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2.5 The inverse function theorem

Recall that if f: M — N is a diffeomorphism, then df, is nonsingular at all
p € M (by the chain rule and the observation that f o f~! is the identity
function on M). The main aim of this section is to prove a converse of this
phenomenon:

Theorem 1 (The Inverse Function Theorem). Let f: M — N be a smooth
map, and dim(M) = dim(N). Suppose that df, is nonsingular at some
p € M. Then f is a local diffeomorphism at p, i.e., there exists an open
netghborhood U of p such that

1. f is one-to-one on U.

2. f(U) is open in N.

3. f71: f(U) — U is smooth.
In particular, d(f~) rq) = (df,) "

A simple fact which is applied a number of times in the proof of the above
theorem is

Lemma 2. Let f: M — N, and g: N — L be diffeomorphisms, and set
h:=go f. If any two of the mappings f, g, h are diffeomorphisms, then so
18 the third. [

In particular, the above lemma implies

Proposition 3. If Theorem 1 is true in the case of M = R™ = N, then, it
18 true in general.
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Proof. Suppose that Theorem 1 is true in the case that M = R® = N, and
let f: M — N be a smooth map with df, nonsingular at some p € M. By
definition, there exist local charts (U, ¢) of M and (V,%) of N, centered at
p and f(p) respectively, such that f:=¢"1o foris smooth. Since ¢ and
¢ are diffeomorphisms, d¢, and di,) are nonsingular. Consequently, by
the chain rule, d fo is nonsingular, and is thus a local diffeomorphism. More
explicitly, there exists open neighborhoods A and B of the origin o of R”
such that f: A — B is a diffeomorphism. Since ¢: ¢ HA) — Ais also a
diffeomorphism, it follows that ¢ o f : 971(A) — B is a diffeomorphism. But
pof=forh. So forp: ¢~ (A) — B is a diffeomorphism. Finally, since
Y: ¢~ Y(B) — B is a diffeomorphism, it follows, by the above lemma, that
f: 97 (A) — ¢~ 1(B) is a diffeomorphism. O

So it remains to prove Theorem 1 in the case that M = R® = N. To
this end we need the following fact. Recall that a metric space is said to be
complete provided that every Cauchy sequence of that space converges.

Lemma 4 (The contraction Lemma). Let (X, d) be a complete metric space,
and 0 < X < 1. Suppose that there exists mapping f: X — X such that
d(f(x1),(x2)) < Ad(xy,22), for all x1, xo € X. Then there exists a unique
point © € X such that f(x) = x.

Proof. Pick a point zo € X and set z, := f"(z), for n > 1. We claim that
{z,} is a Cauchy sequence. To this end note that
d(Tn, Tnam) = d(f"(20), [ (xm)) < A'd(x0, Tm).
Further, by the triangle inequality
d(zo, ) < d(zo,z1) +d(z1,22) + - + d(Tim—1,Tm)

< (T4+A+ N+ + A d(20, 71)
1

md(fﬁo,l’l).

So, setting K := d(zo,z1)/(1 — A), we have

(T, Tpgm) < A'K.

IA

Since K does not depend on m or n, the last inequality shows that {z,} is
a Cauchy sequence, and therefore, since X is complete, it has a limit point,
say Zso. Now note that, since d: X x X — R is continuous (why?),

A(Too, [(To0)) = nhjgo d(@n, f(zn)) = 0.
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Thus X, is a fixed point of f. Finally, note that if a and b are fixed points
of f, then

d(a,b) = d(f(a), f(b)) < Ad(a,b),
which, since A < 1, implies that d(a, b) = 0. So f has a unique fixed point. [

Exercise 5. Does the previous lemma remain valid if the condition that
d(f(x1), (x2)) < Ad(z1,x2) is weakened to d(f(x1), (x2)) < d(x1,22)7

Next we recall

Lemma 6 (The mean value theorem). Let f: R" — R be a C' functions.
Then for every p, ¢ € R" there exists a point s on the line segment connecting
p and q such that

f(p) = f(g) = Df(s ZDf )P = q).

]

Exercise 7. Prove the last lemma by using the mean value theorem for
functions of one variable an the chain rule. (Hint: Parametrize the segment
joining p and ¢ by tq+ (1 —t)p, 0 <t < 1).

The above lemma implies:

Proposition 8. Let f: R* — R™ be a C' function, U be a convex open
netghborhood of o in R", and set

K—sup{}DfZ ’1<2<m1<j<np€U}

Then, for every p, q € U,

1f(p) = f(@)|| < Vmn K|lp— q]

Proof. First note that

m

Ifw) — f@1> = Y (Fiw) - @)

=1



Secondly, by the mean value theorem (Lemma 6), there exists, for every i a
point s; on the line segment connecting p and ¢ such that

') = fi(@)=Df(s))(p—q) = Z D;f'(s;) (" — ).

Since U is convex, s; € U, and, therefore, by the Cauchy-Schwartz inequality

n n

1F'(0) = F @ < (| D Difi(s)? | D — ¢)? < VnK|p—qll.

j=1 j=1
So we conclude that

1f(p) = f(@)I* < mnK?|lp—ql°.

Finally, we recall the following basic fact

Lemma 9. Let f: R* — R™, and p € R". Suppose there exists a linear
transformation A: R™ — R™ such that

f(x) = f(p) = Alp — z) + r(z,p)
where : R?2 — R is a function satisfying

TACLT R
== [lz —p||

Then all the partial derivatives of f exist at p, and A is given by the jacobian
matriz D f(p) := (D1f(p), ..., Dnf(p)) whose columns are the partial deriva-
tives of f. In particular, A is unique. Conversely, if all the partial derivative
D, f(p) exist, then A := Df(p) satisfies the above equation.

Proof. Let eq, ..., e, be the standard basis for R". Then

Dif(p) = lim flp+te) = fp) _ . Alte) +r(p+tei,p)

t—0 t t—0 t

Thus all the partial derivatives of f exist at p, and D;f(p) coincides with the
i'" column of (the matrix representation) of A. In particular, A = Df(p)
and therefore A is unique.



Conversely, suppose that all the partial derivatives D;f(p) exist and set

r(z,p) = f(x) — f(p) = Df(p)(p — x).

By the mean value theorem,

r(z,p) = (Df(s) = Df(p)(p — )

for some s on the line segment joining p and s. Thus it follows that

lim 0P _ nm<Df<s>—Df<p>>( p-e ) _o,

w=p llz —p|  e—p lp— |l
as desired. O]
Now we are finally ready to prove the main result of this section.

Proof of Theorem 1. By 3 we may assume that M = R"™ = N. Further, after
replacing f(z) with (Df(p))~'f(z — p) — f(p) we may assume, via Lemma
2, that

p=o, [f(o)=o0, and Df(o)=1,
where [ denotes the identity matrix. Now define g: R™ — R™ by
g(x) =z — f(x).
Then g(o) = o, and Dg(o) = 0. Thus, by Proposition 8, there exists r > 0
)

such that for all z1, 5 € B,(0), the closed ball of radius r centered at o,

1
lg(z1) — g(x2)[| < §H$1 — x|

In particular, [|g(x)]| = [lg(x) —g(o)[| < [[=[|/2. So g(B,(0)) C Bra(0). Now,
for every y € B,/2(0) and x € B,(0) define

Ty(z) =y +g(x) =y +z— f(z).

Then, by the triangle inequality, ||T,(z)| < r. Thus T,: B.(o) — B.(0).
Further note that
T,(z) =2 <= y= f(z).



in particular, 7, has a unique fixed point on B, (o) if and only if f is one-to-
one on B,(0). But

1Ty (1) = Ty ()|l = llg (1) — g(2)]| < %Hﬂ?l — |-

Thus by Lemma 4, T}, does indeed have a unique fixed point, and we conclude
that f is one-to-one on B,(0). In particular, we let U be the interior of B,(0).

Next we show that f(U) is open. To this end it suffices to prove that
f=t: f(B.(0)) — B,(0) is continuous. To see this note that, by the definition
of g and the triangle inequality,

lg(z1) —g(z2)|| = [[(z1—22) = (f (1) = f(22))[| = [l21 =22l = || f(z1) — f(22)]].
Thus,

1f (1) = f@)l] = [lzr = o] = [lg(21) — g(w2)[| = %H»’Ul — 1o,

which in turn implies

o =l > S5 w0) — £l

So f~!is continuous.
It remains to show that f~! is smooth on f(U). To this end, note that
by Lemma 9, for every p € U,

f(x) = f(p) = Df(p)(x —p) +r(x,p).

Now multiply both sides of the above equality by A := (Df(p))~*, and set
y = f(x), ¢ := f(p). Then

Aly—q) = [ y) = [ Ha) + Ar(f 7 (y), F(9)),
which we may rewrite as
7 y) = ) = Aly — @) +7(y, ),

where

T(y.q) == Ar(f' (). f ' (q))



Finally note that

i T D g, T WD) g gy, 1UNW) )

= 0.
v—a ||y — q|| y—a ly — 4| v=a ||[f~(y) — f~H(q)]

Thus, again by Lemma 9, f~! is differentiable at all p € U and

D) = (PF( @)

Since the right hand side of the above equation is a continuous function of p
(because f is C' and f~! is continuous), it follows that f~!is C'. But if f
is C”, then the right hand side of the above equation is C" (since Df is C'*
everywhere), which in turn yields that f~! is C"*!. So, by induction, f~! is
. ]

Exercise 10. Give a simpler proof of the inverse function theorem for the
special case of mappings f: R — R.

2.6 The rank theorem

The inverse function theorem we proved in the last section yields the following
more general result:

Theorem 11 (The rank theorem). Let f: M — N be a smooth map, and
suppose that rank(df,) = k for all p € M, then, for each p € M, there exists
local charts (U, ¢) and (V,v) of M and N centered at p and f(p) respectively
such that

Yofod Nwy,...,xn) = (21,...,740,...,0).

Exercise 12. Show that to prove the above theorem it suffices to consider
the case M = R"™ and N = R™. Furthermore, show that we may assume
that p = o, f(0) = o, and the k X k matrix in the upper left corner of the
jacobian matrix D f(o) is nonsingular.

Proof. Suppose that the conditions of the previous exercise hold. Define
¢: R" — R" by

Then



Thus D¢(0) is nonsingular. So, by the inverse function theorem, ¢ is a local
diffeomorphism at o. In particular ¢! is well defined on some open neigh-
borhood U of o. Let m;: R — R be the projection onto the i* coordinate.
Then, for 1 <i <k, m;0¢ = f'. Consequently, f'o¢~" = m;. Thus, if we
set fl:= flog™! for k+1<1i<m,then
L GO G CORS R €9)
for all x € U. Next note that
D(fos o) = X
O 0O) = ) fFe+1 m .
o)

On the other hand, D(f o ¢~')(0) = D(f)(p) o D(¢')(0). Thus

rank(D(f o ¢~')(0)) = rank(D(f)(p)) = k,
because D(¢~1) = D(¢)~! is nonsingular. The last two equalities imply that

A(fF+Y .. ™)
(k1 o0 am) (0) =0,

where 0 here denotes the matrix all of whose entries is zero. So we conclude
that the functions f**', ..., ™ do not depend on z**!, ... z". In particular,
if V' is a small neighborhood of 0 in R™, then the mapping 7": V' — R™ given
by

T(y) = (y's .. g5 "+ N )y )
is well defined. Now note that

DT(0) = ( " O ) |

Thus, by the inverse function theorem, 1) := T~! is well defined on an open
neighborhood of o in R™. Finally note that

¢Of0¢_1($) - w(xlv"'axkafk+l(x)7""fm(x))
= ¢OT($1,...,$k,O,-"aO)
— ($1,...,$k,07---a0)a
as desired. -

Exercise 13. Show that there exists no C! function f: R? — R which is
one-to-one.



