Nov 14, 2006^1

Math 6455 Differential Geometry I Fall 2006, Georgia Tech

Lecture Notes 15

Riemannian Geodesics

Here we show that every Riemannian manifold admits a unique connection, called the Riemannian or Levi-Civita connection, which satisfies two properties: symmetry, and compatibility with the metric, as we describe below. This result is known as the fundamental theorem of Rimeannian gemetry. Further we will show that the geodesics which arise from a Riemannian connection are locally minimize distance.

0.1 The bracket

For any pair of vector fields $X, Y \in \mathcal{X}(M)$ we may define a new vector field $[X, Y] \in \mathcal{X}(M)$ as follows. First recall that T_pM is isomorphic to D_pM the space of derivations of the germ of functions of M at. Thus we may define [X, Y] by describing how it acts on functions at each point:

$$[X,Y]_p f := X_p(Yf) - Y_p(Xf).$$

One may check that this does indeed define a derivation, i.e., $[X, Y]_p(\lambda f + g) = \lambda[X, Y]_p f + [X, Y]_p g$, and $[X, Y]_p (fg) = ([X, Y]_p f)g(p) + f(p)([X, Y]_p g)$. Further note that if $e_i(p)$; = e_i denotes the standard basis vector field of \mathbf{R}^n then $[e_i, e_j] = 0$ (since partial derivatives commute). On the other hand it is not difficult to construct examples of vector fields whose bracket does not vanish:

Example 0.1. Let X, Y be vector fields on \mathbf{R}^2 given by X(x,y) = (1,0) and Y(x,y) = (0,x). Then

$$[X,Y]f = X\left(x\frac{\partial f}{\partial y}\right) - Y\left(\frac{\partial f}{\partial x}\right) = \frac{\partial f}{\partial y} + x\frac{\partial^2 f}{\partial x\partial y} - x\frac{\partial^2 f}{\partial y\partial x} = \frac{\partial f}{\partial y}$$

Lemma 0.2. Let $f: M \to N$ be a diffeomorphism, and $X, Y \in \mathcal{X}(M)$. Then

$$df([X,Y]) = [dfX, dfY].$$

Proof. Recall that for any vectorfield Z on M and function g on N, we have

$$\left((dfZ)g\right)(f(p)) = (dfZ)_{f(p)}g = (df_pZ)g = Z_p(g \circ f).$$

¹Last revised: November 21, 2006

Thus if we let $\overline{Z} := dfZ$, and $\overline{p} := f(p)$, then

$$\left(\left(\overline{Z}g\right)\circ f\right)(p) = \left(\overline{Z}g\right)\left(\overline{p}\right) = \overline{Z}_{\overline{p}}g = Z_p(g\circ f) = \left(Z(g\circ f)\right)(p).$$

Using the last set of identities, we may now compute

$$\begin{split} & \left(\overline{[X,Y]}g\right)(\overline{p}) &= [X,Y]_p(g \circ f) \\ &= X_p\Big(Y(g \circ f)\Big) - Y_p\Big(X(g \circ f)\Big) \\ &= X_p\Big((\overline{Y}g) \circ f\Big) - Y_p\Big((\overline{X}g) \circ f\Big) \\ &= \overline{X}_{\overline{p}}(\overline{Y}g) - \overline{Y}_{\overline{p}}(\overline{X}g) \\ &= \Big([\overline{X},\overline{Y}]g\Big)(\overline{p}). \end{split}$$

Corollary 0.3. Let (U, ϕ) be a local chart of M and $E_i(p) := d\phi_{\phi(p)}^{-1}(e_i)$ be the associated coordinate vector fields on U. Then $[E_i, E_j] = 0$.

Exercise 0.4. Show that the bracket satisfies the following properties:

$$[X, Y] = -[Y, X]$$
 and $[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0$

0.2 Riemannian Connections

Recall that the standard connection in \mathbb{R}^n is defined as

$$\nabla_X Y := (X(Y^1), \dots, X(Y^n)).$$

Furthermore, recall that in \mathbb{R}^n , for any function $f: \mathbb{R}^n \to \mathbb{R}$ and vector field X we have

$$Xf = \langle X, \operatorname{grad} f \rangle.$$

Using these identites, we compute that

$$Z\langle X, Y \rangle = \sum \langle Z, \operatorname{grad}(X^{i}Y^{i}) \rangle$$

=
$$\sum \langle Z, \operatorname{grad}(X^{i})Y^{i} + X^{i} \operatorname{grad}(Y^{i})) \rangle$$

=
$$\sum \langle Z, \operatorname{grad} X^{i} \rangle Y^{i} + \sum \langle Z, \operatorname{grad} Y^{i} \rangle X^{i}$$

=
$$\langle \nabla_{Z}X, Y \rangle + \langle X, \nabla_{Z}Y \rangle.$$

Motivated by this observation we say that a connection on a Riemannian manifold (M, g) is compatible with the metric provided that

$$Zg(X,Y) = g(\nabla_Z X, Y) + g(X, \nabla_Z Y).$$

Further note that

$$\langle Y, \nabla_X \operatorname{grad} f \rangle - \langle X, \nabla_Y \operatorname{grad} f \rangle = \sum_{i=1}^n Y^i X^i D_i f - \sum_{i=1}^n X^i Y^i D_i f = 0.$$

This property, together with the compatibility of ∇ with the innerproduct which we estallished above, may be used to compute that

$$\begin{aligned} (\nabla_X Y - \nabla_Y X)f &= \langle \nabla_X Y, \operatorname{grad} f \rangle - \langle \nabla_Y X, \operatorname{grad} f \rangle + \langle Y, \nabla_X \operatorname{grad} f \rangle - \langle X, \nabla_Y \operatorname{grad} f \rangle \\ &= X \langle Y, \operatorname{grad} f \rangle - Y \langle X, \operatorname{grad} f \rangle \\ &= X(Yf) - Y(Xf) \\ &= [X, Y](f). \end{aligned}$$

Thus we say that a connection on a manifold is *symmetric* provided that

$$\nabla_X Y - \nabla_Y X = [X, Y].$$

Exercise 0.5. Show that a connection is symmetric if and only the correspding Christoffel symbold satisfy

$$\Gamma_{ij}^k = \Gamma_{ji}^k$$

in every local chart.

If a connection is compatible with the metric and is symmetric we say that it is *Riemannian*. The following result is known as the fundamental theorem of Riemannian Geometry

Theorem 0.6. Every Riemannian manifold admits a unique Riemannian connection.

Proof. First suppose that the manifold (M, g) does admit some Riemannian connection ∇ . We will show then that ∇ is unique. To see this, first note that, for any vector fields $X, Y, Z \in \mathcal{M}$,

$$\begin{aligned} Zg(X,Y) &= g(\nabla_Z X,Y) + g(X,\nabla_Z Y), \\ Xg(Y,Z) &= g(\nabla_X Y,Z) + g(Y,\nabla_X Z), \\ Yg(Z,X) &= g(\nabla_Y Z,X) + g(Z,\nabla_Y X). \end{aligned}$$

This yields that

$$Zg(X,Y) + Xg(Y,Z) - Yg(Z,X) = g([X,Z],Y) + g([Y,Z],X) + g([X,Y],Z) + 2g(Z,\nabla_Y X).$$

Therefore

$$g(Z, \nabla_Y X) = \frac{1}{2} \Big(Zg(X, Y) + Xg(Y, Z) - Yg(Z, X) - g([X, Z], Y) - g([X, Z], X) - g([X, Y], Z) \Big).$$

This shows that $\nabla_Y X$ is completely determined by g, so it must be unique.

To prove existence, now note that we may define ∇ by using the last expression displayed above. It is easy to check that ∇ would then be a Riemannian connection.

Next we are going to derive the local expression for the Christophel symbols associated to a Riemannian connection. Let (U, ϕ) be a local chart of M and $E_i(p) := d\phi_{\phi(p)}^{-1}(e_i)$ be the corresponding coordinate vector fields on U. Then, recalling the $[E_i, E_j] = 0$, the last displayed expression yields that

$$g\left(E_k, \sum_{\ell} \Gamma_{ij}^{\ell} E_{\ell}\right) = \frac{1}{2} \left(E_k g(E_i, E_j) + E_i g(E_j, E_k) - E_j g(E_k, E_i)\right).$$

Now set $g_{ij} := g(E_i, E_j)$. Further recall that if $f: M \to \mathbf{R}$ is any function then $E_i f(p) = D_i (f \circ \phi^{-1})(\phi(p))$. Thus if we set $\overline{f} := f \circ \phi^{-1}$, then $E_i(f)$, then we have $E_i f(p) = D_i \overline{f}(\phi(p))$, and the last expression may be rewritten as:

$$\sum_{\ell} \overline{\Gamma}_{ij}^{\ell} \overline{g}_{k\ell} = \frac{1}{2} \Big(D_k \overline{g}_{ij} + D_i \overline{g}_{jk} - D_j \overline{g}_{ki} \Big).$$

Now let g^{ij} be the coefficients of the matrix which is the inverse of the matrix with coefficients g_{ij} . Then $\sum_k \overline{g}_{k\ell} g^{km} = \delta_{\ell m}$ where $\delta_{\ell m}$ are the coefficients of the identity matrix. Therefore

$$\sum_{k\ell} \overline{\Gamma}^{\ell}_{ij} \overline{g}_{k\ell} \overline{g}^{km} = \sum_{\ell} \overline{\Gamma}^{\ell}_{ij} \delta_{\ell m} = \overline{\Gamma}^{m}_{ij}.$$

This yields that

$$\overline{\Gamma}_{ij}^{m} = \frac{1}{2} \sum_{k} \overline{g}^{km} \Big(D_k \overline{g}_{ij} + D_i \overline{g}_{jk} - D_j \overline{g}_{ki} \Big).$$
(1)

0.3 Induced connection on Riemanninan submanifolds

Recall that if \overline{M} is a manifold with connection $\overline{\nabla}$, then any submanifold $M \subset \overline{M}$ inherits a connection ∇ given by

$$\nabla_X Y := \left(\overline{\nabla}_{\overline{X}} \overline{Y}\right)^\top.$$

Further recall that, if $(\overline{M}, \overline{g})$ is a Riemannian manifold, then M inherits a Riemannian metric g given by

$$g(X,Y) := \overline{g}(\overline{X},\overline{Y}).$$

Thus one may ask that if $\overline{\nabla}$ is the Riemannian connection of \overline{M} , then is ∇ a Riemannian connection, i.e., is it symmetric and is compatible with g? Here we show that the answer is yes:

Proposition 0.7. The induced connection on a Riemannian submanifold is Riemannian.

Proof. Let $p \in M$, X, Y be vector fields on M, and \overline{X} , \overline{Y} be their extensions to a neighborhood $U \subset \overline{M}$ of p. Then

$$Z_p g(X, Y) = Z_p \overline{g}(\overline{X}, \overline{Y})$$

$$= \overline{g}(\overline{\nabla}_{Z_p} \overline{X}, Y_p) + \overline{g}(X_p, \overline{\nabla}_{Z_p} \overline{Y})$$

$$= \overline{g}((\overline{\nabla}_{Z_p} \overline{X})^\top, Y_p) + \overline{g}(X_p, (\overline{\nabla}_{Z_p} \overline{Y})^\top)$$

$$= g(\nabla_{Z_p} X, Y_p) + g(X_p, \nabla_{Z_p} Y)$$

So ∇ is compatible with g. Next note that

$$\nabla_{X_p} Y - \nabla_{Y_p} X = (\nabla_{\overline{X}_p} \overline{Y})^\top - (\nabla_{\overline{Y}_p} \overline{X})^\top = [\overline{X}, \overline{Y}]_p^\top.$$

But if \overline{f} is any function on \overline{M} and f is its restriction to M, then

$$[\overline{X},\overline{Y}]_p\overline{f} = X_p(\overline{Yf}) - Y_p(\overline{Xf}) = X_p(Yf) - Y_p(Xf) = [X,Y]_pf$$

Thus

$$[\overline{X},\overline{Y}]_p^{\top} = [X,Y]_p^{\top} = [X,Y]_p^{\top}$$

So ∇ is symmetric.

0.4 Speed of Geodesics

If (M, g) is a Riemannian metric, we say that a curve $c: I \to M$ is a (Riemannian) geodesic provided that g is a geodesic with respect to the Riemannian connection of M.

Lemma 0.8. Every Riemannian geodesic $c: I \to M$ has constant speed, i.e., g(c'(t), c'(t)) is constant.

Proof. Let \overline{c}' be a vector field in a neighborhood U of $c(t_0)$ such that $\overline{c}'(c(t)) = c'(t)$, for all $t \in [t_0 - \epsilon, t_0 + \epsilon]$. Now define $f: U \to \mathbf{R}$ by $f(p) = g(\overline{c}'(p), \overline{c}'(p))$. Then g(c'(t), c'(t)) = f(c(t)), and it follows that

$$\frac{d}{dt}g(c'(t),c'(t))\Big|_{t=t_0} = (f \circ c)'(t_0) = c'(t_0) \big[g(\overline{c}',\overline{c}')\big] = 2g\big(\nabla_{c'(t_0)}\overline{c}',\overline{c}'(t_0)\big) = 0.$$

Thus g(c'(t), c'(t)) is constant.

If $c: I \to M$ is any curve, then we say that $\overline{c}: J \to M$ is a reparametrization of c provided that $\overline{c} = c \circ u$ for some diffeomorphism $u: J \to I$.

Lemma 0.9. If $c: I \to M$ is a geodesic, then so is any reparametrization $\overline{c} = c \circ u$, where $u(t) = kt + t_0$ for some constants k and t_0 .

Proof. The chain rule yields that

$$\overline{c}'(t) = d\overline{c}_t(1) = dc_{u(t)} \circ du_t(1) = dc_{u(t)}(u'(t)) = dc_{u(t)}(k) = kdc_{u(t)}(1) = kc'(u(t)).$$

Consequently,

$$\nabla_{\overline{c}'(t)}\overline{c}' = \nabla_{kc'(kt+t_0)}kc' = k^2 \nabla_{c'(kt+t_0)}c' = 0.$$

Proposition 0.10. Let $c: I \to M$ be a geodesic. Then any reparamterization $\overline{c}: J \to M$ of c is a geodesic as well, if and only if it has constant speed.

Proof. If \overline{c} is a geodesic, then it must have constant speed as we showed earlier. Now suppose that \overline{c} has constant speed. Further note that, since $\overline{c} = c \circ u$, for some diffeomorphism $u: J \to I$, it follows that

$$\overline{c}'(t) = d\overline{c}_t(1) = dc_{u(t)} \circ du_t(1) = dc_{u(t)}(u'(t)) = u'(t)dc_{u(t)}(1) = u'(t)c'(u(t)).$$

Thus, since \overline{c}' and c' both have constant magnitudes, it follows that u' is constant. But then $u(t) = kt + t_0$, and the previous lemma implies that \overline{c} is a geodesic. \Box

0.5 Example: Geodesics of H²

Here we show that the (nontrivial) geodesics in the Poincare's upper half-plane either trace vertical lines or semicircles which meet the x-axis orthogonally. To this end, we first recall that the standard (hyperbolic) metric on the upper half plane is given by

$$g_{(x,y)}(X,Y) = \frac{\langle X,Y \rangle}{y^2}.$$

Thus

$$g_{11}(x,y) = \frac{1}{y^2}, \qquad g_{12}(x,y) = g_{21}(x,y) = 0, \qquad g_{22}(x,y) = \frac{1}{y^2}.$$

Further

$$g^{11}(x,y) = y^2,$$
 $g^{12}(x,y) = g^{21}(x,y) = 0,$ $g^{22}(x,y) = y^2,$

Now note that we may let the local chart ϕ to be the identity function. Then $\overline{\Gamma}_{ij}^m = \Gamma_{ij}^m$, and so using (1) we may compute that

$$\Gamma_{11}^1 = \Gamma_{12}^2 = \Gamma_{22}^1 = 0$$
 $\Gamma_{11}^2 = \frac{1}{y}$, $\Gamma_{12}^1 = \Gamma_{22}^2 = -\frac{1}{y}$.

Now recall that $c: I \to \mathbf{H}^2$ is a geodesic if the following equations are satisfied:

$$\ddot{c}^k(t) + \sum_{ij} \dot{c}^i(t) \dot{c}^j(t) \Gamma^k_{ij}(c(t)) = 0.$$

So if c(t) = (x(t), y(t)), then we have

$$\ddot{x} - 2\frac{\dot{x}\dot{y}}{y} = 0, \qquad \qquad \ddot{y} + \frac{\dot{x}^2 - \dot{y}^2}{y} = 0.$$
 (2)

To find the solution to these equations, subject to initial conditions $c(0) = (x_0, y_0)$ and $\dot{c}(0) = (\dot{x}_0, \dot{y}_0)$, first suppose that $\dot{x}_0 = 0$. Then the second equation reduces to $\dot{y}/y = const$. Thus, when $\dot{x}_0 = 0$, then either c traces a vertical line (if $\dot{y}_0 \neq 0$) or is just a point (if $\dot{y}_0 = 0$). It remains then to consider the case when $\dot{x}_0 \neq 0$. We claim that in this case c traces a part of a circle centered at a point on the x-axis, i.e.,

$$(x-a)^2 + y^2 = const$$

for some constant a (in particular, when $\dot{x}_0 \neq 0$, then $\dot{y}_0 \neq 0$ as well, which may be readily seen from the second equation in (2)). Differentiating both sides of the above equality yields that the above equality holds if and only if

$$a = x + \frac{y\dot{y}}{\dot{x}}.$$

So we just need to check that a is indeed constant, which is a matter of a simple computation with the aid of (2):

$$\dot{a} = \dot{x} + \frac{(\dot{y}^2 + y\ddot{y})\dot{x} - y\dot{y}\ddot{x}}{\dot{x}^2} = \dot{x} + \frac{(\dot{y}^2 + \dot{y}^2 - \dot{x}^2)\dot{x} - \dot{y}(2\dot{x}\dot{y})}{\dot{x}^2} = 0.$$