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Curves and Surfaces
Fall 2004, PSU

Lecture Notes 3

1.8 The general definition of curvature;
Fox-Milnor’s Theorem

Let α : [a, b] → Rn be a curve and P = {t0, . . . , tn} be a partition of [a, b],
then (the approximation of) the total curvature of α with respect to P is
defined as

total κ[α, P ] :=
n−1∑
i=1

angle
(
α(ti)− α(ti−1) , α(ti+1)− α(ti)

)
,

and the total curvature of α is given by

total κ[α] := sup{κ[α, P ] | P ∈ Partition[a, b] }.

Our main aim here is to prove the following observation due to Ralph Fox
and John Milnor:

Theorem 1 (Fox-Minor). If α : [a, b]→ Rn is a C2 unit speed curve, then

total κ[α] =

∫ b

a

‖α′′(t)‖ dt.

This theorem implies, by the mean value theorem for integrals, that for any
t ∈ (a, b),

κ(t) = lim
ε→0

1

2ε
total κ

[
α
∣∣t+ε
t−ε

]
.

The above formula may be taken as the definition of curvature for general
(not necessarily C2) curves. To prove the above theorem first we need to
develop some basic spherical geometry. Let

Sn := {p ∈ Rn+1 | ‖p‖ = 1}.
1Last revised: September 30, 2021

1



denote the n-dimensional unit sphere in Rn+1. Define a mapping from Sn×Sn

to R by
distSn(p, q) := angle(p, q).

Exercise 2. Show that (Sn, distSn) is a metric space.

The above metric has a simple geometric interpretation described as fol-
lows. By a great circle C ⊂ Sn we mean the intersection of Sn with a two
dimensional plane which passes through the origin o of Rn+1. For any pair
of points p, q ∈ S2, there exists a plane passing through them and the origin.
When p 6= ±q this plane is given by the linear combinations of p and q and
thus is unique; otherwise, p, q and o lie on a line and there exists infinitely
many two dimensional planes passing through them. Thus through every
pairs of points of Sn there passes a great circle, which is unique whenever
p 6= ±q.

Exercise 3. For any pairs of points p, q ∈ Sn, let C be a great circle passing
through them. If p 6= q, let `1 and `2 denote the length of the two segments in
C determined by p and q, then distSn(p, q) = min{`1, `2}. (Hint: Let p⊥ ∈ C
be a vector orthogonal to p, then C may be parametrized as the set of points
traced by the curve p cos(t) + p⊥ sin(t).)

Let α : [a, b]→ Sn be a spherical curve, i.e., a Euclidean curve α : [a, b]→
Rn+1 with ‖α‖ = 1. For any partition P = {t0, . . . , tn} of [a, b], the spherical
length of α with respect the partition P is defined as

lengthSn [α, P ] =
n∑
i=1

distSn

(
α(ti), α(ti−1)

)
.

The norm of any partition P of [a, b] is defined as

|P | := max{ti − ti−1 | 1 ≤ i ≤ n}.

If P 1 and P 2 are partitions of [a, b], we say that P 2 is a refinement of P 1

provided that P 1 ⊂ P 2.

Exercise 4. Show that if P 2 is a refinement of P 1, then

lengthSn [α, P 2] ≥ lengthSn [α, P 1].

(Hint:Use the fact that distSn satisfies the triangle inequality, see Exc. 2).
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The spherical length of α is defined by

lengthSn [α] = sup { lengthSn [α, P ] | P ∈ Partition[a, b] } .

Lemma 5. If α : [a, b]→ Sn is a unit speed spherical curve, then

lengthSn [α] = length[α].

Proof. Let P k := {tk0, . . . , tkn} be a sequence of partitions of [a, b] with

lim
k→∞
|P k| = 0,

and
θki := distSn

(
αk(ti), α

k(ti−1)
)

= angle
(
αk(ti), α

k(ti−1)
)

be the corresponding spherical distances. Then, since α has unit speed,

2 sin

(
θki
2

)
= ‖α(tki )− α(tki−1)‖ ≤ tki − tki−1 ≤ |P k|.

In particular,

lim
k→∞

2 sin

(
θki
2

)
= 0.

Now, since limx→0 sin(x)/x = 1, it follows that, for any ε > 0, there exists
N > 0, depending only on |P k|, such that if k > N , then

(1− ε)θki ≤ 2 sin

(
θki
2

)
≤ (1 + ε)θki ,

which yields that

(1− ε) lengthSn [α, P k] ≤ length[α, P k] ≤ (1 + ε) lengthSn [α, P k].

The above inequalities are satisfied by any ε > 0 provided that k is large
enough. Thus

lim
k→∞

lengthSn [α, P k] = length[α].

Further, note that if P is any partitions of [a, b] we may construct a sequence
of partitions by successive refinements of P so that limk→∞ |P k| = 0. By
Exercise 4, lengthSn [α, P k] ≤ lengthSn [α, P k+1]. Thus the above expression
shows that, for any partition P of [a, b],

lengthSn [α, P ] ≤ length[α].
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The last two expressions now yield that

sup{ lengthSn [α, P ] | P ∈ Partition[a, b] } = length[α],

which completes the proof.

Exercise 6. Show that if P 2 is a refinement of P 1, then

totalκ[α, P 2] ≥ totalκ[α, P 1].

Now we are ready to prove the theorem of Fox-Milnor:

Proof of Theorem 1. As in the proof of the previous lemma, let P k = {tk0, . . . , tkn}
be a sequence of partitions of [a, b] with limk→∞ |P k| = 0. Set

θki := angle
(
α(tki )− α(tki−1) , α(tki+1)− α(tki )

)
,

where i = 1, . . . , n− 1. Further, set

t
k
i :=

tki + tki−1
2

and
φki := angle

(
α′(t

k
i ), α

′(t
k
i+1)
)
.

Recall that, by the previous lemma,

lim
k→∞

∑
i

φki = lengthSn−1 [α′] = length[α′] =

∫ b

a

‖α′′(t)‖ dt.

Thus to complete the proof it suffices to show that, for every ε > 0, there
exists N such that for all k ≥ N ,

|θki − φki | ≤ ε(tki+1 − tki−1); (1)

for then it would follow that

2ε[a, b] ≤
∑
i

θki −
∑
i

φki ≤ 2ε[a, b],

which would in turn yield

lim
k→∞

total κ[α, P k] = lim
k→∞

∑
i

θki = lim
k→∞

∑
i

φki =

∫ b

a

‖α′′(t)‖dt.
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Now, similar to the proof of Lemma 5, note that given any partition P of
[a, b], we may construct by subsequent refinements a sequence of partitions
P k, with P 0 = P , such that limk→∞ |P k| = 0. Thus the last expression,
together with Exercise 6, yields that

totalκ[α, P ] ≤
∫ b

a

‖α′′(t)‖ dt.

The last two expressions complete the proof; so it remains to establish (1).
To this end let

βki := angle
(
α′(t

k
i ), α(tki )− α(tki−1)

)
.

By the triangle inequality for angles (Exercise 2).

φki ≤ βki + θki + βki+1 , and θki ≤ βki + φki + βki+1,

which yields
|φki − θki | ≤ βki + βki+1.

So to prove (1) it is enough to show that for every ε > 0

βki ≤
ε

2
(ti − ti−1)

provided that k is large enough. See Exercise 7.

Exercise* 7. Let α : [a, b]→ Rn be a C2 curve. For every t, s ∈ [a, b], t 6= s,
define

f(t, s) := angle

(
α′
(
t+ s

2

)
, α(t)− α(s)

)
.

Show that

lim
t→s

f(t, s)

t− s
= 0.

In particular, if we set f(t, t) = 0, then the resulting function f : [a, b] ×
[a, b]→ R is continuous. So, since [a, b] is compact, f is uniformly continuous,
i.e., for every ε > 0, there is a δ such that ‖f(t) − f(s)‖ ≤ ε, whenever
|t− s| ≤ δ. Does this result hold for C1 curves as well?
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