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2.5 The inverse function theorem

Recall that if f : M → N is a diffeomorphism, then dfp is nonsingular at all
p ∈ M (by the chain rule and the observation that f ◦ f−1 is the identity
function on M). The main aim of this section is to prove a converse of this
phenomenon:

Theorem 1 (The Inverse Function Theorem). Let f : M → N be a smooth
map, and dim(M) = dim(N). Suppose that dfp is nonsingular at some
p ∈ M . Then f is a local diffeomorphism at p, i.e., there exists an open
neighborhood U of p such that

1. f is one-to-one on U .

2. f(U) is open in N .

3. f−1 : f(U)→ U is smooth.

In particular, d(f−1)f(p) = (dfp)−1.

A simple fact which is applied a number of times in the proof of the above
theorem is

Lemma 2. Let f : M → N , and g : N → L be diffeomorphisms, and set
h := g ◦ f . If any two of the mappings f , g, h are diffeomorphisms, then so
is the third.

In particular, the above lemma implies

Proposition 3. If Theorem 1 is true in the case of M = Rn = N , then, it
is true in general.
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Proof. Suppose that Theorem 1 is true in the case that M = Rn = N , and
let f : M → N be a smooth map with dfp nonsingular at some p ∈ M . By
definition, there exist local charts (U, φ) of M and (V, ψ) of N , centered at
p and f(p) respectively, such that f̃ := φ−1 ◦ f ◦ ψ is smooth. Since φ and
ψ are diffeomorphisms, dφp and dψf(p) are nonsingular. Consequently, by

the chain rule, df̃o is nonsingular, and is thus a local diffeomorphism. More
explicitly, there exists open neighborhoods A and B of the origin o of Rn

such that f̃ : A → B is a diffeomorphism. Since φ : φ−1(A) → A is also a
diffeomorphism, it follows that φ ◦ f̃ : φ−1(A)→ B is a diffeomorphism. But
φ ◦ f̃ = f ◦ ψ. So f ◦ ψ : φ−1(A) → B is a diffeomorphism. Finally, since
ψ : ψ−1(B) → B is a diffeomorphism, it follows, by the above lemma, that
f : φ−1(A)→ ψ−1(B) is a diffeomorphism.

So it remains to prove Theorem 1 in the case that M = Rn = N . To
this end we need the following fact. Recall that a metric space is said to be
complete provided that every Cauchy sequence of that space converges.

Lemma 4 (The contraction Lemma). Let (X, d) be a complete metric space,
and 0 ≤ λ < 1. Suppose that there exists mapping f : X → X such that
d(f(x1), (x2)) ≤ λd(x1, x2), for all x1, x2 ∈ X. Then there exists a unique
point x ∈ X such that f(x) = x.

Proof. Pick a point x0 ∈ X and set xn := fn(x), for n ≥ 1. We claim that
{xn} is a Cauchy sequence. To this end note that

d(xn, xn+m) = d(fn(x0), f
n(xm)) ≤ λnd(x0, xm).

Further, by the triangle inequality

d(x0, xm) ≤ d(x0, x1) + d(x1, x2) + · · ·+ d(xm−1, xm)

≤ (1 + λ+ λ2 + · · ·+ λm)d(x0, x1)

≤ 1

1− λ
d(x0, x1).

So, setting K := d(x0, x1)/(1− λ), we have

d(xn, xn+m) ≤ λnK.

Since K does not depend on m or n, the last inequality shows that {xn} is
a Cauchy sequence, and therefore, since X is complete, it has a limit point,
say x∞. Now note that, since d : X ×X → R is continuous (why?),

d(x∞, f(x∞)) = lim
n→∞

d(xn, f(xn)) = 0.
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Thus X∞ is a fixed point of f . Finally, note that if a and b are fixed points
of f , then

d(a, b) = d(f(a), f(b)) ≤ λd(a, b),

which, since λ < 1, implies that d(a, b) = 0. So f has a unique fixed point.

Exercise 5. Does the previous lemma remain valid if the condition that
d(f(x1), (x2)) ≤ λd(x1, x2) is weakened to d(f(x1), (x2)) < d(x1, x2)?

Next we recall

Lemma 6 (The mean value theorem). Let f : Rn → R be a C1 functions.
Then for every p, q ∈ Rn there exists a point s on the line segment connecting
p and q such that

f(p)− f(q) = Df(s)(p− q) =
n∑

i=1

Dif(si)(p
i − qi).

Exercise 7. Prove the last lemma by using the mean value theorem for
functions of one variable an the chain rule. (Hint: Parametrize the segment
joining p and q by tq + (1− t)p, 0 ≤ t ≤ 1).

The above lemma implies:

Proposition 8. Let f : Rn → Rm be a C1 function, U be a convex open
neighborhood of o in Rn, and set

K := sup
{ ∣∣Djf

i(p)
∣∣ ∣∣∣ 1 ≤ i ≤ m, 1 ≤ j ≤ n, p ∈ U

}
Then, for every p, q ∈ U ,

‖f(p)− f(q)‖ ≤
√
mnK‖p− q‖

Proof. First note that

‖f(p)− f(q)‖2 =
m∑

i=1

(
f i(p)− f i(q)

)2
.
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Secondly, by the mean value theorem (Lemma 6), there exists, for every i a
point si on the line segment connecting p and q such that

f i(p)− f i(q) = Df i(si)(p− q) =
n∑

j=1

Djf
i(sj)(p

j − qj).

Since U is convex, si ∈ U , and, therefore, by the Cauchy-Schwartz inequality

|f i(p)− f i(q)| ≤

√√√√ n∑
j=1

Djf i(sj)2

√√√√ n∑
j=1

(pj − qj)2 ≤
√
nK‖p− q‖.

So we conclude that

‖f(p)− f(q)‖2 ≤ mnK2‖p− q‖2.

Finally, we recall the following basic fact

Lemma 9. Let f : Rn → Rm, and p ∈ Rn. Suppose there exists a linear
transformation A : Rn → Rm such that

f(x)− f(p) = A(p− x) + r(x, p)

where r : R2 → R is a function satisfying

lim
x→p

r(x, p)

‖x− p‖
= 0.

Then all the partial derivatives of f exist at p, and A is given by the jacobian
matrix Df(p) := (D1f(p), . . . , Dnf(p)) whose columns are the partial deriva-
tives of f . In particular, A is unique. Conversely, if all the partial derivative
Dif(p) exist, then A := Df(p) satisfies the above equation.

Proof. Let e1, . . . , en be the standard basis for Rn. Then

Dif(p) = lim
t→0

f(p+ tei)− f(p)

t
= lim

t→0

A(tei) + r(p+ tei, p)

t
= A(ei).

Thus all the partial derivatives of f exist at p, and Dif(p) coincides with the
ith column of (the matrix representation) of A. In particular, A = Df(p)
and therefore A is unique.
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Conversely, suppose that all the partial derivatives Dif(p) exist and set

r(x, p) := f(x)− f(p)−Df(p)(p− x).

By the mean value theorem,

r(x, p) = (Df(s)−Df(p))(p− x)

for some s on the line segment joining p and s. Thus it follows that

lim
x→p

r(x, p)

‖x− p‖
= lim

x→p
(Df(s)−Df(p))

(
p− x
‖p− x‖

)
= 0,

as desired.

Now we are finally ready to prove the main result of this section.

Proof of Theorem 1. By 3 we may assume that M = Rn = N . Further, after
replacing f(x) with (Df(p))−1f(x − p) − f(p) we may assume, via Lemma
2, that

p = o, f(o) = o, and Df(o) = I,

where I denotes the identity matrix. Now define g : Rn → Rn by

g(x) = x− f(x).

Then g(o) = o, and Dg(o) = 0. Thus, by Proposition 8, there exists r > 0
such that for all x1, x2 ∈ Br(o), the closed ball of radius r centered at o,

‖g(x1)− g(x2)‖ ≤
1

2
‖x1 − x2‖.

In particular, ‖g(x)‖ = ‖g(x)− g(o)‖ ≤ ‖x‖/2. So g(Br(o)) ⊂ Br/2(o). Now,
for every y ∈ Br/2(o) and x ∈ Br(o) define

Ty(x) := y + g(x) = y + x− f(x).

Then, by the triangle inequality, ‖Ty(x)‖ ≤ r. Thus Ty : Br(o) → Br(o).
Further note that

Ty(x) = x ⇐⇒ y = f(x).
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in particular, Ty has a unique fixed point on Br(o) if and only if f is one-to-
one on Br(o). But

‖Ty(x1)− Ty(x2)‖ = ‖g(x1)− g(x2)‖ ≤
1

2
‖x1 − x2‖.

Thus by Lemma 4, Ty does indeed have a unique fixed point, and we conclude
that f is one-to-one on Br(o). In particular, we let U be the interior of Br(o).

Next we show that f(U) is open. To this end it suffices to prove that
f−1 : f(Br(o))→ Br(o) is continuous. To see this note that, by the definition
of g and the triangle inequality,

‖g(x1)−g(x2)‖ = ‖(x1−x2)−(f(x1)−f(x2))‖ ≥ ‖x1−x2‖−‖f(x1)−f(x2)‖.

Thus,

‖f(x1)− f(x2)‖ ≥ ‖x1 − x2‖ − ‖g(x1)− g(x2)‖ =
1

2
‖x1 − x2‖,

which in turn implies

‖y1 − y2‖ ≥
1

2
‖f−1(y1)− f−1(y2)‖.

So f−1 is continuous.
It remains to show that f−1 is smooth on f(U). To this end, note that

by Lemma 9, for every p ∈ U ,

f(x)− f(p) = Df(p)(x− p) + r(x, p).

Now multiply both sides of the above equality by A := (Df(p))−1, and set
y := f(x), q := f(p). Then

A(y − q) = f−1(y)− f−1(q) + Ar(f−1(y), f−1(q)),

which we may rewrite as

f−1(y)− f−1(q) = A(y − q) + r(y, q),

where
r(y, q) := Ar(f−1(y), f−1(q)).

6



Finally note that

lim
y→q

r(y, q)

‖y − q‖
= A lim

y→q

r(f−1(y), f−1(q))

‖y − q‖
≤ 2A lim

y→q

r(f−1(y), f−1(q))

‖f−1(y)− f−1(q)‖
= 0.

Thus, again by Lemma 9, f−1 is differentiable at all p ∈ U and

D(f−1)(p) =
(
Df
(
f−1(p)

))−1

.

Since the right hand side of the above equation is a continuous function of p
(because f is C1 and f−1 is continuous), it follows that f−1 is C1. But if f
is Cr, then the right hand side of the above equation is Cr (since Df is C∞

everywhere), which in turn yields that f−1 is Cr+1. So, by induction, f−1 is
C∞.

Exercise 10. Give a simpler proof of the inverse function theorem for the
special case of mappings f : R→ R.

2.6 The rank theorem

The inverse function theorem we proved in the last section yields the following
more general result:

Theorem 11 (The rank theorem). Let f : M → N be a smooth map, and
suppose that rank(dfp) = k for all p ∈M , then, for each p ∈M , there exists
local charts (U, φ) and (V, ψ) of M and N centered at p and f(p) respectively
such that

ψ ◦ f ◦ φ−1(x1, . . . , xn) = (x1, . . . , xk, 0, . . . , 0).

Exercise 12. Show that to prove the above theorem it suffices to consider
the case M = Rn and N = Rm. Furthermore, show that we may assume
that p = o, f(o) = o, and the k × k matrix in the upper left corner of the
jacobian matrix Df(o) is nonsingular.

Proof. Suppose that the conditions of the previous exercise hold. Define
φ : Rn → Rn by

φ(x) := (f 1(x), . . . , fk(x), xk+1, . . . , xn).

Then

Dφ(o) =

(
∂(f1,...,fk)
(x1,...,xk)

(o) ∗
0 In−k

)
.
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Thus Dφ(o) is nonsingular. So, by the inverse function theorem, φ is a local
diffeomorphism at o. In particular φ−1 is well defined on some open neigh-
borhood U of o. Let πi : R` → R be the projection onto the ith coordinate.
Then, for 1 ≤ i ≤ k, πi ◦ φ = f i. Consequently, f i ◦ φ−1 = πi. Thus, if we
set f̃ i := f i ◦ φ−1, for k + 1 ≤ i ≤ m, then

f ◦ φ−1(x) = (x1, . . . , xk, f̃k+1(x), . . . , f̃m(x))

for all x ∈ U . Next note that

D(f ◦ φ−1)(o) =

(
Ik 0

∗ ∂(f̃k+1,...,f̃m)
(xk+1,...,xn)

(o)

)
.

On the other hand, D(f ◦ φ−1)(o) = D(f)(p) ◦D(φ−1)(o). Thus

rank(D(f ◦ φ−1)(o)) = rank(D(f)(p)) = k,

because D(φ−1) = D(φ)−1 is nonsingular. The last two equalities imply that

∂(f̃k+1, . . . , f̃m)

(xk+1, . . . , xn)
(o) = 0,

where 0 here denotes the matrix all of whose entries is zero. So we conclude
that the functions f̃k+1, . . . , f̃m do not depend on xk+1, . . . , xn. In particular,
if V is a small neighborhood of o in Rm, then the mapping T : V → Rm given
by

T (y) :=
(
y1, . . . , yk, yk+1 + fk+1(y1, . . . , yk), . . . , ym + fm(y1, . . . , yk)

)
is well defined. Now note that

DT (o) =

(
Ik ∗
0 Im−k

)
.

Thus, by the inverse function theorem, ψ := T−1 is well defined on an open
neighborhood of o in Rm. Finally note that

ψ ◦ f ◦ φ−1(x) = ψ(x1, . . . , xk, f̃k+1(x), . . . , f̃m(x))

= ψ ◦ T (x1, . . . , xk, 0, . . . , 0)

= (x1, . . . , xk, 0, . . . , 0),

as desired.

Exercise 13. Show that there exists no C1 function f : R2 → R which is
one-to-one.
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