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Exponential Map

0.1 ODE’s revisited; Local flows of vector fields

Recall that earlier we proved:

Theorem 0.1. Let U C R" be an open set and F: U — R"™ be C*, then for every
po € U, there exists an € > 0 such that for every 0 < € < € there exists a unique
curve a: (—e, €) — U with a(0) = pg and o/ (t) = F(a(t)).

Further recall that in the proof of the above theorem we showed that we may
set

_ . r 1
€ := min ; T
{SUPBT(pO) 1] \/ﬁSUPET(pO) |D; F"| }

where 7 is any number which is chosen so small that B,(py) C U. Note that €
depends continuously on r and pg. Now let V' be an open neighborhood of pg such
that V C U and B,(p) C U for all p € V and some fixed r > 0. Define f: V — R
by

fp) = ming 1
p) := min , — 5.
SUPE,. (p) Il \/HSUPET(p) | D;F|

Then f is continuous and positive. Thus

e:=inf f > 0.
14

This shows that the above theorem may be restated in somewhat more general
terms:

Theorem 0.2. Let U C R" be an open set and F: U — R"™ be C, then for every
po € U, there is an open neighborhood V. C U, pg € V, and an € > 0 such that

for every p € V and 0 < € < € there exists a unique curve ay: (—€,€) — U with
ap(0) = p and g (t) = F(ap(t)). O

The above theorem allows us to define, for every pg € U, a mapping a: (—¢,€) X
V = U by
a(t,p) == ap(t)
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where V' is some open neighborhood of pg. This mapping is called a local flow of the
vector field F at pg. The previous theorem states then that C! vector fields have a
local flow at each point. Then next result shows that this flow is continuous:

Theorem 0.3. Let U C R™ be open and F: U — R" be a C' vector field. Then,
for every pg € U there exists an open neighborhood V C U, pg € V, an€ > 0, and a
continuous map «: (—€,€) x V.— U which is a local flow of F.

Proof. Let (t;,p;) € (—€,€) x V be a sequence of points which converge to (¢,p) €
(—€,€) x V. Then
le(pi, ti) — a(p, D)l = llap, () — ap(t)[| < (e, ap)
where recall that
6(ap, aq) == sup |[ap(t) — aq(t)].
—e<t<e

Thus it suffices to show that §(cy,, o) — 0 as p; — p. To see this, first recall that,
as we showed in the proof of Theorem 0.1, a,(—€,€) C B, (p), where, as we discussed
above, 7 is some constant such that B,(p) C U for all p € V. Further recall that if
we let C, := C((—¢,€), B,(p)) denote the space of continuous curves from (—F¢,€) to
B,(p), then we have a mapping s,: ¢, — ¢, given by

t
(sn(e)(0) = p+ [ Fla(o)i.
which is a contraction with respect to ¢, i.e.,

S(sp(a), 5p(0)) < Kpd(a, B)

for some constant K, < 1. Further note that

6(ap — Sqlap)) = d(sp(ayp) — sq(ap)) = [lp — 4.

Thus, if s denotes the nt" iteration of 54, it follows that

6(ayp, 83(%)) < 0oy — sq(ap)) + 0(sq(ap) — 83(%)) +-o-t 5(52_1(041)) - 5:;(0‘10))
< (+Eg++ Ky p—dl
< =g le-dl

Now recall from the proof of the contraction mapping theorem for metric space
that the fixed point a4 of s, is the limit of sg(ﬂ) for any 3 € C,. In particular,

limp, 0 87 (ap) = g Thus the last expression yields that

6(ap, org) < 1 —Kququ'

So we conclude that 6(ay,, ap) — 0 as p; — p. O



One may also prove the following generalization of the above theorem.
Theorem 0.4. The local flow a: (—€,€) x V. — U is C'.

The proof of the above result is somewhat long and will be omitted for now.

0.2 Geodesic flow

Recall that if v: I — M is a differentiable curve, then +/(t) = dv(1) € Ty )M for
every t € I. Thus 7/ may be considered the “natural lift” of v from a curve on M
to a curve on T'M.

Lemma 0.5. Let M be a Riemannian manifold with C? metric. Then there exists
a C* wvector field F on TM such a: (—e, ) — TM is an integral curve of F if and
only of a = ¢ for a geodesic c: (e,€) — M.

Proof. Let vg € TM. Then vy € T,y M for some pg € M. Recall that there exists a
unique geodesic ¢: (€,e) — M with ¢(0) = pp and ¢/(0) = vg. Then o := «' is a curve
on TM with a(0) = vy. Set F(vg) := &/(0) = dap(1). Then F(vg) € T, (T, M).
Thus we may define a vector field F' on TM. To see that F is C' recall that
if we identify a neighborhood of py in M with R™ via some local charts, the a
neighborhood of vy in TM may be identified with R?>" and F may be written as
F:R™ - R?™ F=(F',... F?), where

Flz,y) =y, and F"(x Zy YT (x
for  =1,...,n. Since I‘Z are obtained from the first derivatives of g;; which are by
assumption C2 we conclude then that F is C*. O

Lemma 0.6. Let X € T,M, ax: (—€,€) — M be a geodesic with ax(0) = p and
oy (0) = X. For A > 0, define ayx: (—€/X,e/A) = M by arx(t) := ax(At). Then
axx s also a geodesic, and axx(0) = p, )\ x(0) = AX.

Proof. First note that o) x is just a reparameterization of ax. Secondly, by the chain
rule, o) y () = Ay (). So ax has constant speed, since ax, being a geodesic, has
constant speed. Finally recall that, as we showed earlier, any reparameterization
of a geodesic is a geodesic if and only if it has constant speed. Thus a)x is a
geodesic. O

Theorem 0.7. Let M be a Riemannian manifold. For every po € M an X,, €
T,y M there exists an open neighborhood U of Xp, in TM, and a C' mapping
a: (=2,2) x U — M such that for all X, € U, ax,: (-2,2) — M given by
ax,(t) := a(t, Xp) is a geodesic with ax,(0) = p and O/Xp (0) = Xp.



Proof. Let F be as in the previous lemma. Then there exists a local flow ¢: (—6,0) x
U—TM of F. Let m: TM — M be the standard projection given by n(T,M) =p
and define a(t, X,) := mo ¢(dt/2, Xp). O

Corollary 0.8. Let B(p) be the set of vectors X € TyM such that \/gp(X,X) <.
For every p € M there exists an € > 0 such that for all X € B.(p) there exists
a geodesic a: (—2,2) — M with a(0) = p and &/(0) = X. Further the mapping
exp,: Be(p) — M defined by

expp(X) = ax(1)
is C1.

Proof. By the previous theorem there exists an open neighborhood U of p in TM
and a C' mapping a: (—2,2) x U — M such that ax,(t) := a(t, X,) is a geodesic
for all X, € U. Let € be so small that B.(p) C U. Then « is well defined on
(—2,2) x Be(p) (and is still C1). Consequently exp, is C*. O

The mapping defined above is called the exponential map.
Theorem 0.9. The exponential map is a local diffeomorphism.

Proof. By the inverse function theorem, it suffices to show that the differential
d(expp)o: To(TpM) — T, M is nonsingular. To see this first recall that if f: M — N
is any function, then

dfp(X) = (f27)'(0)

where v: (—¢,€) — M is a curve with v(0) = p and +/(0) = dy(1) = X. Now note
that if X € Ty(T,M), then X = [tX] for some X € T,M. Thus

d(expp)o(X) = %(&rp(tX)) '

But

exp(tX) = a,x(1) = ax(t).

So we conclude that o
d(expp)o(X) = X.

In particular, if X # 0, then d(exp,)o(X) # 0 either. O



