Lecture Notes 12

2.6 Gauss's formulas, and Christoffel Symbols

Let $X: U \to \mathbf{R}^3$ be a proper regular patch for a surface M, and set $X_i := D_i X$. Then

$${X_1, X_2, N}$$

may be regarded as a moving bases of frame for \mathbb{R}^3 similar to the Frenet Serret frames for curves. We should emphasize, however, two important differences: (i) there is no canonical choice of a moving bases for a surface or a piece of surface ($\{X_1, X_2, N\}$ depends on the choice of the chart X); (ii) in general it is not possible to choose a patch X so that $\{X_1, X_2, N\}$ is orthonormal (unless the Gaussian curvature of M vanishes everywhere).

The following equations, the first of which is known as *Gauss's formulas*, may be regarded as the analog of Frenet-Serret formulas for surfaces:

$$X_{ij} = \sum_{k=1}^{2} \Gamma_{ij}^{k} X_{k} + l_{ij} N,$$
 and $N_{i} = -\sum_{j=1}^{2} l_{i}^{j} X_{j}.$

The coefficients Γ_{ij}^k are known as the *Christoffel symbols*, and will be determined below. Recall that l_{ij} are just the coefficients of the second fundamental form. To find out what l_i^j are note that

$$-l_{ik} = -\langle N, X_{ik} \rangle = \langle N_i, X_k \rangle = -\sum_{j=1}^2 l_i^j \langle X_j, X_k \rangle = -\sum_{j=1}^2 l_i^j g_{jk}.$$

Thus $(l_{ij}) = (l_i^j)(g_{ij})$. So if we let $(g^{ij}) := (g_{ij})^{-1}$, then $(l_i^j) = (l_{ij})(g^{ij})$, which yields

$$l_i^j = \sum_{k=1}^2 l_{ik} g^{kj}.$$

¹Last revised: October 27, 2021

Exercise 1. What is $\det(l_i^j)$ equal to?.

Exercise 2. Show that $N_i = dn(X_i) = -S(X_i)$.

Next we compute the Christoffel symbols. To this end note that

$$\langle X_{ij}, X_k \rangle = \sum_{l=1}^{2} \Gamma_{ij}^l \langle X_l, X_k \rangle = \sum_{l=1}^{2} \Gamma_{ij}^l g_{lk},$$

which in matrix notation reads

$$\begin{pmatrix} \langle X_{ij}, X_1 \rangle \\ \langle X_{ij}, X_2 \rangle \end{pmatrix} = \begin{pmatrix} \Gamma_{ij}^1 g_{11} + \Gamma_{ij}^2 g_{21} \\ \Gamma_{ij}^1 g_{12} + \Gamma_{ij}^2 g_{22} \end{pmatrix} = \begin{pmatrix} g_{11} & g_{21} \\ g_{12} & g_{22} \end{pmatrix} \begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix}.$$

So

$$\begin{pmatrix} \Gamma_{ij}^1 \\ \Gamma_{ij}^2 \end{pmatrix} = \begin{pmatrix} g_{11} & g_{21} \\ g_{12} & g_{22} \end{pmatrix}^{-1} \begin{pmatrix} \langle X_{ij}, X_1 \rangle \\ \langle X_{ij}, X_2 \rangle \end{pmatrix} = \begin{pmatrix} g^{11} & g^{21} \\ g^{12} & g^{22} \end{pmatrix} \begin{pmatrix} \langle X_{ij}, X_1 \rangle \\ \langle X_{ij}, X_2 \rangle \end{pmatrix},$$

which yields

$$\Gamma_{ij}^k = \sum_{l=1}^2 \langle X_{ij}, X_l \rangle g^{lk}.$$

In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$. Next note that

$$(g_{ij})_k = \langle X_{ik}, X_j \rangle + \langle X_i, X_{jk} \rangle,$$

$$(g_{jk})_i = \langle X_{ji}, X_k \rangle + \langle X_j, X_{ki} \rangle,$$

$$(g_{ki})_j = \langle X_{kj}, X_i \rangle + \langle X_k, X_{ij} \rangle.$$

Thus

$$\langle X_{ij}, X_k \rangle = \frac{1}{2} ((g_{ki})_j + (g_{jk})_i - (g_{ij})_k).$$

So we conclude that

$$\Gamma_{ij}^{k} = \sum_{l=1}^{2} \frac{1}{2} ((g_{li})_j + (g_{jl})_i - (g_{ij})_l) g^{lk}.$$

Note that the last equation shows that Γ_{ij}^k are *intrinsic quantities*, i.e., they depend only on g_{ij} (and derivatives of g_{ij}), and so are preserved under isometries.

Exercise 3. Compute the Christoffel symbols of a surface of revolution.

2.7 The Gauss and Codazzi-Mainardi Equations, Riemann Curvature Tensor, and a Second Proof of Gauss's Theorema Egregium

Here we shall derive some relations between l_{ij} and g_{ij} . Our point of departure is the simple observation that if $X: U \to \mathbf{R}^3$ is a C^3 regular patch, then, since partial derivatives commute,

$$X_{ijk} = X_{ikj}.$$

Note that

$$X_{ijk} = \left(\sum_{l=1}^{2} \Gamma_{ij}^{l} X_{l} + l_{ij} N\right)_{k}$$

$$= \sum_{l=1}^{2} (\Gamma_{ij}^{l})_{k} X_{l} + \sum_{l=1}^{2} \Gamma_{ij}^{l} X_{lk} + (l_{ij})_{k} N + l_{ij} N_{k}$$

$$= \sum_{l=1}^{2} (\Gamma_{ij}^{l})_{k} X_{l} + \sum_{l=1}^{2} \Gamma_{ij}^{l} \left(\sum_{m=1}^{2} \Gamma_{lk}^{m} X_{m} + l_{lk} N\right) + (l_{ij})_{k} N - l_{ij} \sum_{l=1}^{2} l_{k}^{l} X_{l}$$

$$= \sum_{l=1}^{2} (\Gamma_{ij}^{l})_{k} X_{l} + \sum_{l=1}^{2} \sum_{m=1}^{2} \Gamma_{ij}^{l} \Gamma_{lk}^{m} X_{m} + \sum_{l=1}^{2} \Gamma_{ij}^{l} l_{lk} N + (l_{ij})_{k} N - \sum_{l=1}^{2} l_{ij} l_{k}^{l} X_{l}$$

$$= \sum_{l=1}^{2} \left((\Gamma_{ij}^{l})_{k} + \sum_{p=1}^{2} \Gamma_{ij}^{p} \Gamma_{pk}^{l} - l_{ij} l_{k}^{l} \right) X_{l} + \left(\sum_{l=1}^{2} \Gamma_{ij}^{l} l_{lk} + (l_{ij})_{k} \right) N.$$

Switching k and j yields,

$$X_{ikj} = \sum_{l=1}^{2} \left((\Gamma_{ik}^{l})_{j} + \sum_{p=1}^{2} \Gamma_{ik}^{p} \Gamma_{pj}^{l} - l_{ik} l_{j}^{l} \right) X_{l} + \left(\sum_{l=1}^{2} \Gamma_{ik}^{l} l_{lj} + (l_{ik})_{j} \right) N.$$

Setting the normal and tangential components of the last two equations equal to each other we obtain

$$(\Gamma_{ij}^{l})_{k} + \sum_{p=1}^{2} \Gamma_{ij}^{p} \Gamma_{pk}^{l} - l_{ij} l_{k}^{l} = (\Gamma_{ik}^{l})_{j} + \sum_{p=1}^{2} \Gamma_{ik}^{p} \Gamma_{pj}^{l} - l_{ik} l_{j}^{l},$$
$$\sum_{l=1}^{2} \Gamma_{ij}^{l} l_{lk} + (l_{ij})_{k} = \sum_{l=1}^{2} \Gamma_{ik}^{l} l_{lj} + (l_{ik})_{j}.$$

These equations may be rewritten as

$$(\Gamma_{ik}^l)_j - (\Gamma_{ij}^l)_k + \sum_{p=1}^2 \left(\Gamma_{ik}^p \Gamma_{pj}^l - \Gamma_{ij}^p \Gamma_{pk}^l\right) = l_{ik} l_j^l - l_{ij} l_k^l, \quad \text{(Gauss)}$$

$$\sum_{l=1}^2 \left(\Gamma_{ik}^l l_{lj} - \Gamma_{ij}^l l_{lk}\right) = (l_{ij})_k - (l_{ik})_j, \quad \text{(Codazzi-Mainardi)}$$

and are known as the *Gauss's equations* and the *Codazzi-Mainardi equations* respectively. If we define the *Riemann curvature tensor* as

$$R_{ijk}^l := (\Gamma_{ik}^l)_j - (\Gamma_{ij}^l)_k + \sum_{p=1}^2 \left(\Gamma_{ik}^p \Gamma_{pj}^l - \Gamma_{ij}^p \Gamma_{pk}^l\right),$$

then Gauss's equation may be rewritten as

$$R_{ijk}^l = l_{ik}l_j^l - l_{ij}l_k^l.$$

Now note that

$$\sum_{l=1}^{2} R_{ijk}^{l} g_{lm} = l_{ik} \sum_{l=1}^{2} l_{j}^{l} g_{lm} - l_{ij} \sum_{l=1}^{2} l_{k}^{l} g_{lm} = l_{ik} l_{jm} - l_{ij} l_{km}.$$

In particular, if i = k = 1 and j = m = 2, then

$$\sum_{l=1}^{2} R_{121}^{l} g_{l2} = l_{11} l_{22} - l_{12} l_{21} = \det(l_{ij}) = K \det(g_{ij}).$$

So it follows that

$$K = \frac{R_{121}^1 g_{12} + R_{121}^2 g_{22}}{\det(g_{ij})},$$

which shows that K is intrinsic and gives another proof of Gauss's Theorema Egregium.

Exercise 4. Show that if $M = \mathbb{R}^2$, hen $R_{ijk}^l = 0$ for all $1 \leq i, l, j, k \leq 2$ both intrinsically and extrinsically.

Exercise 5. Show that (i) $R_{ijk}^l = -R_{ikj}^l$, hence $R_{ijj}^l = 0$, and (ii) $R_{ijk}^l + R_{jki}^l + R_{kij}^l \equiv 0$.

Exercise 6. Compute the Riemann curvature tensor for S^2 both intrinsically and extrinsically.

2.8 Fundamental Theorem of Surfaces

In the previous section we showed that if g_{ij} and l_{ij} are the coefficients of the first and second fundamental form of a patch $X: U \to M$, then they must satisfy the Gauss and Codazzi-Maindardi equations. These conditions turn out to be not only necessary but also sufficient in the following sense.

Theorem 7 (Fundamental Theorem of Surfaces). Let $U \subset \mathbf{R}^2$ be an open neighborhood of the origin (0,0), and $g_{ij} \colon U \to \mathbf{R}$, $l_{ij} \colon U \to \mathbf{R}$ be differentiable functions for i, j = 1, 2. Suppose that $g_{ij} = g_{ji}$, $l_{ij} = l_{ji}$, $g_{11} > 0$, $g_{22} > 0$ and $\det(g_{ij}) > 0$. Further suppose that g_{ij} and l_{ij} satisfy the Gauss and Codazzi-Mainardi equations. Then there exists and open set $V \subset U$, with $(0,0) \in V$ and a regular patch $X \colon V \to \mathbf{R}$ with g_{ij} and l_{ij} as its first and second fundamental forms respectively. Further, if $Y \colon V \to \mathbf{R}^3$ is another regular patch with first and second fundamental forms g_{ij} and l_{ij} , then Y differs from X by a rigid motion.