t
$$

Indeed classically metrics were specified by an expression of the form

$$
d s^{2}=\sum_{i, j=1}^{n} g_{i j} d x_{i} d x_{j}
$$

and then length of a curve was defined as the integral of $d s$, which was called "the element of arclength", along that curve:

$$
\operatorname{Length}[c]=\int_{c} d s
$$

In particular note that, in the classical notation, the standard Euclidean metric in the plane is given by $d s^{2}=\sum_{i=1}^{n} d x_{i}^{2}$. Further, in the Poincare's half-disk model, $d s^{2}=\sum_{i=1}^{n} d x_{i}^{2} / x_{n}^{2}$.

0.6 Distance

For any pairs of points $p, q \in M$, let $C(p, q)$ denote the space piecewise smooth curves $c:[a, b] \rightarrow M$ with $c(a)=p$ and $c(b)=q$. Then, if M is connected, we may define the distance between p and q as

$$
d_{g}(p, q):=\inf \{\operatorname{Length}[c] \mid c \in C(p, q)\} .
$$

So the distance between a pair of points is defined as the greatest lower bound of the lengths of curves which connect those points. First we show that this is a generalization of the standard notion of distance in \mathbf{R}^{n}.

Lemma 0.6.1. For all continuous maps $f:(a, b) \rightarrow \mathbf{R}^{n}$

$$
\left\|\int_{a}^{b} f(t) d t\right\| \leq \int_{a}^{b}\|f(t)\| d t .
$$

Proof. By the Cauchy-Schwarts inequality, for any unit vector $u \in \mathbf{S}^{n-1}$,

$$
\left\langle\int_{a}^{b} f(t) d t, u\right\rangle=\int_{a}^{b}\langle f(t), u\rangle d t \leq \int_{a}^{b}\|f(t)\| d t .
$$

In particular we may let $u:=\int_{a}^{b} f(t) d t /\left\|\int_{a}^{b} f(t) d t\right\|$, assuming that $\int_{a}^{b} f(t) d t \neq 0$ (otherwise the lemma is obviously true).

Corollary 0.6.2. If $(M, g)=\left(\mathbf{R}^{n},\langle \rangle\right)$ then $d_{g}(p, q)=\|p-q\|$.
Proof. First note that if we set $c(t):=(1-t) p+t q$, then

$$
\operatorname{Length}[c]:=\int_{0}^{1}\|p-q\| d t=\|p-q\| .
$$

So $d_{g}(p, q) \leq\|p-q\|$. It remains then to show that $d_{g}(p, q) \geq\|p-q\|$. The later inequality holds because for all curves $c:[a, b] \rightarrow \mathbf{R}^{n}$

$$
\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t \geq\left\|\int_{a}^{b} c^{\prime}(t) d t\right\|=\|c(b)-c(a)\| .
$$

The previous result shows that $\left(M, d_{g}\right)$ is a metric space when M is the Euclidean space \mathbf{R}^{n} and g, which induces d, is the standard innerproduct. Next we show that this is the case for all Riemannian manifolds. To this end we first need a local lemma:

Lemma 0.6.3. Let (B, g) be a Riemannian manifold, where $B:=\bar{B}_{r}^{n}(o) \subset \mathbf{R}^{n}$. Then there exists $m>0$ such that for any piecewise C^{1} curve $c:[a, b] \rightarrow B$ with $c(a)=o$ and $c(b) \in \partial B$ we have Length $[c]>m$.

Proof. Define $f: \mathbf{S}^{n-1} \times B \rightarrow \mathbf{R}$ by $f(u, p):=g_{p}(u, u)$. Note that, since g is positive definite, $f>0$. Thus since f is continuous and $\mathbf{S}^{n-1} \times B$ is compact $f \geq \lambda^{2}>0$. Consequently, bilinearity of g yields that

$$
g_{p}(v, v) \geq \lambda^{2}\|v\|^{2} .
$$

The above inequality is obvious when $\|v\|=0$, and when $\|v\| \neq 0$, observe that $g_{p}(v, v)=g_{p}(v /\|v\|, v /\|v\|)\|v\|^{2}$. Next note that

$$
\operatorname{Length}[c]=\int_{a}^{b} \sqrt{g_{c(t)}\left(c^{\prime}(t), c^{\prime}(t)\right)} d t \geq \lambda \int_{a}^{b}\left\|c^{\prime}(t)\right\| d t
$$

But $\int_{a}^{b}\left\|c^{\prime}(t)\right\|$ is just the length of c with respect to the standard metric on \mathbf{R}^{n}. Thus, by the previous proposition,

$$
\int_{a}^{b}\left\|c^{\prime}(t)\right\| d t \geq\|c(b)-c(a)\|=r
$$

So setting $m:=\lambda r$ finishes the proof.
The proof of the next observation is immediate:
Lemma 0.6.4. If $f: M \rightarrow N$ is an isometry, then Length $[c]=\operatorname{Length}[f \circ c]$ for any piecewise C^{1} curve $c:[a, b] \rightarrow M$.

Note that if (M, g) is a Riemannian manifold and $f: M \rightarrow N$ is a diffeomorphism between M and any smooth manifold N, then we may push forward the metric of M by defining

$$
d f(g)_{p}(X, Y):=g_{f^{-1}(p)}\left(d f^{-1}(X), d f^{-1}(Y)\right) .
$$

Then f is an isometry between (M, g) and $(N, d f(g))$. In particular we may assume that any local charts (U, ϕ) on a Riemannian manifold (M, g) is an isometry, with respect to the push forward metric $d \phi(g)$ on $\phi(U)$. This observation, together with the previous lemma easily yields that:

Proposition 0.6.5. If (M, g) is any Riemannian manifold then $\left(M, d_{g}\right)$ is a metric space.

Proof. It is immediate that d is symmetric and satisfies the triangle inequality. Furthermore it is clear that d is always nonnegative. Showing that d is positive definite, however, requires more work. Specifically, we need to show that when $p \neq q$, then $d(p, q)>0$. Suppose $p \neq q$. Then, since M is Hausdorff, there exists an open neighborhood V of p such that $q \notin V$. Let (U, ϕ) be a local chart centered at p. Choose r so small that $\bar{B}_{r}(o) \subset \phi(V \cap U)$, and set $W:=\phi^{-1}\left(\bar{B}_{r}(o)\right)$. Then $\phi: W \rightarrow \bar{B}_{r}(o)$ is a diffeomorphism, and we may equip $\bar{B}_{r}(o)$ with the push forward metric $d \phi(g)$ which will turn ϕ into an isometry. Now let $c:[a, b] \rightarrow M$ be any piecewise C^{1} curve with $c(a)=p$ and $c(b)=q$. Then there exist $a \leq b^{\prime} \leq b$ such that $c\left[a, b^{\prime}\right] \subset W$ and $c\left(b^{\prime}\right) \in \partial W$ (to find b^{\prime} let $\stackrel{\circ}{W}:=\phi^{-1}\left(B_{r}(o)\right)$ be the interior of W, then $c^{-1}(\stackrel{\circ}{W})$ is an open subset of $[a, b]$ which contains a, and we may let b^{\prime} be the upperbound of the component of $c^{-1}(\stackrel{\circ}{W})$ which contains a.) Let $\bar{c}:\left[a, b^{\prime}\right] \rightarrow W$ be the restriction of c. Then obviously Length $[c] \geq$ Length $[\bar{c}]$. But Length $[\bar{c}]=$ Length $[\phi \circ \bar{c}]$ since ϕ is an isometry, and by the previous lemma then length of any curve in $\left(B_{r}^{n}(o), d \phi(g)\right)$ which begins at the center of the ball and ends at its boundary is bounded below by a positive constant.

Now recall that any metric space has a natural topology. In particular $\left(M, d_{g}\right)$ is a topological space. Next we show that this topological space is identical to the original M.

Lemma 0.6.6. Let $\left(M, g^{1}\right),\left(M, g^{2}\right)$ be Riemannian manifolds, and suppose M is compact. Then there exist a constant $\lambda>0$ such that for any $p, q \in M$ we have

$$
d_{g^{1}}(p, q) \geq \lambda d_{g^{2}}(p, q)
$$

Proof. Define $f: \mathbf{S}^{n-1} \times M \rightarrow \mathbf{R}$ by $f(u, p):=g_{p}^{1}(u, u) / g_{p}^{2}(u, u)$. Note that, since g is positive definite, $f>0$. Thus since f is continuous and $\mathbf{S}^{n-1} \times M$ is compact $f \geq \lambda^{2}>0$. Consequently, bilinearity of g yields that

$$
g_{p}^{1}(v, v) \geq \lambda^{2} g_{p}^{2}(v, v),
$$

for all $v \in \mathbf{R}^{n}$. Next note that the above inequality yields

$$
\operatorname{Length}_{g_{1}}[c]=\int_{a}^{b} \sqrt{g_{c(t)}^{1}\left(c^{\prime}(t), c^{\prime}(t)\right)} d t \geq \lambda \int_{a}^{b} \sqrt{g_{c(t)}^{2}\left(c^{\prime}(t), c^{\prime}(t)\right)} d t=\lambda \operatorname{Length}_{g_{2}}[c] .
$$

for any curve $c:[a, b] \rightarrow M$. In particular the above inequalities hold for all curves $c:[a, b] \rightarrow M$ with $c(a)=p$ and $c(b)=q$.

Proposition 0.6.7. The metric space $\left(M, d_{g}\right)$, endowed with its metric topology, is homeomorphic to M with its standard topology.

Proof. There are two parts to this argument:
Part I: We have to show that every open neighborhood U of M is open in its metric topology, i.e., for every $p \in U$ there exists an $r>0$ such that $B_{r}^{g}(p) \subset U$, where

$$
B_{r}^{g}(p):=\left\{q \in M \mid d_{g}(p, q)<r\right\} .
$$

To see this first note that, as we showed in the proof of the previous proposition, there exists an open neighborhood V of p with $V \subset U$ such that there exists a homeomorphism $\phi: \bar{V} \rightarrow \bar{B}_{1}^{n}(o)$. Now, much as in the proof of the previous proposition, if we endow $\bar{B}_{1}^{n}(o)$ with the push forward metric induced by ϕ then $\left(\bar{B}_{1}^{n}(o), d \phi(g)\right)$ becomes isometric to (\bar{V}, g). But recall that, as we showed in the earlier proposition, the distance of any point in the boundary $\partial B_{1}^{n}(o)=\mathbf{S}^{n}$ of $\bar{B}_{1}^{n}(o)$ from the origin o was bigger than some constant, say λ. Thus the same is true of the distance of ∂V from p. In particular, if we choose $r<\lambda$, then $B_{r}^{g}(p) \subset V \subset U$.

Part II: We have to show that every metric ball $B_{r}^{g}(p)$ is open in M, i.e., at every $q \in B_{r}^{g}(p)$ we can find a open neighborhood U of q in M such that $U \subset B_{r}^{g}(p)$. To see this let V be an open neighborhood of p such that there exists a homeomorphism $\psi: \bar{V} \rightarrow \bar{B}_{1}^{n}(o)$, and endow $\bar{B}_{1}^{n}(o)$ with the push forward metric $d \psi(g)$. Then the distance of $\psi\left(\bar{V} \cap B_{r}^{g}(p)\right)$ from o is equal to r, with respect to the metric $d \psi(g)$. So, by the previous proposition, this distance, with respect to the Euclidean metric on $\bar{B}_{1}^{n}(o)$ must be at least $\lambda r>0$. Thus if we choose $r^{\prime}<\lambda_{r}$, then the Euclidean ball $B_{r^{\prime}}^{n}(o) \subset \psi(V)$. Consequently, $U:=\psi^{-1}\left(B_{r^{\prime}}^{n}(o)\right) \subset V$, and U is open in M, since $B_{r^{\prime}}^{n}(o)$ is open.

[^0]: ${ }^{1}$ Last revised: January 31, 2023

