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2.13 The Geodesic Curvature

Let α : I → M be a unit speed curve lying on a surface M ⊂ R3. Then the
absolute geodesic curvature of α is defined as

|κg| :=
∥∥(α′′)>

∥∥ =
∥∥α′′ − 〈α′′, n(α)

〉
n(α)

∥∥,
where n is a local Gauss map of M in a neighborhood of α(t). In particular
note that if M = R2, then |κg| = κ, i.e., absolute geodesic curvature of a
curve on a surface is a gneralization of the curvature of curves in the plane.

Exercise 1. Show that the absolute geodesic curvature of great circles in a
sphere and helices on a cylinder are everywhere zero.

Similarly, the (signed) geodesic curvature generalizes the notion of the signed
curvature of planar curves and may be defined as follows.

We say that a surface M ⊂ R3 is orientable provided that there exists a
(global) Gauss map n : M → S2, i.e., a continuous mapping which satisfies
n(p) ∈ TpM , for all p ∈M . Note that if n is a global Gauss map, then so is
−n. In particular, any orientable surface admits precisely two choices for its
global Gauss map. Once we choose a Gauss map n for an orientable surface,
then M is said to be oriented.

If M is an oriented surface (with global Gauss map n), then, for every
p ∈M , we define a mapping J : TpM → TpM by

JV := n× V.

Exercise 2. Show that if M = R2, and n = (0, 0, 1), then J is counter
clockwise rotation about the origin by π/2.
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Then the geodesic curvature of a unit speed curve α : I →M is given by

κg :=
〈
α′′, Jα′

〉
.

Note that, since Jα′ is tangent to M ,〈
α′′, Jα′

〉
=
〈
(α′′)>, Jα′

〉
.

Further, since ‖α′‖ = 1, α′′ is orthogonal to α′, which in turn yields that the
projection of α′′ into the tangent plane is either parallel or antiparallel to
Jα′. Thus κg > 0 when the projection of α′′ is parallel to Jα′ and is negative
otherwise.

Note that if the curvature of α does not vanish (so that the principal
normal N is well defined), then

κg = κ
〈
N, JT

〉
.

In particular geodesic curvature is invariant under reparametrizations of α.

Exercise 3. Let S2 be oriented by its outward unit normal, i.e., n(p) = p,
and compute the geodesic curvature of the circles in S2 which lie in planes
z = h, −1 < h < 1. Assume that all these circles are oriented consistently
with respect to the rotation about the z-axis.

Next we derive an expression for κg which does not require that α have
unit speed. To this end, let s : I → [0, L] be the arclength function of α, and
recall that α := α ◦ s−1 : [0, L]→M has unit speed. Thus

κg = κg(s) =
〈
α′′(s), Jα′(s)

〉
.

Now recall that (s−1)′ = 1/‖α′‖. Thus by chain rule.

α′(t) = α′
(
s−1(t)

)
· 1

‖α′(s−1(t))‖
.

Further, differentiating both sides of the above equation yields

α′′ = α′′
(
s−1
)
· 1

‖α′(s−1)‖2
+ α′

(
s−1
)
·
−
〈
α′′
(
s−1
)
, α′
(
s−1
)〉

‖α′(s−1)‖3
.

Substituting these values into the last expression for κg above yiels

κg =

〈
α′′, Jα′

〉
‖α′‖3

.
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Exercise 4. Verify the last two equations.

Next we show that the geodesic curvature is intrinsic, i.e., it is invariant
under isometries of the surface. To this end define α̃′ : α(I) → R3 be the
vectorfiled along α(I) given by

α̃′
(
α(t)

)
= α′(t).

Then one may immediatley check that

α′′(t) = ∇α′(t)α̃
′.

Thus 〈
α′′, Jα′

〉
=
〈
(α′′)>, Jα′

〉
=
〈
∇α′α̃′, Jα′

〉
.

and it follows that

κg =

〈
∇α′α̃′, Jα′

〉
‖α′‖3

.

We say that a curve α : I → M is a geodesic provided that its geodesic
curvature κg ≡ 0.

Exercise 5. Show that if α is a geodesic, then it must have constant speed.

Exercise 6. Show that if α is parametrized by arclength, then

|κg| = ‖∇α′α̃′‖.

Exercise 7. Show that α is a geodesic if and only if ∇α′α̃′ ≡ 0.

Now recall that ∇ is intrinic, which immediately implies that |κg| is in-
trinsic by the last exercise. Thus to complete the proof that κg is intrinsic
it remains to show that J is intrinsic. To see this let X : U → M be a local
patch, then

JXi =
2∑
j=1

bijXj.

In particular,
JX1 = b11X1 + b12X2.

Now note that
0 = 〈JX1, X1〉 = b11g11 + b12g21.
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Further,

g11 = 〈X1, X1〉 = 〈JX1, JX1〉 = b211g11 + 2b11b12g12 + b212g22.

Solving for b21 in the next to last equation, and substituting in the last
equation yields

g11 = b211g11 − 2b211g11 + b211
g211
g221

g22 = b211(−g11 +
g211
g221

g22).

Thus b11 may be computed in terms of gij which in turn yields that b12 may
be computed in terms of gij as well. So JX1 nay be expressed intrinsically.
Similarly, JX2 may be expressed intrinsically as well. So we conclude that J
is intrinsic.

2.14 Geodesics in Local Coordinates

Here we will derive a system of ordinary differential equations, in terms of
any local coordinates, whose solutions yield geodesics.

To this end let X : U →M be a patch, and α : I → X(U) be a unit speed
one-to-one curve. Then we may write

X(u(t)) = α(t),

by letting u(t) := X−1(α(t)). Next note that, if ui denotes the coordinates
of u, i.e., u(t) = (u1(t), u2(t)), then by the chain rule,

α′ =
2∑
i=1

Xiu
′
i,

which in turn yields

α′′ =
2∑

i,j=1

Xiju
′
iu
′
j +Xiu

′′
i =

2∑
i,j,k=1

(ΓkijXk + `ijN)u′iu
′
j +Xiu

′′
i ,

by Gauss’s formula. Consequently,

(α′′)> =
2∑

i,j,k=1

(ΓkijXk)u
′
iu
′
j +Xiu

′′
i =

2∑
i,j,k=1

(Γkiju
′
iu
′
j + u′′k)Xk.
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So, since |κg| = ‖(α′′)>‖, we conclude that α is a geodesic if and only if

2∑
i,j=1

(Γkiju
′
iu
′
j + u′′k) = 0

for k = 1, 2. In other words, for α to be a geodesic the following two equations
must be satisfied:

u′′1 + Γ1
11(u

′
1)

2 + 2Γ1
12u
′
1u
′
2 + Γ1

22(u
′
2)

2 = 0

u′′2 + Γ2
11(u

′
1)

2 + 2Γ2
12u
′
1u
′
2 + Γ2

22(u
′
2)

2 = 0

Exercise 8. Write down the equations of the geodesic in a surface of revo-
lution. In particular, verify that the great circles in a sphere are geodesics.

2.15 Parallel Translation

Here we will give another interpretation for the concept of geodesic curvature.
Let α : I →M be a simple curve and V be a vector field on M . We say that
V is parallel along α provided that

∇α′(t)V =
(
(V ◦ α)′

)>
= 0.

for all t ∈ I. Recall that α is a geodesic if and only if its velocity is parallel
(i.e., ∇α′(t)α̃

′ ≡ 0)

Exercise 9. Show that if V is parallel along α, then its length is constant.

Exercise 10. Show that if V and W are a pair of parallel vector fields along
α, then the angle between them is constant.

Proposition 11. If α is a unit speed curve on a surface, and V is a parallel
vector field along α, which makes an angle φ with the tangent vector of α,
then κg = φ′.

Proof. We may assume that V has unit length. Then we may write:

V = cos(φ)T + sin(φ)JT.

Computing ‖∇T‖, and setting it equal to zero yields the desired result.

Corollary 12. The total geodesic curvature of a curve on a surface is equal
to the total rotation of a parallel vector field along the curve, i.e.∫ b

a

κg = φ(b)− φ(a),

where φ is an angle function between T and V .
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