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Curves and Surfaces
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Lecture Notes 13

2.9 The Covariant Derivative, Lie Bracket, and Rie-
mann Curvature Tensor of Rn

Let A ⊂ Rn, p ∈ A, and W be a tangent vector of A at p, i.e., suppose
there exists a curve γ : (−ε, ε) → A with γ(0) = p and γ′(0) = W . Then
if f : A → R is a function we define the (directional) derivative of f with
respect to W at p as

Wpf := (f ◦ γ)′(0) = dfp(W ).

Similarly, if V is a vectorfield along A, i.e., a mapping V : A→ Rn, p 7→ Vp,
we define the covariant derivative of V with respect to W at p as

∇WpV := (V ◦ γ)′(0) = dVp(W ).

Note that if f and V are C1, then by definition they may be extended to an
open neighborhood of A. So dfp and dVp, and consequently Wpf and ∇WpV
are well defined. In particular, they do not depend on the choice of the curve
γ or the extensions of f and V .

Exercise 1. Let Ei be the standard basis of Rn, i.e., E1 := (1, 0, . . . , 0),
E2 := (0, 1, 0, . . . , 0), . . . , En := (0, . . . , 0, 1). Show that for any functions
f : Rn → R and vectorfield V : Rn → Rn

(Ei)pf = Dif(p) and ∇(Ei)pV = DiV (p)

(Hint: Let ui : (−ε, ε) → Rn be given by ui(t) := p + tEi, and observe that
(Ei)pf = (f ◦ ui)′(0), ∇(Ei)pV = (V ◦ ui)′(0)).
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The operation ∇ is also known as the standard Levi-Civita connection of
Rn. If W is a tangent vectorfield of A, i.e., a mapping W : A → Rn such
that Wp is a tangent vector of A for all p ∈ A, then we set

Wf(p) := Wpf and (∇WV )p := ∇WpV.

Note that Wf : A→ R is a function and ∇WV is a vectorfield. Further, we
define

(fW )p := f(p)Wp.

Thus fW : A→ Rn is a also a vector field.

Exercise 2. Show that it V = (V 1, . . . , V n), i.e., V i are the component
functions of V , then

∇WV = (WV 1, . . . ,WV n).

Exercise 3. Show that if Z is a tangent vectorfield of A and f : A→ R is a
function, then

∇W+ZV = ∇WV +∇ZV, and ∇fWV = f∇WV.

Further if Z : A→ Rn is any vectorfield, then

∇W (V + Z) = ∇WV +∇WZ, and ∇W (fV ) = (Wf)V + f∇WV.

Exercise 4. Note that if V and W are a pair of vectorfields on A then
〈V,W 〉 : A→ R defined by 〈V,W 〉p := 〈Vp,Wp〉 is a function on A, and show
that

Z〈V,W 〉 =
〈
∇ZV,W

〉
+
〈
V,∇ZW

〉
.

If V,W : A→ Rn are a pair of vector fields, then their Lie bracket is the
vector filed on A defined by

[V,W ]p := ∇VpW −∇WpV.

Exercise 5. Show that if A ⊂ Rn is open, V,W : A → Rn are a pair of
vector fields and f : A→ R is a scalar, then

[V,W ]f = V (Wf)−W (V f).
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(Hint: First show that V f = 〈V, grad f〉 and Wf = 〈W, grad f〉 where

grad f := (D1f, . . . , Dnf).

Next define
Hess f(V,W ) := 〈V,∇W grad f〉,

and show that Hess f(V,W ) = Hess f(W,V ). In particular, it is enough to
show that Hess f(Ei, Ej) = Dijf , where {E1, . . . , En} is the standard basis
for Rn. Then Leibnitz rule yields that

V (Wf)−W (V f)

= V 〈W, grad f〉 −W 〈V, grad f〉
= 〈∇VW, grad f〉+ 〈W,∇V grad f〉 − 〈∇WV, grad f〉 − 〈V,∇W grad f〉

= 〈[V,W ], grad f〉+ Hess f(W,V )− Hess f(V,W )

= [V,W ]f,

as desired.)

If V and W are tangent vectorfields on an open set A ⊂ Rn, and Z : A→
Rn is any vectorfield, then

R(V,W )Z := ∇V∇WZ −∇W∇VZ −∇[V,W ]Z

defines a vectorfield on A. If Y is another vectorfield on A, then we may also
define an associated scalar quantity by

R(V,W,Z, Y ) :=
〈
R(V,W )Z, Y

〉
,

which is known as the Riemann curvature tensor of Rn.

Exercise 6. Show that R ≡ 0.

2.10 The Induced Covariant Derivative on Surfaces;
Gauss’s Formulas revisited

Note that if M ⊂ R3 is a regular embedded surface and V , W : M → R3 are
vectorfields on M . Then ∇WV may no longer be tangent to M . Rather, in
general we have

∇WV =
(
∇WV

)>
+
(
∇WV

)⊥
,
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where (∇WV )> and (∇WV )⊥ respectively denote the tangential and normal
components of ∇WV with resect to M . More explicitly, if for each p ∈ M
we let n(p) be a unit normal vector to TpM , then(
∇WV

)⊥
p

:=
〈
∇WpV, n(p)

〉
n(p) and

(
∇WV

)>
:= ∇WV −

(
∇WV

)⊥
.

Let X (M) denote the space of tangent vectorfield on M . Then We define the
(induced) covariant derivative on M as the mapping ∇ : X (M) × X (M) →
X (M) given by

∇WV :=
(
∇WV

)>
.

Exercise 7. Show that, with respect to tangent vectorfields on M ,∇ satisfies
all the properties which were listed for ∇ in Exercises ?? and ??.

Next we derive an explicit expression for ∇ in terms of local coordinates.
Let X : U → M be a proper regular patch centered at a point p ∈ M , i.e.,
X(0, 0) = p, and set

X i := Xi ◦X−1.

Then X i are vectorfields on X(U), and for each q ∈ X(U), (X i)q forms a
basis for TqM . Thus on X(U) we have

V =
∑
i

V iX i, and W =
∑
i

W iX i

for some functions V i, W i : X(U)→ R. Consequently, on X(U),

∇WV = ∇(
∑

j W
jXj)

(∑
i

V iX i

)
=

∑
j

(
W j∇Xj

(∑
i

V iX i

))

=
∑
j

(
W j

∑
i

(
XjV

i + V i∇Xj
X i

))
=

∑
j

∑
i

(
W j
(
XjV

i
)

+W jV i∇Xj
X i

)
.

Next note that if we define uj : (−ε, ε) → R2 by uj(t) := tEj, where E1 :=
(1, 0) and E2 := (0, 1). Then X ◦ui : (−ε, ε)→M are curves with X ◦ui(0) =
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p and (X ◦ ui)′(0) = Xi(0, 0) = X i(p). Thus by the definitions of ∇ and ∇
we have

∇(Xj)p
X i =

(
∇(Xj)p

X i

)>
=

((
X i ◦ (X ◦ uj)

)′
(0)
)>

=
(

(Xi ◦ uj)′(0)
)>

Now note that, by the chain rule,

(Xi ◦ uj)′(0) = DXi

(
uj(0)

)
Duj(0) = Xij(0, 0).

Exercise 8. Verify the last equality above.

Thus, by Gauss’s formula,

∇(Xj)p
X i =

(
Xij(0, 0)

)>
=

(∑
k

Γk
ij(0, 0)Xk(0, 0) + lij(0, 0)N(0, 0)

)>
=

∑
k

Γk
ij

(
X−1(p)

)
Xk

(
X−1(p)

)
=

∑
k

Γk
ij

(
X−1(p)

)(
Xk

)
p
.

In particular if we set X ij := Xij ◦ X−1 and define Γ
k

ij : X(U) → R by

Γ
k

ij := Γk
ij ◦X−1, then we have

∇Xj
X i =

(
X ij

)>
=
∑
k

Γ
k

ijXk,

which in turn yields

∇WV =
∑
j

∑
i

(
W jXjV

i +W jV i
∑
k

Γ
k

ijXk

)
.

Now recall that Γk
ij depends only on the coefficients of the first fundamental

form gij. Thus it follows that ∇ is intrinsic:
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Exercise 9. Show that if f : M → M̃ is an isometry, then

∇̃df(W )df(V ) = df
(
∇WV

)
,

where ∇̃ denotes the covariant derivative on M̃ (Hint: It is enough to show

that 〈∇̃df(Xi)
df(Xj), df(X l)〉 = 〈df

(
∇Xi

Xj

)
, df(X l)〉).

Next note that if n : X(U)→ S2 is a local Gauss map then

〈∇WV, n〉 = −〈V,∇Wn〉 = −〈V, dn(W )〉 = 〈V, S(W )〉,

where, recall that, S is the shape operator of M . Thus(
∇WpV

)⊥
= 〈V, S(Wp)〉n(p),

which in turn yields

∇WV = ∇WV +
〈
V, S(W )

〉
n.

This is Gauss’s formula and implies the expression that we had derived earlier
in local coordinates.

Exercise 10. Verify the last sentence.
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