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Lecture Notes 13

2.9 The Covariant Derivative, Lie Bracket, and Rie-
mann Curvature Tensor of R"

Let A C R", p € A, and W be a tangent vector of A at p, i.e., suppose
there exists a curve v: (—¢,e) — A with y(0) = p and 7/(0) = W. Then
if f: A — R is a function we define the (directional) derivative of f with
respect to W at p as

Wy f = (f 07)(0) = dfp(W).
Similarly, if V' is a vectorfield along A, i.e., a mapping V: A — R", p—V,,
we define the covariant derivative of V' with respect to W at p as

Vi,

P

V= (V 07)(0) = dV,(W).

Note that if f and V are C!, then by definition they may be extended to an
open neighborhood of A. So df, and dV},, and consequently W, f and VWPV
are well defined. In particular, they do not depend on the choice of the curve
v or the extensions of f and V.

Exercise 1. Let E; be the standard basis of R", i.e., Ey := (1,0,...,0),
E, :=(0,1,0,...,0),...,E, := (0,...,0,1). Show that for any functions
f: R™ = R and vectorfield V: R* — R"

(Ei)pf = D;f(p) and v(Ei)pV = D;V(p)

(Hint: Let u;: (—€,¢) — R™ be given by u;(t) := p + tE;, and observe that

(Ei)pf = (fow)'(0), Vig,),V = (V ou)(0)).
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The operation V is also known as the standard Levi-Civita connection of
R™ If W is a tangent vectorfield of A, i.e., a mapping W: A — R" such
that W, is a tangent vector of A for all p € A, then we set

Wf(p):=W,f and (VwV),:=Vy,V.

Note that W f: A — R is a function and Vy/V is a vectorfield. Further, we
define

(fW)p = [(p)Wp.
Thus fWW: A — R" is a also a vector field.

Exercise 2. Show that it V = (V! ... V"), ie., V' are the component
functions of V', then

VwV =WV .. Wvn).

Exercise 3. Show that if Z is a tangent vectorfield of A and f: A — Ris a
function, then

vWJrZV = VWV + VZV, and VfWV = vaV
Further if Z: A — R" is any vectorfield, then
Vw(V+2)=VwV +VwZ, and Vy(fV)=W/HV + fVpV.

Exercise 4. Note that if V and W are a pair of vectorfields on A then
(V,W): A — R defined by (V, W), := (V,, W,) is a function on A, and show
that

ZV,W) =(VV,W)+(V,V,W).

If V,IW: A— R" are a pair of vector fields, then their Lie bracket is the
vector filed on A defined by

V,W], :=Vy W — Vy, V.

Exercise 5. Show that if A C R" is open, V,W: A — R" are a pair of
vector fields and f: A — R is a scalar, then

V. WIf =V(W[)=W(V]).



(Hint: First show that V f = (V,grad f) and W f = (W, grad f) where

gra’df = (D1f7 cee )an)’

Next define

Hess f(V, W) := (V. Viy grad f),
and show that Hess f(V, W) = Hess f(W, V). In particular, it is enough to
show that Hess f(E;, E;) = D;;f, where {E,..., E,} is the standard basis
for R". Then Leibnitz rule yields that

VIWF) =WV )
= V<W7 grad f> o W<V7 grad f>
= (VyW,grad f) + (W, Vy grad f) — (VwV, grad f) — (V, Vi grad f)
— ([V, W], grad f) + Hess f(W, V') — Hess f(V, W)
= [V.W]/,

as desired.)

If V and W are tangent vectorfields on an open set A C R", and Z: A —
R" is any vectorfield, then

E(‘/, W)Z = VVVWZ — vwvvz - v[\/,W]Z

defines a vectorfield on A. If Y is another vectorfield on A, then we may also
define an associated scalar quantity by

R(V\W,Z,Y) = (R(V,W)Z,Y),
which is known as the Riemann curvature tensor of R™.

Exercise 6. Show that R = 0.

2.10 The Induced Covariant Derivative on Surfaces;
Gauss’s Formulas revisited
Note that if M C R? is a regular embedded surface and V., W: M — R? are

vectorfields on M. Then Vy V' may no longer be tangent to M. Rather, in
general we have

VwV = (VwV) + (VwV)",

3



where (Vi V)T ~and (Vi V)t respectively denote the tangential and normal
components of ViV with resect to M. More explicitly, if for each p € M
we let n(p) be a unit normal vector to T,M, then

(VWV): = <vav,n(p)>n(p) and (va)T =VwV — (VWV)L.

Let X (M) denote the space of tangent vectorfield on M. Then We define the
(induced) covariant derivative on M as the mapping V: X (M) x X(M) —
X (M) given by

ViV = (VwV) '

Exercise 7. Show that, with respect to tangent vectorfields on M, V satisfies
all the properties which were listed for V in Exercises 7?7 and 77?.

Next we derive an explicit expression for V in terms of local coordinates.
Let X: U — M be a proper regular patch centered at a point p € M, i.e.,
X(0,0) = p, and set

X; =X, 0o XL

Then X; are vectorfields on X (U), and for each ¢ € X(U), (X;), forms a
basis for T, M. Thus on X (U) we have

V=) VX, ad W=) WX,
for some functions Vi, Wi: X(U) — R. Consequently, on X (U),

VwV = Vi wix,) (Zw )
= Z(WJV (sz ))

J

_ Z (WJ > (Y-Vi + vivXJK.))
_ ZZ (Wﬂ (X,V) Wﬂ‘vivyji) .

Next note that if we define u;: (—e, €) — R? by u;(t) := tE;, where E; :=
(1,0) and E5 := (0,1). Then Xowu;: (—¢,e) = M are curves with X ow;(0) =
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p and (X ow;)(0) = X;(0,0) = X;(p). Thus by the definitions of V and V

we have
Vi), Xi = (v(xmyi)T
= ((Xo(xou)®)
= (Kiowy @)

Now note that, by the chain rule,
(Xi o u;)'(0) = DX;(u;(0)) Duy(0) = X;5(0,0).
Exercise 8. Verify the last equality above.

Thus, by Gauss’s formula,
_ T
Vg, Xi = (Xij(o, 0))
(Zr 0)X4(0,0) + 1;;(0, 0)N(0,0)>T
Z Fij - p k(X_l(p))
Z r ) (Xx) -

In particular if we set X;; := X;; o X~! and define ffj: X({U) - R by
k

fl.j . Ffj o X! then we have

V¢ X Z FUX ks
which in turn yields

V¥ =3 (WK VWV T,
J 7 k

Now recall that I’fj depends only on the coefficients of the first fundamental
form g;;. Thus it follows that V is intrinsic:
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Exercise 9. Show that if f: M — M is an isometry, then
6df(W)df(V) =df (VwV),

Wherey denotes the covariant derivative on M (Hint: Tt is enough to show
that (V) df (X;), df (X)) = (df (Vx,X;), df (X1))).

Next note that if n: X(U) — S? is a local Gauss map then
(VwVin) = =(V,Vwn) = =(V,dn(W)) = (V, S(W)),
where, recall that, S is the shape operator of M. Thus
(Vw, V)" = (V.S(Wy)n(p).
which in turn yields
ViV = VuV +(V,S(W))n.

This is Gauss’s formula and implies the expression that we had derived earlier
in local coordinates.

Exercise 10. Verify the last sentence.



