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Exponential Map

0.1 ODE’s revisited; Local flows of vector fields

Recall that earlier we proved:

Theorem 0.1. Let U ⊂ Rn be an open set and F : U → Rn be C1, then for every
p0 ∈ U , there exists an ε > 0 such that for every 0 < ε < ε there exists a unique
curve α : (−ε, ε) → U with α(0) = p0 and α′(t) = F (α(t)).

Further recall that in the proof of the above theorem we showed that we may
set

ε := min

{
r

supBr(p0) ‖F‖
,

1√
n supBr(p0) |DjF i|

}
,

where r is any number which is chosen so small that Br(p0) ⊂ U . Note that ε
depends continuously on r and p0. Now let V be an open neighborhood of p0 such
that V ⊂ U and Br(p) ⊂ U for all p ∈ V and some fixed r > 0. Define f : V → R
by

f(p) := min

{
r

supBr(p) ‖F‖
,

1√
n supBr(p) |DjF i|

}
.

Then f is continuous and positive. Thus

ε := inf
V

f > 0.

This shows that the above theorem may be restated in somewhat more general
terms:

Theorem 0.2. Let U ⊂ Rn be an open set and F : U → Rn be C1, then for every
p0 ∈ U , there is an open neighborhood V ⊂ U , p0 ∈ V , and an ε > 0 such that
for every p ∈ V and 0 < ε < ε there exists a unique curve αp : (−ε, ε) → U with
αp(0) = p and α′p(t) = F (αp(t)).

The above theorem allows us to define, for every p0 ∈ U , a mapping α : (−ε, ε)×
V → U by

α(t, p) := αp(t)
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where V is some open neighborhood of p0. This mapping is called a local flow of the
vector field F at p0. The previous theorem states then that C1 vector fields have a
local flow at each point. Then next result shows that this flow is continuous:

Theorem 0.3. Let U ⊂ Rn be open and F : U → Rn be a C1 vector field. Then,
for every p0 ∈ U there exists an open neighborhood V ⊂ U , p0 ∈ V , an ε > 0, and a
continuous map α : (−ε, ε)× V → U which is a local flow of F .

Proof. Let (ti, pi) ∈ (−ε, ε) × V be a sequence of points which converge to (t, p) ∈
(−ε, ε)× V . Then

‖α(pi, ti)− α(p, t)‖ = ‖αpi(t)− αp(t)‖ ≤ δ(αpi , αp)

where recall that
δ(αp, αq) := sup

−ε≤t≤ε
‖αp(t)− αq(t)‖.

Thus it suffices to show that δ(αpi , αp) → 0 as pi → p. To see this, first recall that,
as we showed in the proof of Theorem 0.1, αp(−ε, ε) ⊂ Br(p), where, as we discussed
above, r is some constant such that Br(p) ⊂ U for all p ∈ V . Further recall that if
we let Cp := C((−ε, ε), Br(p)) denote the space of continuous curves from (−ε, ε) to
Br(p), then we have a mapping sp : cp → cp given by

(sp(α))(t) = p +
∫ t

0
F (α(t))dt,

which is a contraction with respect to δ, i.e.,

δ(sp(α), sp(β)) ≤ Kpδ(α, β)

for some constant Kp < 1. Further note that

δ(αp − Sq(αp)) = δ(sp(αp)− sq(αp)) = ‖p− q‖.

Thus, if sn
q denotes the nth iteration of sq, it follows that

δ(αp, s
n
q (αp)) ≤ δ(αp − sq(αp)) + δ(sq(αp)− s2

q(αp)) + · · ·+ δ(sn−1
q (αp)− sn

q (αp))

≤ (1 + Kq + · · ·+ Kn−1
q )‖p− q‖

≤ 1
1−Kq

‖p− q‖.

Now recall from the proof of the contraction mapping theorem for metric space
that the fixed point αq of sq is the limit of sn

q (β) for any β ∈ Cq. In particular,
limn→∞ sn

q (ap) = αq. Thus the last expression yields that

δ(αp, αq) ≤
1

1−Kq
‖p− q‖.

So we conclude that δ(αpi , αp) → 0 as pi → p.
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One may also prove the following generalization of the above theorem.

Theorem 0.4. The local flow α : (−ε, ε)× V → U is C1.

The proof of the above result is somewhat long and will be omitted for now.

0.2 Geodesic flow

Recall that if γ : I → M is a differentiable curve, then γ′(t) = dγt(1) ∈ Tγ(t)M for
every t ∈ I. Thus γ′ may be considered the “natural lift” of γ from a curve on M
to a curve on TM .

Lemma 0.5. Let M be a Riemannian manifold with C2 metric. Then there exists
a C1 vector field F on TM such α : (−ε, ε) → TM is an integral curve of F if and
only of α = c′ for a geodesic c : (ε, ε) → M .

Proof. Let v0 ∈ TM . Then v0 ∈ Tp0M for some p0 ∈ M . Recall that there exists a
unique geodesic c : (ε, ε) → M with c(0) = p0 and c′(0) = v0. Then α := γ′ is a curve
on TM with α(0) = v0. Set F (v0) := α′(0) = dα0(1). Then F (v0) ∈ Tv0(TpM).
Thus we may define a vector field F on TM . To see that F is C1 recall that
if we identify a neighborhood of p0 in M with Rn via some local charts, the a
neighborhood of v0 in TM may be identified with R2n and F may be written as
F : R2n → R2n, F = (F 1, . . . , F 2n), where

F `(x, y) = y`, and F `+n(x, y) = −
∑
ij

yiyjΓ`
ij(x)

for ` = 1, . . . , n. Since Γ`
ij are obtained from the first derivatives of gij which are by

assumption C2, we conclude then that F is C1.

Lemma 0.6. Let X ∈ TpM , αX : (−ε, ε) → M be a geodesic with αX(0) = p and
α′X(0) = X. For λ > 0, define αλX : (−ε/λ, ε/λ) → M by αλX(t) := αX(λt). Then
αλX is also a geodesic, and αλX(0) = p, α′λX(0) = λX.

Proof. First note that αλX is just a reparameterization of αX . Secondly, by the chain
rule, α′λX(t) = λα′X(t). So αλX has constant speed, since αX , being a geodesic, has
constant speed. Finally recall that, as we showed earlier, any reparameterization
of a geodesic is a geodesic if and only if it has constant speed. Thus αλX is a
geodesic.

Theorem 0.7. Let M be a Riemannian manifold. For every p0 ∈ M an Xp0 ∈
Tp0M there exists an open neighborhood U of Xp0 in TM , and a C1 mapping
α : (−2, 2) × U → M such that for all Xp ∈ U , αXp : (−2, 2) → M given by
αXp(t) := α(t, Xp) is a geodesic with αXp(0) = p and α′Xp

(0) = Xp.
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Proof. Let F be as in the previous lemma. Then there exists a local flow φ : (−δ, δ)×
U → TM of F . Let π : TM → M be the standard projection given by π(TpM) = p
and define α(t, Xp) := π ◦ φ(δt/2, Xp).

Corollary 0.8. Let Bε(p) be the set of vectors X ∈ TpM such that
√

gp(X, X) ≤ ε.
For every p ∈ M there exists an ε > 0 such that for all X ∈ Bε(p) there exists
a geodesic α : (−2, 2) → M with α(0) = p and α′(0) = X. Further the mapping
expp : Bε(p) → M defined by

expp(X) := αX(1)

is C1.

Proof. By the previous theorem there exists an open neighborhood U of p in TM
and a C1 mapping α : (−2, 2) × U → M such that αXq(t) := α(t, Xq) is a geodesic
for all Xq ∈ U . Let ε be so small that Bε(p) ⊂ U . Then α is well defined on
(−2, 2)×Bε(p) (and is still C1). Consequently expp is C1.

The mapping defined above is called the exponential map.

Theorem 0.9. The exponential map is a local diffeomorphism.

Proof. By the inverse function theorem, it suffices to show that the differential
d(expp)0 : T0(TpM) → TpM is nonsingular. To see this first recall that if f : M → N
is any function, then

dfp(X) = (f ◦ γ)′(0)

where γ : (−ε, ε) → M is a curve with γ(0) = p and γ′(0) = dγ0(1) = X. Now note
that if X ∈ T0(TpM), then X = [tX] for some X ∈ TpM . Thus

d(expp)0(X) =
d

dt
(exp(tX))

∣∣∣
t=0

.

But
exp(tX) = αtX(1) = αX(t).

So we conclude that
d(expp)0(X) = X.

In particular, if X 6= 0, then d(expp)0(X) 6= 0 either.
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