Lecture Notes 6

2.5 The inverse function theorem

Recall that if $f: M \rightarrow N$ is a diffeomorphism, then $d f_{p}$ is nonsingular at all $p \in M$ (by the chain rule and the observation that $f \circ f^{-1}$ is the identity function on M). The main aim of this section is to prove a converse of this phenomenon:

Theorem 1 (The Inverse Function Theorem). Let $f: M \rightarrow N$ be a smooth map, and $\operatorname{dim}(M)=\operatorname{dim}(N)$. Suppose that $d f_{p}$ is nonsingular at some $p \in M$. Then f is a local diffeomorphism at p, i.e., there exists an open neighborhood U of p such that

1. f is one-to-one on U.
2. $f(U)$ is open in N.
3. $f^{-1}: f(U) \rightarrow U$ is smooth.

In particular, $d\left(f^{-1}\right)_{f(p)}=\left(d f_{p}\right)^{-1}$.
A simple fact which is applied a number of times in the proof of the above theorem is

Lemma 2. Let $f: M \rightarrow N$, and $g: N \rightarrow L$ be diffeomorphisms, and set $h:=g \circ f$. If any two of the mappings f, g, h are diffeomorphisms, then so is the third.

In particular, the above lemma implies
Proposition 3. If Theorem 1 is true in the case of $M=\mathbf{R}^{n}=N$, then, it is true in general.

[^0]Proof. Suppose that Theorem 1 is true in the case that $M=\mathbf{R}^{n}=N$, and let $f: M \rightarrow N$ be a smooth map with $d f_{p}$ nonsingular at some $p \in M$. By definition, there exist local charts (U, ϕ) of M and (V, ψ) of N, centered at p and $f(p)$ respectively, such that $\tilde{f}:=\phi^{-1} \circ f \circ \psi$ is smooth. Since ϕ and ψ are diffeomorphisms, $d \phi_{p}$ and $d \psi_{f(p)}$ are nonsingular. Consequently, by the chain rule, $d \tilde{f}_{o}$ is nonsingular, and is thus a local diffeomorphism. More explicitly, there exists open neighborhoods A and B of the origin of \mathbf{R}^{n} such that $\tilde{f}: A \rightarrow B$ is a diffeomorphism. Since $\phi: \phi^{-1}(A) \rightarrow A$ is also a diffeomorphism, it follows that $\phi \circ \tilde{f}: \phi^{-1}(A) \rightarrow B$ is a diffeomorphism. But $\phi \circ \tilde{f}=f \circ \psi$. So $f \circ \psi: \phi^{-1}(A) \rightarrow B$ is a diffeomorphism. Finally, since $\psi: \psi^{-1}(B) \rightarrow B$ is a diffeomorphism, it follows, by the above lemma, that $f: \phi^{-1}(A) \rightarrow \psi^{-1}(B)$ is a diffeomorphism.

So it remains to prove Theorem 1 in the case that $M=\mathbf{R}^{n}=N$. To this end we need the following fact. Recall that a metric space is said to be complete provided that every Cauchy sequence of that space converges.
Lemma 4 (The contraction Lemma). Let (X, d) be a complete metric space, and $0 \leq \lambda<1$. Suppose that there exists mapping $f: X \rightarrow X$ such that $d\left(f\left(x_{1}\right),\left(x_{2}\right)\right) \leq \lambda d\left(x_{1}, x_{2}\right)$, for all $x_{1}, x_{2} \in X$. Then there exists a unique point $x \in X$ such that $f(x)=x$.
Proof. Pick a point $x_{0} \in X$ and set $x_{n}:=f^{n}(x)$, for $n \geq 1$. We claim that $\left\{x_{n}\right\}$ is a Cauchy sequence. To this end note that

$$
d\left(x_{n}, x_{n+m}\right)=d\left(f^{n}\left(x_{0}\right), f^{n}\left(x_{m}\right)\right) \leq \lambda^{n} d\left(x_{0}, x_{m}\right)
$$

Further, by the triangle inequality

$$
\begin{aligned}
d\left(x_{0}, x_{m}\right) & \leq d\left(x_{0}, x_{1}\right)+d\left(x_{1}, x_{2}\right)+\cdots+d\left(x_{m-1}, x_{m}\right) \\
& \leq\left(1+\lambda+\lambda^{2}+\cdots+\lambda^{m}\right) d\left(x_{0}, x_{1}\right) \\
& \leq \frac{1}{1-\lambda} d\left(x_{0}, x_{1}\right) .
\end{aligned}
$$

So, setting $K:=d\left(x_{0}, x_{1}\right) /(1-\lambda)$, we have

$$
d\left(x_{n}, x_{n+m}\right) \leq \lambda^{n} K
$$

Since K does not depend on m or n, the last inequality shows that $\left\{x_{n}\right\}$ is a Cauchy sequence, and therefore, since X is complete, it has a limit point, say x_{∞}. Now note that, since $d: X \times X \rightarrow \mathbf{R}$ is continuous (why?),

$$
d\left(x_{\infty}, f\left(x_{\infty}\right)\right)=\lim _{n \rightarrow \infty} d\left(x_{n}, f\left(x_{n}\right)\right)=0
$$

Thus X_{∞} is a fixed point of f. Finally, note that if a and b are fixed points of f, then

$$
d(a, b)=d(f(a), f(b)) \leq \lambda d(a, b)
$$

which, since $\lambda<1$, implies that $d(a, b)=0$. So f has a unique fixed point.
Exercise 5. Does the previous lemma remain valid if the condition that $d\left(f\left(x_{1}\right),\left(x_{2}\right)\right) \leq \lambda d\left(x_{1}, x_{2}\right)$ is weakened to $d\left(f\left(x_{1}\right),\left(x_{2}\right)\right)<d\left(x_{1}, x_{2}\right)$?

Next we recall
Lemma 6 (The mean value theorem). Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be a C^{1} functions. Then for every $p, q \in \mathbf{R}^{n}$ there exists a point s on the line segment connecting p and q such that

$$
f(p)-f(q)=D f(s)(p-q)=\sum_{i=1}^{n} D_{i} f\left(s_{i}\right)\left(p^{i}-q^{i}\right)
$$

Exercise 7. Prove the last lemma by using the mean value theorem for functions of one variable an the chain rule. (Hint: Parametrize the segment joining p and q by $t q+(1-t) p, 0 \leq t \leq 1)$.

The above lemma implies:
Proposition 8. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a C^{1} function, U be a convex open neighborhood of o in \mathbf{R}^{n}, and set

$$
K:=\sup \left\{\left|D_{j} f^{i}(p)\right| \mid 1 \leq i \leq m, 1 \leq j \leq n, p \in U\right\}
$$

Then, for every $p, q \in U$,

$$
\|f(p)-f(q)\| \leq \sqrt{m n} K\|p-q\|
$$

Proof. First note that

$$
\|f(p)-f(q)\|^{2}=\sum_{i=1}^{m}\left(f^{i}(p)-f^{i}(q)\right)^{2}
$$

Secondly, by the mean value theorem (Lemma 6), there exists, for every i a point s_{i} on the line segment connecting p and q such that

$$
f^{i}(p)-f^{i}(q)=D f^{i}\left(s_{i}\right)(p-q)=\sum_{j=1}^{n} D_{j} f^{i}\left(s_{j}\right)\left(p^{j}-q^{j}\right)
$$

Since U is convex, $s_{i} \in U$, and, therefore, by the Cauchy-Schwartz inequality

$$
\left|f^{i}(p)-f^{i}(q)\right| \leq \sqrt{\sum_{j=1}^{n} D_{j} f^{i}\left(s_{j}\right)^{2}} \sqrt{\sum_{j=1}^{n}\left(p^{j}-q^{j}\right)^{2}} \leq \sqrt{n} K\|p-q\|
$$

So we conclude that

$$
\|f(p)-f(q)\|^{2} \leq m n K^{2}\|p-q\|^{2}
$$

Finally, we recall the following basic fact
Lemma 9. Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$, and $p \in \mathbf{R}^{n}$. Suppose there exists a linear transformation $A: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ such that

$$
f(x)-f(p)=A(p-x)+r(x, p)
$$

where $r: \mathbf{R}^{2} \rightarrow \mathbf{R}$ is a function satisfying

$$
\lim _{x \rightarrow p} \frac{r(x, p)}{\|x-p\|}=0
$$

Then all the partial derivatives of f exist at p, and A is given by the jacobian matrix $D f(p):=\left(D_{1} f(p), \ldots, D_{n} f(p)\right)$ whose columns are the partial derivatives of f. In particular, A is unique. Conversely, if all the partial derivative $D_{i} f(p)$ exist, then $A:=D f(p)$ satisfies the above equation.

Proof. Let e_{1}, \ldots, e_{n} be the standard basis for \mathbf{R}^{n}. Then

$$
D_{i} f(p)=\lim _{t \rightarrow 0} \frac{f\left(p+t e_{i}\right)-f(p)}{t}=\lim _{t \rightarrow 0} \frac{A\left(t e_{i}\right)+r\left(p+t e_{i}, p\right)}{t}=A\left(e_{i}\right) .
$$

Thus all the partial derivatives of f exist at p, and $D_{i} f(p)$ coincides with the $i^{\text {th }}$ column of (the matrix representation) of A. In particular, $A=D f(p)$ and therefore A is unique.

Conversely, suppose that all the partial derivatives $D_{i} f(p)$ exist and set

$$
r(x, p):=f(x)-f(p)-D f(p)(p-x)
$$

By the mean value theorem,

$$
r(x, p)=(D f(s)-D f(p))(p-x)
$$

for some s on the line segment joining p and s. Thus it follows that

$$
\lim _{x \rightarrow p} \frac{r(x, p)}{\|x-p\|}=\lim _{x \rightarrow p}(D f(s)-D f(p))\left(\frac{p-x}{\|p-x\|}\right)=0
$$

as desired.
Now we are finally ready to prove the main result of this section.
Proof of Theorem 1. By 3 we may assume that $M=\mathbf{R}^{n}=N$. Further, after replacing $f(x)$ with $(D f(p))^{-1} f(x-p)-f(p)$ we may assume, via Lemma 2 , that

$$
p=o, \quad f(o)=o, \quad \text { and } \quad D f(o)=I
$$

where I denotes the identity matrix. Now define $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by

$$
g(x)=x-f(x)
$$

Then $g(o)=o$, and $D g(o)=0$. Thus, by Proposition 8, there exists $r>0$ such that for all $x_{1}, x_{2} \in B_{r}(o)$, the closed ball of radius r centered at o,

$$
\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \leq \frac{1}{2}\left\|x_{1}-x_{2}\right\|
$$

In particular, $\|g(x)\|=\|g(x)-g(o)\| \leq\|x\| / 2$. So $g\left(B_{r}(o)\right) \subset B_{r / 2}(o)$. Now, for every $y \in B_{r / 2}(o)$ and $x \in B_{r}(o)$ define

$$
T_{y}(x):=y+g(x)=y+x-f(x) .
$$

Then, by the triangle inequality, $\left\|T_{y}(x)\right\| \leq r$. Thus $T_{y}: B_{r}(o) \rightarrow B_{r}(o)$. Further note that

$$
T_{y}(x)=x \Longleftrightarrow y=f(x)
$$

in particular, T_{y} has a unique fixed point on $B_{r}(o)$ if and only if f is one-toone on $B_{r}(o)$. But

$$
\left\|T_{y}\left(x_{1}\right)-T_{y}\left(x_{2}\right)\right\|=\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\| \leq \frac{1}{2}\left\|x_{1}-x_{2}\right\|
$$

Thus by Lemma 4, T_{y} does indeed have a unique fixed point, and we conclude that f is one-to-one on $B_{r}(o)$. In particular, we let U be the interior of $B_{r}(o)$.

Next we show that $f(U)$ is open. To this end it suffices to prove that $f^{-1}: f\left(B_{r}(o)\right) \rightarrow B_{r}(o)$ is continuous. To see this note that, by the definition of g and the triangle inequality,
$\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\|=\left\|\left(x_{1}-x_{2}\right)-\left(f\left(x_{1}\right)-f\left(x_{2}\right)\right)\right\| \geq\left\|x_{1}-x_{2}\right\|-\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\|$.
Thus,

$$
\left\|f\left(x_{1}\right)-f\left(x_{2}\right)\right\| \geq\left\|x_{1}-x_{2}\right\|-\left\|g\left(x_{1}\right)-g\left(x_{2}\right)\right\|=\frac{1}{2}\left\|x_{1}-x_{2}\right\|
$$

which in turn implies

$$
\left\|y_{1}-y_{2}\right\| \geq \frac{1}{2}\left\|f^{-1}\left(y_{1}\right)-f^{-1}\left(y_{2}\right)\right\|
$$

So f^{-1} is continuous.
It remains to show that f^{-1} is smooth on $f(U)$. To this end, note that by Lemma 9 , for every $p \in U$,

$$
f(x)-f(p)=D f(p)(x-p)+r(x, p)
$$

Now multiply both sides of the above equality by $A:=(D f(p))^{-1}$, and set $y:=f(x), q:=f(p)$. Then

$$
A(y-q)=f^{-1}(y)-f^{-1}(q)+\operatorname{Ar}\left(f^{-1}(y), f^{-1}(q)\right)
$$

which we may rewrite as

$$
f^{-1}(y)-f^{-1}(q)=A(y-q)+\bar{r}(y, q)
$$

where

$$
\bar{r}(y, q):=\operatorname{Ar}\left(f^{-1}(y), f^{-1}(q)\right) .
$$

Finally note that

$$
\lim _{y \rightarrow q} \frac{\bar{r}(y, q)}{\|y-q\|}=A \lim _{y \rightarrow q} \frac{r\left(f^{-1}(y), f^{-1}(q)\right)}{\|y-q\|} \leq 2 A \lim _{y \rightarrow q} \frac{r\left(f^{-1}(y), f^{-1}(q)\right)}{\left\|f^{-1}(y)-f^{-1}(q)\right\|}=0 .
$$

Thus, again by Lemma $9, f^{-1}$ is differentiable at all $p \in U$ and

$$
D\left(f^{-1}\right)(p)=\left(D f\left(f^{-1}(p)\right)\right)^{-1}
$$

Since the right hand side of the above equation is a continuous function of p (because f is C^{1} and f^{-1} is continuous), it follows that f^{-1} is C^{1}. But if f is C^{r}, then the right hand side of the above equation is C^{r} (since $D f$ is C^{∞} everywhere), which in turn yields that f^{-1} is C^{r+1}. So, by induction, f^{-1} is C^{∞}.

Exercise 10. Give a simpler proof of the inverse function theorem for the special case of mappings $f: \mathbf{R} \rightarrow \mathbf{R}$.

2.6 The rank theorem

The inverse function theorem we proved in the last section yields the following more general result:

Theorem 11 (The rank theorem). Let $f: M \rightarrow N$ be a smooth map, and suppose that $\operatorname{rank}\left(d f_{p}\right)=k$ for all $p \in M$, then, for each $p \in M$, there exists local charts (U, ϕ) and (V, ψ) of M and N centered at p and $f(p)$ respectively such that

$$
\psi \circ f \circ \phi^{-1}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{k}, 0, \ldots, 0\right)
$$

Exercise 12. Show that to prove the above theorem it suffices to consider the case $M=\mathbf{R}^{n}$ and $N=\mathbf{R}^{m}$. Furthermore, show that we may assume that $p=o, f(o)=o$, and the $k \times k$ matrix in the upper left corner of the jacobian matrix $D f(o)$ is nonsingular.

Proof. Suppose that the conditions of the previous exercise hold. Define $\phi: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ by

$$
\phi(x):=\left(f^{1}(x), \ldots, f^{k}(x), x^{k+1}, \ldots, x^{n}\right)
$$

Then

$$
D \phi(o)=\left(\begin{array}{cc}
\frac{\partial\left(f^{1}, \ldots, f^{k}\right)}{\left(x^{1}, \ldots, x^{k}\right)}(o) & * \\
0 & I_{n-k}
\end{array}\right) .
$$

Thus $D \phi(o)$ is nonsingular. So, by the inverse function theorem, ϕ is a local diffeomorphism at o. In particular ϕ^{-1} is well defined on some open neighborhood U of o. Let $\pi_{i}: \mathbf{R}^{\ell} \rightarrow \mathbf{R}$ be the projection onto the $i^{\text {th }}$ coordinate. Then, for $1 \leq i \leq k, \pi_{i} \circ \phi=f^{i}$. Consequently, $f^{i} \circ \phi^{-1}=\pi_{i}$. Thus, if we set $\tilde{f}^{i}:=f^{i} \circ \phi^{-1}$, for $k+1 \leq i \leq m$, then

$$
f \circ \phi^{-1}(x)=\left(x^{1}, \ldots, x^{k}, \tilde{f}^{k+1}(x), \ldots, \tilde{f}^{m}(x)\right)
$$

for all $x \in U$. Next note that

$$
D\left(f \circ \phi^{-1}\right)(o)=\left(\begin{array}{cc}
I_{k} & 0 \\
* & \frac{\partial\left(\tilde{f} k+, \ldots, \tilde{f}^{m}\right)}{\left(x^{k+1}, \ldots, x^{n}\right)}(o)
\end{array}\right) .
$$

On the other hand, $D\left(f \circ \phi^{-1}\right)(o)=D(f)(p) \circ D\left(\phi^{-1}\right)(o)$. Thus

$$
\operatorname{rank}\left(D\left(f \circ \phi^{-1}\right)(o)\right)=\operatorname{rank}(D(f)(p))=k,
$$

because $D\left(\phi^{-1}\right)=D(\phi)^{-1}$ is nonsingular. The last two equalities imply that

$$
\frac{\partial\left(\tilde{f}^{k+1}, \ldots, \tilde{f}^{m}\right)}{\left(x^{k+1}, \ldots, x^{n}\right)}(o)=0
$$

where 0 here denotes the matrix all of whose entries is zero. So we conclude that the functions $\tilde{f}^{k+1}, \ldots, \tilde{f}^{m}$ do not depend on x^{k+1}, \ldots, x^{n}. In particular, if V is a small neighborhood of o in \mathbf{R}^{m}, then the mapping $T: V \rightarrow \mathbf{R}^{m}$ given by

$$
T(y):=\left(y^{1}, \ldots, y^{k}, y^{k+1}+f^{k+1}\left(y^{1}, \ldots, y^{k}\right), \ldots, y^{m}+f^{m}\left(y^{1}, \ldots, y^{k}\right)\right)
$$

is well defined. Now note that

$$
D T(o)=\left(\begin{array}{cc}
I_{k} & * \\
0 & I_{m-k}
\end{array}\right) .
$$

Thus, by the inverse function theorem, $\psi:=T^{-1}$ is well defined on an open neighborhood of o in \mathbf{R}^{m}. Finally note that

$$
\begin{aligned}
\psi \circ f \circ \phi^{-1}(x) & =\psi\left(x^{1}, \ldots, x^{k}, \tilde{f}^{k+1}(x), \ldots, \tilde{f}^{m}(x)\right) \\
& =\psi \circ T\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right) \\
& =\left(x^{1}, \ldots, x^{k}, 0, \ldots, 0\right)
\end{aligned}
$$

as desired.
Exercise 13. Show that there exists no C^{1} function $f: \mathbf{R}^{2} \rightarrow \mathbf{R}$ which is one-to-one.

[^0]: ${ }^{1}$ Last revised: September 30, 2009

