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Connections

Suppose that we have a vector field X on a Riemannian manifold M . How can we
measure how much X is changing at a point p ∈ M in the direction Yp ∈ TpM?
The main problem here is that there exists no canonical way to compare a vector
in some tangent space of a manifold to a vector in another tangent space. Hence
we need to impose a new kind of structure on a manifold. To gain some insight, we
first study the case where M = Rn.

0.1 Differentiation of vector fields in Rn

Since each tangent space TpR
n is canonically isomorphic to Rn, any vector field on

Rn may be identified as a mapping X : Rn → Rn. Then for any Yp ∈ TpR
n we

define the covariant derivative of X with respect to Yp as

∇YpX :=
(
Yp(X

1), . . . , Yp(X
n)
)
.

Recall that Yp(X
i) is the directional derivative of Xi at p in the direction of Y , i.e.,

if γ : (−ε, ε)→M is any smooth curve with γ(0) = p and γ′(0) = Y , then

Yp(X
i) = (Xi ◦ γ)′(0) =

〈
gradXi(p), Y

〉
.

The last equality is an easy consequence of the chain rule. Now suppose that

Y : Rn → Rn is a vector field on Rn, p
Y7−→ Yp, then we may define a new vec-

tor field on Rn by
(∇YX)p := ∇YpX.

Then the operation (X,Y )
∇7−→ ∇XY may be thought of as a mapping ∇ : X (Rn)×

X (Rn)→ X (Rn), where X denotes the space of vector fields on Rn.
Next note that if X ∈ X (Rn) is any vector field and f : M → R is a function,

then we may define a new vector field fX ∈ (Rn) by setting (fX)p := f(p)Xp (do
not confuse fX, which is a vector field, with Xf which is a function defined by
Xf(p) := Xp(f)). Now we observe that the covariant differentiation of vector fields
on Rn satisfies the following properties:

1. ∇Y (X1 +X2) = ∇YX1 +∇YX2
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2. ∇Y (fX) = (Y f)∇YX + f∇YX

3. ∇Y1+Y2X = ∇Y1X +∇Y2X

4. ∇fYX = f∇YX

It is an easy exercise to check the above properties. Another good exercise to
write down the pointwise versions of the above expressions. For instance note that
item (2) implies that

∇Yp(fX) = (Ypf)∇YpX + f(p)∇YpX,

for all p ∈M .

0.2 Definition of connection and Christoffel symbols

Motivated by the Euclidean case, we define a connection ∇ on a manifold M as any
mapping

∇ : X (M)×X (M)→ X (M)

which satisfies the four properties mentioned above. We say that ∇ is smooth if
whenever X and Y are smooth vector fields on M , then ∇YX is a smooth vector
field as well. Note that any manifold admits the trivial connection ∇ ≡ 0. In the
next sections we study some nontrivial examples.

Here we describe how to express a connection in local charts. Let Ei be a basis
for the tangent space of M in a neighborhood of a point p. For instance, choose a
local chart (U, φ) centered at p and set Ei(q) := dφ−1φ(q)(ei) for all q ∈ U . Then if X

and Y are any vector fields on M , we may write X =
∑

iX
iEi, and Y =

∑
i Y

iEi
on U . Consequently, if ∇ is a connection on M we have

∇YX = ∇Y
(∑

i

XiEi

)
=
∑
i

(
Y (Xi)Ei +Xi∇YEi

)
.

Now note that since (∇EjEi)p ∈ TpM , for all p ∈ U , then it is a linear combination
of the basis elements of TpM . So we may write

∇EjEi =
∑
k

ΓkjiEk

for some functions Γkji on U which are known as the Christoffel symbols. Thus

∇YX =
∑
i

(
Y (Xi)Ei +Xi

∑
j

(
Y j
∑
k

ΓkjiEk

))
=

∑
k

(
Y (Xk) +

∑
ij

Y iXjΓkij

)
Ek
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Conversely note that, a choice of the functions Γkij on any local neighborhood of M
defines a connection on that neighborhood by the above expression. Thus we may
define a connection on any manifold, by an arbitrary choice of Christoffel symbols
in each local chart of some atlas of M and then using a partition of unity.

Next note that for every p ∈ U we have:

(∇YX)p =
∑
k

(
Yp(X

k) +
∑
ij

Y i(p)Xj(p)Γkij(p)
)
Ek(p). (1)

This immediately shows that

Theorem 0.1. For any point p ∈ M , (∇YX)p depends only on the value of X
at p and the restriction of Y to any curve γ : (−ε, ε) → M which belongs to the
equivalence class of curves determined by Xp.

Thus if p ∈M , Yp ∈ TpM and X is any vector field which is defined on an open
neighborhood of p, then we may define

∇YpX := (∇YX)p

where Y is any extension of Yp to a vector field in a neighborhood of p. Note that
such an extension may always be found: for instance, if Yp =

∑
Y i
pEi(p), where

Ei are some local basis for tangent spaces in a neighborhood U of p, then we may
set Yq :=

∑
Y i
pEi(q) for all q ∈ U . By the previous proposition, (∇YX)p does not

depend on the choice of the local extension Y , so ∇YpX is well defined.

0.3 Induced connection on submanifolds

As we have already seen M admits a standard connection when M = Rn. To give
other examples of manifolds with a distinguished connection, we use the following
observation.

Lemma 0.2. Let M be a manifold, M be an embedded submanifold of M , and X be
a vector field of M . Then for every point p ∈ M there exists an open neighborhood
U of p in M and a vector filed X defined on U such that Xp = Xp for all p ∈M .

Proof. Recall that, by the rank theorem, there exists a local chart (U, φ) of M
centered at p such that φ(U ∩M) = Rn−k where k = dim(M) − dim(M). Now,
note that dφ(X) is a vector field on Rn−k and let Y be an extension of dφ(X) to
Rn (any vector field on a subspace of Rn may be extended to all of Rn). Then set

X := dφ
−1

(Y ).

Now if M is a Riemannian manifold with connection ∇, and M is any subman-
ifold of M , we may define a connection on M as follows. First note that for any
p ∈M ,

TpM = TpM ⊕ (TpM)⊥,
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that is any vector X ∈ TpM may written as sum of a vector X> ∈ TpM (which is
tangent to M and vector X⊥ := X−X> (which is normal to M). So for any vector
fields X and Y on M we define a new vector field on M by setting, for each p ∈M ,

(∇YX)p := (∇YX)>p

where Y and X are local extensions of X and Y to vector fields on a neighborhood
of p in M . Note (∇YX)p is well-defined, because it is independent of the choice of
local extensions X and Y by Theorem 0.1.

0.4 Covariant derivative

We now describe how to differentiate a vector field along a curve in a manifold M
with a connection ∇. Let γ : I → M be a smooth immersion, i.e., dγt 6= 0 for all
t ∈ I, where I ⊂ R is an open interval. By a vector filed along γ we mean a mapping
X : I → TM such that X(t) ∈ Tγ(t)M for all t ∈ I. Let X (γ) denote the space of
vector fields along γ.

For any vector field X ∈ X (γ), we define another vector field DγX ∈ X (γ),
called the covariant derivative of X along γ, as follows. First recall that γ is locally
one-to-one by the inverse function theorem. Thus, by the previous lemma on the
existence of local extensions of vector fields on embedded submanifolds, there exists
an open neighborhood U of γ(t0) and a vector field X defined on U such that
Xγ(t) = X(t) for all t ∈ (t0 − ε, t0 + ε). Set

DγX(t0) := ∇γ′(t0)X.

Recall that γ′(t0) := dγt0(1) ∈ Tγ(t0)M. By Theorem 0.1, DγX(t0) is well defined,

i.e., it does not depend on the choice of the local extension X. Thus we obtain a
mapping Dγ : X (γ)→ X (γ). Note that if X, Y ∈ X (γ), then (X + Y )(t) := X(t) +
Y (t) ∈ X (γ). Further, if f : I → R is any function then (fX)(t) := f(t)X(t) ∈
X (γ). It is easy to check that

Dγ(X + Y ) = Dγ(X) +Dγ(Y ) and Dγ(fX) = fDγ(X).

Proposition 0.3. If γ : I → Rn, and X ∈ X (γ), then DγX = X ′. In particular,
Dγγ

′ = γ′′.

Proof. Let X be a vector field on an open neighborhood of γ(t0) such that

X(γ(t)) = X(t),

for all t ∈ (t0 − ε, t0 + ε). Then

DγX(t0) = ∇γ′(t0)X = (X ◦ γ)′(t0) = X ′(t0).
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Corollary 0.4. Let M be an immersed submanifold of Rn with the induced con-
nection ∇, and corresponding covariant derivative D. Suppose γ : I → M is an
immersed curve, and X ∈ XM (γ) is a vector field along γ in M . Then DγX =
(X ′)>.

0.5 Geodesics

Note that, by the last exercise, the only curves γ : I → Rn with the property that

Dγγ
′ ≡ 0

are given by γ(t) = at + b, which trace straight lines. With this motivation, we
define a geodesic (which is meant to be a generalization of the concept of lines) as
an immersed curve γ : I →M which satisfies the above equality for all t ∈ I. A nice
supply of examples of geodesics are provided by the following observation:

Proposition 0.5. Let M ⊂ Rn be an immersed submanifold, and γ : I → M an
immersed curve. Then γ is a geodesic of M (with respect to the induced connection
from Rn) if and only if γ′′> ≡ 0. In particular, if γ : I → M is a geodesic, then
‖γ′‖ = const.

Proof. The first claim is an immediate consequence of the last two results. The last
sentence follows from the leibnitz rule for differentiating inner products in Euclidean
space: 〈γ′, γ′〉′ = 2〈γ′′, γ′〉. Thus if γ′′> ≡ 0, then ‖γ′‖2 = const.

As an application of the last result, we can show that the geodesics on the sphere
S2 are those curves which trace a great circle with constant speed:

Example 0.6 (Geodesics on S2). A C2 immersion γ : I → S2 is a geodesic if and
only if γ has constant speed and lies on a plane which passes through the center of
the sphere, i.e., it traces a segment of a great circle.

First suppose that γ : I → S2 has constant speed, i.e. ‖γ′‖ = const., and that
γ traces a part of a great circe, i.e., 〈γ, u〉 = 0 for some fixed vector u ∈ S2 (which
is the vector orthogonal to the plane in which γ lies). Since 〈γ′, γ′〉 = ‖γ′‖2 is
constant, it follows from the Leibnitz rule for differentiating the innerproduct that
〈γ′′, γ′〉 = 0. Furthermore, differentiating 〈γ, u〉 = 0 yields that 〈γ′′, u〉 = 0. So, γ′′

lies in the plane of γ, and is orthogonal to γ. So, since γ traces a circle, γ′′ must be
parallel to γ. This in turn implies that γ′′ must be orthogonal to TγS

2, since γ is
orthogonal to TγS

2. So we conclude that (γ′′)> = 0.
Conversely, suppose that (γ′′)> = 0. Then γ′′ is parallel to γ. So if u := γ × γ′,

then u′ = γ′×γ′+γ×γ′′ = 0+0 = 0. So u is constant. But γ is orthogonal to u, so
γ lies in the plane which passes through the origin and is orthogonal to u. Finally,
γ has constant speed by the last proposition.
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0.6 Ordinary differential equations

In order to prove an existence and uniqueness result for geodesic in the next section
we need to develop first a basic result about differential equations:

Theorem 0.7. Let U ⊂ Rn be an open set and F : U → Rn be C1, then for every
x0 ∈ U , there exists an ε > 0 such that for every 0 < ε < ε there exists a unique
curve x : (−ε, ε)→ U with x(0) = x0 and x′(t) = F (x(t)).

Note that, from the geometric point of view the above theorem states that there
passes an integral curve through every point of a vector field. To prove this result
we need a number of preliminary results. Let I ⊂ R be an interval, (X, d) be a
compact metric space, and Γ(I,X) be the space of maps γ : I → X. For every pair
of curves γ1, γ ∈ Γ(I,X) set

δ(γ1, γ2) := sup
t∈I

d
(
γ1(t), γ2(t)

)
.

It is easy to check that (Γ, δ) is a metric space. Now let C(I,X) ⊂ Γ(I,X) be the
subspace of consisting of continuous curves.

Lemma 0.8. (C, δ) is a complete metric space.

Proof. Let γi ∈ C be a Cauchy sequence. Then, for every t ∈ I, γi(t) is a Cauchy
sequence in X. So γi(t) converges to a point γ(t) ∈ X (since every compact metric
space is complete). Thus we obtain a mapping γ : I → X. We claim that γ is
continuous which would complete the proof. By the triangular inequality,

d(γ(s), γ(t)) ≤ d(γ(s), γi(s)) + d(γi(s), γi(t)) + d(γi(t), γ(t))

≤ 2δ(γ, γi) + d(γi(s), γi(t)).

So, since γi is continuous,

lim
t→s

d(γ(s), γ(t)) ≤ 2δ(γ, γi).

All we need then is to check that limi→∞ δ(γ, γi) = 0: Given ε > 0, choose i
sufficiently large so that δ(γi, γj) < ε for all j ≥ i. Then, for all t ∈ I, d(γi(t), γj(t)) ≤
ε , which in turn yields that d(γi(t), γ(t)) ≤ ε. So δ(γi, γ) ≤ ε.

Now we are ready to prove the main result of this section:

Proof of Theorem 0.7. Let B = Bn
r (x0) denote a ball of radius r centered at x0.

Choose r > 0 so small that that B ⊂ U . For any continuous curve α ∈ C((−ε, ε), B)
we may define another continuous curve s(α) ∈ ((−ε, ε),Rn) by

s(α)(t) := x0 +

∫ t

0
F (a(u))du.
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We claim that if ε is small enough, then s(α) ∈ C((−ε, ε), B). To see this note that

‖s(α)(t)− x0‖ =

∥∥∥∥∫ t

0
F (α(u))du

∥∥∥∥ ≤ ∫ t

0
‖F (α(u))‖du ≤ ε sup

B

‖F‖.

So setting ε ≤ r/ supB ‖F‖, we may then assume that

s : C((−ε, ε), B)→ C((−ε, ε), B).

Next note that for every α, β ∈ C((−ε, ε), B) , we have

δ(s(α), s(β)) = sup
t

∥∥∥∥∫ t

0
F (α(u))− F (β(u))du

∥∥∥∥ ≤ sup
t

∫ t

0
‖F (α(u))− F (β(u))‖du.

Further recall that, since F is C1, by the mean value theorem there is a constant K
such that

‖F (x)− F (y)‖ ≤ K‖x− y‖,

for all x, y ∈ B (in particular recall that we may set K :=
√
n supB |DjF

i|). Thus∫ t

0
‖F (α(u))− F (β(u))‖du ≤ K

∫ t

0
‖α(u)− β(u)‖du ≤ Kεδ(α, β).

So we conclude that
δ(s(α), s(β)) ≤ Kεδ(α, β).

Now assume that ε < 1/K (in addition to the earlier assumption that ε ≤ r/ supB ‖F‖),
then, s must have a unique fixed point since it is a contraction mapping. So for
every 0 < ε < ε where

ε := min

{
r

supB ‖F‖
,

1√
n supB |DjF i|

}
there exists a unique curve x : (−ε, ε) → B such that x(0) = s(x)(0) = x0, and
x′(t) = s(x)′(t) = F (x(t)).

It only remains to show that x : (−ε, ε) → U is also the unique curve with
x(0) = x0 and x′(t) = F (x(t)), i.e., we have to show that if y : (−ε, ε) → U is any
curve with y(0) = x0 and y′(t) = F (y(t)), then y = x (so far we have proved this
only for y : (−ε, ε) → B). To see this recall that ε ≤ r/ supB ‖F‖ where r is the
radius of B. Thus

‖y(t)− x0‖ ≤
∫ t

0
‖y′(u)‖du =

∫ t

0
‖F (y(u))‖du ≤ ε sup

B

‖F‖ ≤ r.

So the image of y lies in B, and therefore we must have y = x.
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0.7 Existence and uniqueness of geodesics

Note that for every point p ∈ Rn and and vector X ∈ TpRn ' Rn, we may find
a geodesic through p and with velocity vector X at p, which is given simply by
γ(t) = p + Xt. Here we show that all manifolds with a connection share this
property:

Theorem 0.9. Let M be a manifold with a connection. Then for every p ∈M and
X ∈ TpM there exists an ε > 0 such that for every 0 < ε < ε there is a unique
geodesic γ : (−ε, ε)→M with γ(0) = p and γ′(0) = X.

To prove this theorem, we need to record some preliminary observations. Let
M and M̃ be manifolds with connections ∇ and ∇̃ respectively. We say that a
diffeomorphism f : M → M̃ is connection preserving provided that

(∇YX)p =
(
∇̃df(Y )df(X)

)
f(p)

for all p ∈ M and all vector fields X, Y ∈ X (M). It is an immediate consequence
of the definitions that

Lemma 0.10. Let f : M → M̃ be a connection preserving diffeomorphism. Then
γ : I →M is a geodesic if and only of f ◦ γ is a geodesic.

Note that if f : M → M̃ is a diffeomorphism, and M has a connection ∇, then
f induces a connection ∇̃ on M̃ by

(∇̃
Ỹ
X̃)p̃ :=

(
∇
df−1(X̃)

df−1(Ỹ )
)
f−1(p̃)

.

It is clear that then f : M → M̃ will be connection preserving. So we may conclude
that

Lemma 0.11. Let (U, φ) be a local chart of M , then γ : I → U is a geodesic if and
only of φ ◦ γ is a geodesic with respect to the connection induced on Rn by φ.

Now we are ready to prove the main result of this section:

Proof of Theorem 0.9. Let (U, φ) be a local chart of M centered at p and let ∇ be
the connection which is induced on φ(U) = Rn by φ. We will show that there exists
an ε > 0 such that for every 0 < ε < ε there is a unique geodesic c : (−ε, ε) → Rn,
with respect to the induced connection, which satisfies the initial conditions

c(0) = φ(p) and c′(0) = dφp(X).

Then, by a previous lemma, γ := φ−1 ◦ c : (−ε, ε) → M will be a geodesic on M
with γ(0) = p and γ′(0) = X. Furthermore, γ will be unique. To see this suppose
that γ : (−ε, ε) → M is another geodesic with γ(0) = p and γ′(0) = X. Let ε′

be the supremum of t ∈ [0, ε] such that γ(−t, t) ⊂ U , and set c := φ ◦ γ|(−ε′,ε′).
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Then, by Theorem 0.7, c = c on (−ε′, ε′), because ε′ < ε. So it follows that γ = γ on
(−ε′, ε′), and we are done if (−ε′, ε′) = (−ε, ε). This is indeed the case, for otherwise,
(−ε′ − δ, ε′ + δ) ⊂ (−ε, ε), for some δ > 0. Further γ(±ε′) = γ(±ε′) ∈ U . So if δ is
sufficiently small, then γ(−ε′ − δ, ε′ + δ) ⊂ U , which contradicts the definition of ε′.

So all we need is to establish the existence and uniqueness of the geodesic
c : (−ε, ε)→ Rn mentioned above. For c to be a geodesic we must have

Dcc
′ ≡ 0.

We will show that this may be written as a system of ordinary differential equations.
To see this first recall that

Dcċ(t) = ∇ċ(t)ċ

where ċ is a vector filed in a neighborhood of c(t) which is a local extension of ċ,
i.e.,

ċ(c(t)) = ċ(t).

By (1) we have

∇ċ(t)ċ =
∑
k

(
ċ(t)(ċ

k
) +

∑
ij

ċi(t)ċj(t)Γkij(c(t))
)
ek,

where ei are the standard basis of Rn and Γkij(p) = 〈(∇eiej)p, ek〉. But

ċ(t)(ċ
k
) = (ċ

k ◦ c)′(t) = (ċk)′(t) = c̈k(t).

So Dcc
′ ≡ 0 if and only if

c̈k(t) +
∑
ij

ċi(t)ċj(t)Γkij(c(t)) = 0

for all t ∈ I and all k. This is a system of n second order ordinary differential
equations (ODEs), which we may rewrite as a system of 2n first order ODEs, via
substitution ċ = v. Then we have

ċk(t) = vk(t)

v̇k(t) = −
∑
ij

vi(t)vj(t)Γkij(c(t)).

Now let α(t) := (c(t), v(t)), and define F : R2n → R2n, F = (F 1, . . . , F 2n) by

F `(x, y) = y`, and F `+n(x, y) = −
∑
ij

yiyjΓ`ij(x)

for ` = 1, . . . , n. Then the system of 2n ODEs mentioned above may be rewritten
as

α′(t) = F (α(t)),

which has a unique solution with initial conditions α(0) = (φ(p), dφ(X)).
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0.8 Parallel translation

Let M be a manifold with a connection, and γ : I → M be an immersed curve.
Then we say that a vector field X ∈ X (γ) is parallel along γ if

DγX ≡ 0.

Thus, in this terminology, γ is a geodesic if its velocity vector field is parallel. Further
note that if M is a submanifold of Rn, the, by the earlier results in this section, X
is parallel along γ if and only (X ′)> ≡ 0.

Example 0.12. Let M be a two dimensional manifold immersed in Rn, γ : I →M
be a geodesic of M , and X ∈ XM (γ) be a vector field along γ in M . Then X is
parallel along γ if and only if X has constant length and the angle between X(t)
and γ′(t) is constant as well. To see this note that (γ′′)> ≡ 0 since γ is a geodesic;
therefore,

〈X, γ′〉′ = 〈X ′, γ′〉+ 〈X, γ′′〉 = 〈X ′, γ′〉.

So, if (X ′)> = 0, then it follows that 〈X, γ′〉 is constant which since γ′ and X
have both constant lengths, implies that the angle between X and γ′ is constant.
Conversely, suppose that X has constant length and makes a constant angle with γ′.
Then 〈X, γ′〉 is constant, and the displayed expression above implies that 〈X, γ′〉 = 0
is constant. Furthermore, 0 = 〈X,X〉′ = 2〈X,X ′〉. So X ′(t) is orthogonal to both
X(t) and γ′(t). If X(t) and γ′(t) are linearly dependent, then this implies that X ′(t)
is orthogonal to Tγ(t)M , i.e., (X ′)> ≡ 0. If X(t) and γ′(t) are linearly dependent,

then (X ′)> = Dγ(X) = Dγ(fγ′) = fDγ(γ′) ≡ 0.

Example 0.13 (Foucault’s Pendulum). Here we explicitly compute the parallel
translation of a vector along a meridian of the sphere. To this end let

X(θ, φ) := (cos(θ) sin(φ), sin(θ) sin(φ), cos(φ))

be the standard parametrization or local coordinates for S2−{(0, 0,±1)}. Suppose
that we want to parallel transport a given unit vector V0 ∈ TX(θ0,φ0)S

2 along the
meridian X(θ, φ0), where we identify tangent space of S2 with subspaces of R3.
So we need to find a mapping V : [0, 2π] → S2 such that V (0) = V0 and V ′(θ) ⊥
TX(θ,φ0)S

2. The latter condition is equivalent to the requirement that

V ′(θ) = λ(θ)X(θ, φ0), (2)

since the normal to S2 at the point X(θ, φ) is just X(θ, φ) itself. To solve the above
differential equation, let

E1(θ) :=
∂X/∂θ(θ, φ0)

‖∂X/∂θ(θ, φ0‖
= (− sin(θ), cos(θ), 0),
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and

E2(θ) :=
∂X/∂φ(θ, φ0)

‖∂X/∂φ(θ, φ0‖
= (cos(θ) cos(φ0), sin(θ) cos(φ0),− sin(φ0)).

Now note that {E1(θ), E2(θ)} forms an orthonormal basis for TX(θ0,φ0)S
2. Thus (2)

is equivalent to

〈V ′(θ), E1(θ)〉 = 0 and 〈V ′(θ), E2(θ)〉 = 0. (3)

So it remains to solve this differential equation. To this end first recall that since
V0 has unit length, and parallel translation preserves length, we may write

V (θ) = cos(α(θ))E1(θ) + sin(α(θ))E2(θ).

So differentiation yields that

V ′ = E′1 cos(α)− sin(α)α′E1 + sin(α)E′2 + cos(α)α′E2.

Further, it is easy to compute that

E′1 = − cos(φ0)E2 − sin(φ0)E3 and E′2 = cos(φ0)E1,

where E3(θ) := X(θ, φ0). Thus we obtain:

V ′ = sin(α)(cos(φ0)− α′)E1 + cos(α)(α′ − cos(φ0))E2 + (∗)E3.

So for (3) to be satisfied, we must have α′ = cos(φ0) or

α(θ) = cos(φ0)t+ α(0),

which in turns determines V . Note in particular that the total rotation of V with
respect to the meridian X(θ, φ0) is given by

α(2π)− α(0) =

∫ 2π

0
α′dθ = 2π cos(φ0).

Thus

φ0 = cos−1
(
α(2π)− α(0)

2π

)
.

The last equation gives the relation between the precession of the swing plane of
a pendulum during a 24 hour period, and the longitude of the location of that
pendulum on earth, as first observed by the French Physicist Leon Foucault in
1851.

Lemma 0.14. Let I ⊂ R and U ⊂ Rn be open subsets and F : I × U → Rn, be
C1. Then for every t0 ∈ I and x0 ∈ U there exists an ε > such that for every
0 < ε < ε there is a unique curve x : (t0 − ε, t0 + ε) → Rn with x(t0) = x0 and
x′(t) = F (t, x(t)).
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Proof. Define F : I × U → Rn+1 by F (t, x) := (1, F (t, x)). Then, by Theorem 0.7,
there exists an ε > 0 and a unique curve x : (t0−ε, t0+ε)→ Rn+1, for every 0 < ε < ε,
such that x(t0) = (1, x0) and x′(t) = F (x(t)). It follows then that x(t) = (t, x(t)),
for some unique curve x : (t0 − ε, t0 + ε)→ Rn. Thus F (x(t)) = (1, F (t, x(t))), and
it follows that x′(t) = F (t, x(t)).

Lemma 0.15. Let A(t), t ∈ I, be a C1 one-parameter family of matrices. Then for
every x0 ∈ Rn and t0 ∈ I, there exists a unique curve x : I → Rn with x(t0) = x0
such that x′(t) = A(t) · x(t).

Proof. Define F : I × Rn → Rn by Ft(x) = A(t) · x. By the previous lemma,
there exists a unique curve x : (t0 − ε, t0 + ε) → Rn with x(t0) = x0 such that
Ft(x(t)) = x′(t) for all t ∈ (t0 − ε, t0 + ε).

Now let J ⊂ I be the union of all open intervals in I which contains t0 and such
that x′(t) = F (x(t)) for all t in those intervals. Then J is open in I and nonempty.
All we need then is to show that J is closed, for then it would follow that J = I.
Suppose that t is a limit point of J in I. Just as we argued in the first paragraph,
there exists a curve y : (t − ε, t + ε) → Rn such that y′(t) = F (y(t)) and y′(t) 6= 0.
Thus we may assume that y′ 6= 0 on (t − ε, t + ε), after replacing ε by a smaller
number. In particular y′(t̃) 6= 0 for some t̃ ∈ (t − ε, t + ε) ∩ J , and there exists a
matrix B such that B · y′(t̃) = x′(t̃).

Now let y(t) := B ·y(t). Since F (y(t)) = y′(t), we have F (y(t)) = y′(t). Further,
by construction y(t̃) = x(t̃), so by uniqueness part of the previous result we must
have y = x on (t − ε, t + ε) ∩ J . Thus x is defined on J ∪ (t − ε, t + ε). But J was
assumed to be maximal. So (t− ε, t+ ε) ⊂ J . In particular t ∈ J , which completes
the proof that J is closed in I.

Theorem 0.16. Let X : I → M be a C1 immersion. For every t0 ∈ I and X0 ∈
Tγ(t0)M , there exists a unique parallel vector field X ∈ X (γ) such that X(t0) = X0.

Proof. First suppose that there exists a local chart (U, φ) such that γ : I → U is an
embedding. Let X be a vector field on U and set X(t) := X(γ(t)). By (1),

Dγ(X)(t) = ∇γ′(t)X =
∑
k

(
γ′(t)(X

k
) +

∑
ij

γi(t)Xj(t)Γkij(γ(t))
)
Ek(γ(t)).

Further note that
γ′(t)X = (X ◦ γ)′(t) = X ′(t).

So, in order for X to be parallel along γ we need to have

Ẋk +
∑
ij

γi(t)Γkij(γ(t))Xj(t) = 0,

for k = 1, . . . , n. This is a linear system of ODE’s in terms of Xi, and therefore by
the previous lemma it has a unique solution on I satisfying the initial conditions
Xi(t0) = Xi

0.

12



Now let J ⊂ I be a compact interval which contains t0. There exists a finite
number of local charts of M which cover γ(J). Consequently there exist subintervals
J1, . . . , Jn of J such that γ embeds each Ji into a local chart of M . Suppose that
t0 ∈ J`, then, by the previous paragraph, we may extend X0 to a parallel vector
field defined on J`. Take an element of this extension which lies in a subinterval J`′

intersecting J` and apply the previous paragraph to J`′ . Repeating this procedure,
we obtain a parallel vector field on each Ji. By the uniqueness of each local extension
mentioned above, these vector fields coincide on the overlaps of Ji. Thus we obtain
a well-defined vector filed X on J which is a parallel extension of X0. Note that
if J is any other compact subinterval of I which contains t0, and X is the parallel
extension of X0 on J , then X and X coincide on J ∩ J , by the uniqueness of local
parallel extensions. Thus, since each point of I is contained in a compact subinterval
containing t0, we may consistently define X on all of I.

Finally let X be another parallel extension of X0 defined on I. Let A ⊂ I be the
set of points where X = X. Then A is closed, by continuity of X and X. Further
A is open by the uniqueness of local extensions. Furthermore, A is nonempty since
t0 ∈ A. So A = I and we conclude that X is unique.

Using the previous result we now define, for every X0 ∈ Tγ(t0)M ,

Pγ,t0,t(X0) := X(t)

as the parallel transport of X0 along γ to Tγ(t)M . Thus we obtain a mapping from
Tγ(t0)M to Tγ(t)M .

Exercise 0.17. Show that Pγ,t0,t : Tγ(t0)M → Tγ(t)M is an isomorphism (Hint: Use
the fact hat Dγ : X (γ) → X (γ) is linear). Also show that Pγ,t0,t depends on the
choice of γ.

Exercise 0.18. Show that

∇γ′(t0)X = lim
t→t0

Xγ(t0) − P
−1
γ,t0,t

(Xγ(t))

t
.

(Hint: Use a parallel frame along γ.)
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