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Connections

Suppose that we have a vector field X on a Riemannian manifold M. How can we
measure how much X is changing at a point p € M in the direction Y, € T,M?
The main problem here is that there exists no canonical way to compare a vector
in some tangent space of a manifold to a vector in another tangent space. Hence
we need to impose a new kind of structure on a manifold. To gain some insight, we
first study the case where M = R".

0.1 Differentiation of vector fields in R"

Since each tangent space T,R" is canonically isomorphic to R", any vector field on
R" may be identified as a mapping X: R" — R". Then for any V), € T,R" we
define the covariant derivative of X with respect to Y, as

Vy, X = (Y(X1),....Y,(X™).

P

Recall that Y,(X?) is the directional derivative of X at p in the direction of Y, i.e.,
if v: (—€,¢) — M is any smooth curve with v(0) = p and 7/(0) =Y, then

Yp(X') = (X" 07)(0) = (grad X' (p),Y').

The last equality is an easy consequence of the chain rule. Now suppose that

Y: R™ — R"™ is a vector field on R", p RN Y,, then we may define a new vec-

tor field on R™ by
(VyX), = Vy, X.

Then the operation (X,Y) N VxY may be thought of as a mapping V: X'(R") x
X(R") — X(R"), where X denotes the space of vector fields on R".

Next note that if X € X(R") is any vector field and f: M — R is a function,
then we may define a new vector field fX € (R") by setting (fX), := f(p)X, (do
not confuse fX, which is a vector field, with X f which is a function defined by
X f(p) := X,(f)). Now we observe that the covariant differentiation of vector fields
on R" satisfies the following properties:

L. Vy(X1+ X2) = VyXi1 + VyXo
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2. Vy(fX) = (Yf)VyX + fVy X
3. VY1+Y2X = Vle + VYZX
4 ViyX = fVy X

It is an easy exercise to check the above properties. Another good exercise to
write down the pointwise versions of the above expressions. For instance note that
item (2) implies that

Vy, (fX) = Y f)Vy, X + f(p)Vy, X

for all p e M.

0.2 Definition of connection and Christoffel symbols

Motivated by the Euclidean case, we define a connection V on a manifold M as any
mapping
V:X(M)x X(M)— X(M)

which satisfies the four properties mentioned above. We say that V is smooth if
whenever X and Y are smooth vector fields on M, then Vy X is a smooth vector
field as well. Note that any manifold admits the trivial connection V = (0. In the
next sections we study some nontrivial examples.

Here we describe how to express a connection in local charts. Let E; be a basis
for the tangent space of M in a neighborhood of a point p. For instance, choose a
local chart (U, ¢) centered at p and set E;(q) := dd);(lq)(ei) forallg € U . Then if X
and Y are any vector fields on M, we may write X = 3. X'F;, and Y = Y. Y'E;
on U. Consequently, if V is a connection on M we have

Vv X = Vy (Y XE) = Y (V(X)E + XUy E).

Now note that since (Vg, E;), € T, M, for all p € U, then it is a linear combination
of the basis elements of T, M. So we may write

Ve, Ei =Y ThE,
k
for some functions Fk on U which are known as the Christoffel symbols. Thus

VyX = Z(Y(X’)E +X’Z<YJZF ))

(2
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Conversely note that, a choice of the functions I’fj on any local neighborhood of M
defines a connection on that neighborhood by the above expression. Thus we may
define a connection on any manifold, by an arbitrary choice of Christoffel symbols
in each local chart of some atlas of M and then using a partition of unity.

Next note that for every p € U we have:

(VyX)y = > (V(XH) + DY) X (0T (9) ) Ea(p), (1)
ij

k
This immediately shows that

Theorem 0.1. For any point p € M, (VyX), depends only on the value of X
at p and the restriction of Y to any curve v: (—e,e) — M which belongs to the
equivalence class of curves determined by X,. O

Thus if pe M, Y, € T,M and X is any vector field which is defined on an open
neighborhood of p, then we may define
Vy, X = (VyX),

P

where Y is any extension of Y), to a vector field in a neighborhood of p. Note that
such an extension may always be found: for instance, if Y, = EYZEi(p), where
E; are some local basis for tangent spaces in a neighborhood U of p, then we may
set Y, = ZY;}El(q) for all ¢ € U. By the previous proposition, (Vy X), does not
depend on the choice of the local extension Y, so Vy, X is well defined.

0.3 Induced connection on submanifolds

As we have already seen M admits a standard connection when M = R™. To give
other examples of manifolds with a distinguished connection, we use the following
observation.

Lemma 0.2. Let M be a manifold, M be an embedded submanifold of M, and X be
a vector field of M. Then for every point p € M there exists an open neighborhood
U of pin M and a vector filed X defined on U such that X, = X, for all p € M.

Proof. Recall that, by the rank theorem, there exists a local chart (U,¢) of M
centered at p such that ¢(U N M) = R"* where k = dim(M) — dim(M). Now,
note that d¢(X) is a vector field on R"™* and let Y be an extension of dp(X) to
R" (any vector field on a subspace of R™ may be extended to all of R™). Then set

X :=dg (V). O

Now if M is a Riemannian manifold with connection V, and M is any subman-
ifold of M, we may define a connection on M as follows. First note that for any
peEM,

T,M = T,M & (T,M)™*,



that is any vector X € TPM may written as sum of a vector X € T,M (which is
tangent to M and vector X+ := X — X T (which is normal to M). So for any vector
fields X and Y on M we define a new vector field on M by setting, for each p € M,

(VyX)p == (VyX),

where Y and X are local extensions of X and Y to vector fields on a neighborhood
of pin M. Note (VyX), is well-defined, because it is independent of the choice of
local extensions X and Y by Theorem 0.1.

0.4 Covariant derivative

We now describe how to differentiate a vector field along a curve in a manifold M
with a connection V. Let v: I — M be a smooth immersion, i.e., dy; # 0 for all
t € I, where I C R is an open interval. By a vector filed along v we mean a mapping
X: I — TM such that X(t) € T,y M for all t € I. Let X(7) denote the space of
vector fields along ~.

For any vector field X € X(y), we define another vector field D, X € X(v),
called the covariant derivative of X along «, as follows. First recall that v is locally
one-to-one by the inverse function theorem. Thus, by the previous lemma on the
existence of local extensions of vector fields on embedded submanifolds, there exists
an open neighborhood U of 7(tg) and a vector field X defined on U such that
X, = X(t) for all t € (tg — €,tg +€). Set

D,YX(to) = V,yl(tO)Y.

Recall that +'(to) := dvyi,(1) € Ty o) M. By Theorem 0.1, DX (to) is well defined,
i.e., it does not depend on the choice of the local extension X. Thus we obtain a
mapping D~: X(y) — X (7). Note that if X, Y € X(y), then (X +Y)(t) := X(t) +
Y (t) € X(v). Further, if f: I — R is any function then (fX)(¢) := f(t)X(t) €
X (7). It is easy to check that

Dy(X+Y)=Dy(X)+Dy(Y) and D,(fX)= fDy(X).
Proposition 0.3. Ifv: I — R", and X € X(v), then D, X = X'. In particular,
D77/ — ,y//.

Proof. Let X be a vector field on an open neighborhood of ¥(tg) such that
X(v(t) = X(1),

for all t € (to —€,to +€). Then

D»YX(tQ) = Vy( )Y = (X O’y)/(to) = X/(to).



Corollary 0.4. Let M be an immersed submanifold of R™ with the induced con-
nection V, and corresponding covariant derivative D. Suppose v: I — M is an
immersed curve, and X € Xy () is a vector field along v in M. Then D X =
(XNHT. O

0.5 Geodesics
Note that, by the last exercise, the only curves v: I — R"™ with the property that

D' =0

are given by ~(t) = at + b, which trace straight lines. With this motivation, we
define a geodesic (which is meant to be a generalization of the concept of lines) as
an immersed curve v: I — M which satisfies the above equality for all t € I. A nice
supply of examples of geodesics are provided by the following observation:

Proposition 0.5. Let M C R" be an immersed submanifold, and ~v: I — M an
immersed curve. Then 7y is a geodesic of M (with respect to the induced connection
from R™) if and only if ¥"T = 0. In particular, if v: I — M is a geodesic, then
17| = const. O

Proof. The first claim is an immediate consequence of the last two results. The last
sentence follows from the leibnitz rule for differentiating inner products in Euclidean
space: (7,7') = 2(y",~'). Thus if v/ = 0, then ||7/||? = const. O

As an application of the last result, we can show that the geodesics on the sphere
S? are those curves which trace a great circle with constant speed:

Example 0.6 (Geodesics on S?). A C? immersion v: I — S? is a geodesic if and
only if v has constant speed and lies on a plane which passes through the center of
the sphere, i.e., it traces a segment of a great circle.

First suppose that v: I — S? has constant speed, i.e. ||¥'|| = const., and that
7 traces a part of a great circe, i.e., {,u) = 0 for some fixed vector u € S? (which
is the vector orthogonal to the plane in which v lies). Since (7/,7') = ||7/||? is
constant, it follows from the Leibnitz rule for differentiating the innerproduct that
(",4") = 0. Furthermore, differentiating (v, u) = 0 yields that (y”,u) = 0. So, 7"
lies in the plane of 7, and is orthogonal to 7. So, since ~y traces a circle, 4" must be
parallel to 7. This in turn implies that 4" must be orthogonal to T,S?, since v is
orthogonal to T,S%. So we conclude that (v”)" = 0.

Conversely, suppose that (v7)" = 0. Then ~" is parallel to . So if u := v x v/,
then v’ =~ x~y +vx+”" =040 = 0. So u is constant. But v is orthogonal to u, so
~ lies in the plane which passes through the origin and is orthogonal to u. Finally,
~ has constant speed by the last proposition.



0.6 Ordinary differential equations

In order to prove an existence and uniqueness result for geodesic in the next section
we need to develop first a basic result about differential equations:

Theorem 0.7. Let U C R" be an open set and F: U — R"™ be C*, then for every
xg € U, there exists an € > 0 such that for every 0 < € < € there exists a unique
curve x: (—€,e) = U with x(0) = z9 and 2'(t) = F(z(t)).

Note that, from the geometric point of view the above theorem states that there
passes an integral curve through every point of a vector field. To prove this result
we need a number of preliminary results. Let I C R be an interval, (X,d) be a
compact metric space, and I'(1, X) be the space of maps v: I — X. For every pair
of curves 1, v € I'(1, X)) set

3(71,72) = Stlelll)d(% (t),72(1)).

It is easy to check that (I',0) is a metric space. Now let C'(I, X) C I'(, X) be the
subspace of consisting of continuous curves.

Lemma 0.8. (C,9) is a complete metric space.

Proof. Let ~; € C be a Cauchy sequence. Then, for every t € I, ~;(t) is a Cauchy
sequence in X. So 7;(t) converges to a point J(¢) € X (since every compact metric
space is complete). Thus we obtain a mapping 7: I — X. We claim that 7 is
continuous which would complete the proof. By the triangular inequality,

d(3(s),7(t)) d(¥(s),7i(s)) + d(i(s),7i(t)) + d(v:(),7(t))
26(7,7i) + d(7i(s),7i(t))-

VARPVAY

So, since ~; is continuous,

lim d(7(s),7(t)) < 20(7,7)-

t—s

All we need then is to check that lim; , d(7,7v;) = 0: Given € > 0, choose i
sufficiently large so that 6(v;,v;) < eforall j > 4. Then, forallt € I, d(v;(t),v;(t)) <
€ , which in turn yields that d(vy;(¢),7(t)) < e. So §(y;,7) < €. O

Now we are ready to prove the main result of this section:

Proof of Theorem 0.7. Let B = BJ'(x() denote a ball of radius r centered at xg.
Choose 7 > 0 so small that that B C U. For any continuous curve o € C((—¢,¢€), B)
we may define another continuous curve s(a) € ((—e, €), R™) by

s(a)(t) :== xo —i—/o F(a(u))du.
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We claim that if € is small enough, then s(a) € C((—¢,¢€), B). To see this note that

ls(a)(t) = moll = ))du

/ IF(o(u)du < csup [P,

So setting € < r/supg||F||, we may then assume that

s: O((—e€,¢€), B) = C((—¢,¢), B).

Next note that for every a, 8 € C((—¢,¢€), B) , we have

3(s(a).s(9) = sup | [ Fla(w) = P@@)d) < sup [ [Fau) = F(Bw) du.

Further recall that, since F is C', by the mean value theorem there is a constant K
such that
[1F(z) = F(y)ll < Kllz =y,

for all z, y € B (in particular recall that we may set K := y/nsupg |D;F*|). Thus

t
/ |F(a(w) — F(8(w)|ldu < K / () — B(w)lldu < Ked(ar, B).
0

So we conclude that
6(s(@),s(B8)) < Ked(a, B).

Now assume that € < 1/K (in addition to the earlier assumption that e < r/supz || F|),
then, s must have a unique fixed point since it is a contraction mapping. So for
every 0 < e < € where

_ . r 1
€ := min , -
{supBIIFII \/ﬁsupB!Dszl}

there exists a unique curve z: (—¢,e) — B such that z(0) = s(z)(0) = =, and
a'(t) = s(x)'(t) = F(x(t)).

It only remains to show that z: (—e,e) — U is also the unique curve with
x(0) = z¢ and 2/(t) = F(x(t)), i.e., we have to show that if y: (—e,e¢) — U is any
curve with y(0) = z¢ and y/(t) = F(y(t)), then y = x (so far we have proved this
only for y: (—€,e) — B). To see this recall that ¢ < r/supg || F|| where r is the
radius of B. Thus

ly(¢ —960H</ Iy’ (u HdU—/ 1E(y Hdu<fsupHFH<7“

So the image of y lies in B, and therefore we must have y = . O



0.7 Existence and uniqueness of geodesics

Note that for every point p € R" and and vector X € T,R" ~ R", we may find
a geodesic through p and with velocity vector X at p, which is given simply by
v(t) = p+ Xt. Here we show that all manifolds with a connection share this

property:
Theorem 0.9. Let M be a manifold with a connection. Then for every p € M and

X € T,M there exists an € > 0 such that for every 0 < € < € there is a unique
geodesic y: (—e,€) — M with v(0) = p and +'(0) = X.

To prove this theorem, we need to record some preliminary observations. Let
M and M be manifolds with connections V and V respectively. We say that a
diffeomorphism f: M — M is connection preserving provided that

(VyX)p = (Voo df (X)) )

for all p € M and all vector fields X, Y € X(M). It is an immediate consequence
of the definitions that

Lemma 0.10. Let f: M — M be a connection preserving diffeomorphism. Then
v: I — M is a geodesic if and only of f o~y is a geodesic. O

Note that if f: M — M is a diffeomorphism, and M has a connection V, then
f induces a connection V on M by

(%?‘)’Z)ﬁ = (vdf—l(f{)df_l(i;))f—l(@-

It is clear that then f: M — M will be connection preserving. So we may conclude
that

Lemma 0.11. Let (U, ¢) be a local chart of M, then v: I — U is a geodesic if and
only of ¢ oy is a geodesic with respect to the connection induced on R™ by ¢. [

Now we are ready to prove the main result of this section:

Proof of Theorem 0.9. Let (U, ¢) be a local chart of M centered at p and let V be
the connection which is induced on ¢(U) = R by ¢. We will show that there exists
an € > 0 such that for every 0 < € < € there is a unique geodesic c: (—¢,¢) — R™,
with respect to the induced connection, which satisfies the initial conditions

c(0) =¢(p) and '(0) = dpy(X).

Then, by a previous lemma, v := ¢! oc: (—e,e) = M will be a geodesic on M
with v(0) = p and +/(0) = X. Furthermore, v will be unique. To see this suppose
that 7: (—e,e) — M is another geodesic with 7(0) = p and 7(0) = X. Let €
be the supremum of ¢ € [0, ¢] such that ¥(—t,t) C U, and set ¢ := ¢ o J|(_¢



Then, by Theorem 0.7, ¢ = ¢ on (—¢€,€'), because ¢ < €. So it follows that v =75 on
(—€,€), and we are done if (—€',€') = (—¢, €). This is indeed the case, for otherwise,
(=€ — 6, + ) C (—¢,¢), for some § > 0. Further 7(+¢') = v(+€') € U. So if § is
sufficiently small, then F(—¢ — d,¢’ + §) C U, which contradicts the definition of €.

So all we need is to establish the existence and uniqueness of the geodesic
c: (—€,€) — R™ mentioned above. For ¢ to be a geodesic we must have

D.c =0.

We will show that this may be written as a system of ordinary differential equations.
To see this first recall that

where ¢ is a vector filed in a neighborhood of ¢(t) which is a local extension of ¢,
ie.,

By (1) we have

Vee =D (€@ + D0 OTh(elt)) e,

k i

where e; are the standard basis of R™ and Ffj (p) = ((Ve,€5)ps k). But

()@ = @ 0 0)(t) = (M) () = & (t).
So D.c’ =0 if and only if

P+ EBE BT (e(t) =0
ij

for all t € I and all k. This is a system of n second order ordinary differential
equations (ODEs), which we may rewrite as a system of 2n first order ODEs, via
substitution ¢ = v. Then we have

&) = oF@)

oK) = =) o' OO ().
ij
Now let a(t) := (c(t),v(t)), and define F: R** — R?", F = (F!,... ,F2”) by
Fi(z,y) =y, and F™( Zy YT (x

for £ =1,...,n. Then the system of 2n ODEs mentioned above may be rewritten

o (t) = F(a(t)),

which has a unique solution with initial conditions a/(0) = (¢(p), dp(X)).



0.8 Parallel translation

Let M be a manifold with a connection, and v: I — M be an immersed curve.
Then we say that a vector field X € X(v) is parallel along ~ if

D,X =0.

Thus, in this terminology, v is a geodesic if its velocity vector field is parallel. Further
note that if M is a submanifold of R", the, by the earlier results in this section, X
is parallel along ~ if and only (X/)" =

Example 0.12. Let M be a two dimensional manifold immersed in R", v: I — M
be a geodesic of M, and X € Xj;(v) be a vector field along ~ in M. Then X is
parallel along ~ if and only if X has constant length and the angle between X (t)
and 7/(t) is constant as well. To see this note that (7”)" = 0 since v is a geodesic;
therefore,

(X, 9") = (X",7) +(X,7") = (X", 7).

So, if (X/)T = 0, then it follows that (X,~') is constant which since 7/ and X
have both constant lengths, implies that the angle between X and ~' is constant.
Conversely, suppose that X has constant length and makes a constant angle with 7.
Then (X, ') is constant, and the displayed expression above implies that (X,~") =0
is constant. Furthermore, 0 = (X, X)’ = 2(X, X’). So X'(t) is orthogonal to both
X(t) and /(t). If X(t) and +/(t) are linearly dependent, then this implies that X' (¢)
is orthogonal to T’ M, i.e., (X"YT = 0. If X(t) and +/(t) are linearly dependent,
then (X)T = Dy (X) = D, (f7') = £D5(+) = 0.

Example 0.13 (Foucault’s Pendulum). Here we explicitly compute the parallel
translation of a vector along a meridian of the sphere. To this end let

X (0, ¢) := (cos(#) sin(¢p), sin(#) sin(¢p), cos(¢))

be the standard parametrization or local coordinates for 82 — {(0,0,41)}. Suppose
that we want to parallel transport a given unit vector V5 € T X(907¢0)SQ along the
meridian X (0, ¢o), where we identify tangent space of S? with subspaces of R?.
So we need to find a mapping V: [0,27] — S? such that V(0) = Vj and V'(6) L
TX(9’¢O)SQ. The latter condition is equivalent to the requirement that

V'(0) = M0)X (9, do), (2)

since the normal to S? at the point X (6, @) is just X (6, ¢) itself. To solve the above
differential equation, let

_9X/90(0,¢0) . .
E1(0) := m = (—sin(h), cos(),0),
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and

Ey(0) := m = (cos(0) cos(¢o), sin(0) cos(¢p), — sin(¢o)).

Now note that {E1(0), E2(#)} forms an orthonormal basis for T'x (g, 4,)S*. Thus (2)
is equivalent to

(V'(0), E1(0)) =0 and (V'(6), E2(0)) = 0. 3)

So it remains to solve this differential equation. To this end first recall that since
Vb has unit length, and parallel translation preserves length, we may write

V(6) = cos(a(0))E1(8) + sin(a(f)) E2(0).

So differentiation yields that

V' = B} cos(a) — sin(a)a’ By + sin(a) By + cos(a)a’ Es.
Further, it is easy to compute that

E} = —cos(¢o) Bz —sin(¢o)E3  and  Ej = cos(¢o) B,
where F3(0) := X (0, ¢o). Thus we obtain:

V' = sin(a)(cos(¢o) — o) E1 + cos(a)(a’ — cos(dp)) Ez + () Es.
So for (3) to be satisfied, we must have o = cos(¢g) or
a(f) = cos(¢po)t + «(0),

which in turns determines V. Note in particular that the total rotation of V' with
respect to the meridian X (6, ¢p) is given by

a(2r) — a(0) = /0 7To/dﬁ = 27 cos(¢o).

o=t (128 —00)),

Thus

2

The last equation gives the relation between the precession of the swing plane of
a pendulum during a 24 hour period, and the longitude of the location of that
pendulum on earth, as first observed by the French Physicist Leon Foucault in
1851.

Lemma 0.14. Let I C R and U C R"™ be open subsets and F': I x U — R", be
C'. Then for every ty € I and xo € U there exists an € > such that for every
0 < € < € there is a unique curve x: (to — €,to + €) — R™ with x(ty) = xo and
2/ (t) = F(t,z(t)).

11



Proof. Define F: I x U — R by F(t,z) := (1, F(t,z)). Then, by Theorem 0.7,
there exists an € > 0 and a unique curve Z: (to—e¢, to+¢€) — R for every 0 < € < €,
such that Z(tg) = (1,29) and T'(t) = F(z(t)). It follows then that Z(t) = (¢, z(t)),
for some unique curve z: (tg — €,tp +€) — R™. Thus F(Z(t)) = (1, F(¢,z(t))), and
it follows that 2/(t) = F(t, z(t)). O

Lemma 0.15. Let A(t), t € I, be a C* one-parameter family of matrices. Then for
every xg € R™ and tg € I, there exists a unique curve x: I — R™ with x(ty) = zo
such that o' (t) = A(t) - z(t).

Proof. Define F: I x R® — R" by Fi(x) = A(t) - . By the previous lemma,
there exists a unique curve x: (to — €,t9 + €) — R™ with z(fy) = xo such that
Fy(z(t)) = 2/(t) for all t € (to — €,t9 + €).

Now let J C I be the union of all open intervals in I which contains ¢y and such
that 2/(t) = F(x(t)) for all ¢ in those intervals. Then J is open in I and nonempty.
All we need then is to show that J is closed, for then it would follow that J = I.
Suppose that ¢ is a limit point of J in I. Just as we argued in the first paragraph,
there exists a curve y: (f —€,t +€) — R" such that y'(t) = F(y(t)) and y'(f) # 0.
Thus we may assume that 3y’ # 0 on (¢t — €,t + €), after replacing € by a smaller
number. In particular ¢/(t) # 0 for some t € (f — €7+ €) N J, and there exists a
matrix B such that B -y/(t) = 2/(1).

Now let F(t) := B-y(t). Since F(y(t)) = y'(t), we have F(y(t)) =¥'(t). Further,
by construction 7(t) = z(t), so by uniqueness part of the previous result we must
have 7 = z on (t —€,t +¢€) NJ. Thus x is defined on J U (t — €, ¢ +€). But J was
assumed to be maximal. So ({ —€,¢+€) C J. In particular ¢ € J, which completes
the proof that J is closed in I. O

Theorem 0.16. Let X: I — M be a C' immersion. For every ty € I and Xg €
Ty t)M, there exists a unique parallel vector field X € X(v) such that X (tg) = Xo.

Proof. First suppose that there exists a local chart (U, ¢) such that v: I — U is an
embedding. Let X be a vector field on U and set X (t) := X (vy(¢)). By (1),

Dy(X)(t) = VX = > (Y(OX") + 32 (O X (0TS (v(1) ) Ew(4(1)).
k i

Further note that
()X = (X ov)(t) = X'(t).

So, in order for X to be parallel along v we need to have

Xk+§:¢@WZWGDXNO=O,

for k =1,...,n. This is a linear system of ODE’s in terms of X, and therefore by
the previous lemma it has a unique solution on I satisfying the initial conditions
X'(to) = X}
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Now let J C I be a compact interval which contains f3. There exists a finite
number of local charts of M which cover v(J). Consequently there exist subintervals
J1,...,Jn of J such that v embeds each J; into a local chart of M. Suppose that
to € Jy, then, by the previous paragraph, we may extend Xy to a parallel vector
field defined on Jy. Take an element of this extension which lies in a subinterval Jp
intersecting J;, and apply the previous paragraph to Jy. Repeating this procedure,
we obtain a parallel vector field on each J;. By the uniqueness of each local extension
mentioned above, these vector fields coincide on the overlaps of J;. Thus we obtain
a well-defined vector filed X on J which is a parallel extension of Xg. Note that
if J is any other compact subinterval of I which contains tg, and X is the parallel
extension of Xy on J, then X and X coincide on J N J, by the uniqueness of local
parallel extensions. Thus, since each point of I is contained in a compact subinterval
containing tg, we may consistently define X on all of I.

Finally let X be another parallel extension of X defined on I. Let A C I be the
set of points where X = X. Then A is closed, by continuity of X and X. Further
A is open by the uniqueness of local extensions. Furthermore, A is nonempty since
to € A. So A = I and we conclude that X is unique. O

Using the previous result we now define, for every Xo € T’y ;,) M,
Py t,4(Xo) := X(t)

as the parallel transport of Xy along v to T’ ;M. Thus we obtain a mapping from
Tyto) M 0 Ty ) M.

Exercise 0.17. Show that P, s, :: T, ,)M — T, M is an isomorphism (Hint: Use
the fact hat D,: X(vy) — X(y) is linear). Also show that P, + depends on the
choice of ~.

Exercise 0.18. Show that

X0y — Pt (X))
1 7v(to) Yto,t 2y (t)
V,yl(tO)X = tlg% ¢ 0 .

(Hint: Use a parallel frame along ~.)
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