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Lecture Notes 6

1.15 The four vertex theorem for convex curves

A vertex of a planar curve α : I → R2 is a point where the signed curvature
of α has a local max or min.

Exercise 1. Show that an ellipse has exactly 4 vertices, unless it is a circle.

We say that a planar curve is convex if through each point in the image
of it there passes a line with respect to which the curve lies on side. The
main aim of this section is to show that:

Theorem 2. Any convex C3 planar curve has (at least) four vertices.

In fact any simple closed curve has 4 vertices, and it is not necessary to
assume that κ is C1, but the proof is harder. On the other hand if the curve
is not simple, then the 4 vertex property may no longer be true:

Exercise 3. Sketch the limacon α : [0, 2π]→ R2 given by

α(t) := (2 cos t+ 1)(cos t, sin t)

and show that it has only two vertices. (Hint : It looks like a loop with a
smaller loop inside)

The proof of the above theorem is by contradiction. Suppose that α has
fewer than 4 vertices, then it must have exactly 2.

Exercise 4. Verify the last sentence.

Suppose that these two vertices occur at t0 and t1. Then κ′(t) will have
one sign on (t1, t2) and the opposite sign on I − [t1, t2]. Let ` be the line
passing through α(t1) and α(t2). Then, since α is convex, α restricted to
(t1, t2) lies entirely in one of the closed half planes determined by ` and α
restricted to I − [t1, t2] lies in the other closed half plane.
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Exercise 5. Verify the last sentence, i.e., show that if α : I → R2 is a simple
closed convex planar curve, and ` is any line in the plane which intersects
α(I), then either ` intersects α in exactly two points, or α(I) lies on one side
`.(Hint : Show that if α intersects ` at 3 points, then it lies on one side of `.)

Let p be a point of ` and v be a vector orthogonal to `, then f : I → R,
given by f(t) := 〈α(t) − p, v〉 has one sign on (t1, t2) and has the opposite
sign on I − [t1, t2]. Consequently, κ′(t)f(t) is always nonnegative. So

0 <

∫
I

κ′(t)〈α(t)− p, v〉dt.

On the other hand∫
I

κ′(t)〈α(t)− p, v〉dt = κ(t)〈α(t)− p, v〉|ba −
∫
I

κ(t)〈T (t), v〉dt

= 0−
∫
I

〈−N ′(t), v〉dt

= 〈N(t), v〉|ba
= 0.

So we have a contradiction, as desired.

Exercise 6. Justify each of the lines in the above computation.

1.16 Shur’s Arm Lemma

The following result describes how the distance between the end points of a
planar curve is effected by its curvature:

Theorem 7 (Shur’s Arm Lemma). Let α1, α2 : [0, L] → R3 be unit speed
C1 curves such that the union of each αi with the line segment from αi(0) to
αi(L) is a convex curve. Suppose that for almost all t ∈ [0, L], κi(t) is well
defined, e.g., αi is piecewise C2, and

κ1(t) ≥ κ2(t)

for almost all t ∈ [0, L]. Then

dist
(
α1(0), α1(L)

)
≤ dist

(
α2(0), α2(L)

)
.
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Proof. After a rigid motion we may assume that the segment α1(0)α1(L) is
parallel to the x-axis and α′1 is rotating counterclockwise, see the picture
below. Then there exists t0 ∈ [0, L] such that α′1(t0) is horizontal. After a
rigid motion, we may assume that α′2(t0) is horizontal as well. Now let θi be
the angle that α′i makes with the positive direction of the x-axis measured
counterclockwise. Then θi ∈ [−π, π] (for θ1 this follows from convexity of
α1, and for θ2, this follows from the assumption that κ2 ≤ κ1). Further note
that

|θi(t)| = |θi(t)− θi(t0)| =
∣∣∣∣∫ t

t0

θ′i(s) ds

∣∣∣∣ =

∣∣∣∣∫ t

t0

κi(s) ds

∣∣∣∣ .
Thus |θ1(t)| ≥ |θ2(t)|, and, since |θi(t)| ∈ [0, π], it follows that

cos |θ1(t)| ≤ cos |θ2(t)|.

Finally note that, if we set e1 := (1, 0), then

‖α1(L)− α1(0)‖ =
〈
α1(L)− α1(0), e1

〉
=

∫ L

0

〈α′1(t), e1〉 dt

=

∫ L

0

cos |θ1(t)| dt

≤
∫ L

0

cos |θ2(t)| dt

=

∫ L

0

〈α′2(t), e1〉 dt

=
〈
α2(L)− α2(0), e1

〉
≤ ‖α2(L)− α2(0)‖.

Exercise 8. Is Shur’s arm lemma true for nonconvex arcs?
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Exercise 9. Prove the four vertex theorem for convex curves using the
Schur’s arm lemma.

Exercise* 10. Prove the polygonal version of the Shur’s arm lemma: Sup-
pose that we have a pair of polygonal arcs P1 and P2 in the plane, each of
which is convex (i.e., when we connect the end points of each arc, then we
obtain a closed convex curve). Further suppose that these curves have the
same number of segments and the corresponding segments (if we order them
consecutively) have the same length. Now show that if the exterior angles in
P1 is smaller than the corresponding angles in P2, then the distance between
the end points of P1 is larger than the distance between the end points of P2.

1.17 The four vertex theorem for general curves

In this section we generalize the four vertex theorem which was proved earlier.
First we need the following result. An inflection point is a point where the
signed curvature changes sign.

Lemma 11. Let α : [a, b]→ R2 be a simple C2 curve. Suppose that α(a) and
α(b) both lie on a line ` with respect to which the image of α lies on one side.
Further suppose that α′(a) and α′(b) are parallel. Then either the image of
α is a line segment, or else α has at least two inflection points.

A support line of a set A ⊂ R2 is a line with respect to which A lies on
one side and intersects A at some point.

Exercise* 12. Prove the above lemma.

Lemma 13. Let Γ be a simple closed C2 curve in the plane. Suppose that
every support line of Γ intersects Γ in a single point. Then Γ is convex.

Exercise* 14. Prove the above lemma.

Theorem 15. Every simple closed C2 planar curve has four vertices.

Proof. We may suppose that the signed curvature of our curve Γ changes
sign at most twice, because there has to be a vertex between every pair of
inflection points. Since Γ is not convex, there exists by the above lemma
a support line ` which is tangent to Γ at two distinct points say A and B.
Since Γ is simple there must be a portion of Γ, say Γ1 bounded by A and
B so that the unit tangent vectors of Γ1 at A and B, with respect to some
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parametrization, are parallel. Then by the above lemma Γ1 must contain
both inflection points of Γ. Consequently, the complement of Γ1 say Γ2 has
no inflection points and it follows that the union of Γ2 with the line segment
AB is a closed convex curve, see the picture below.

It is enough to show that the interior of Γ2 contains at least two vertices,
because Γ1 already contains at least one vertex (since a vertex must be be-
tween every pair of inflection points), and the total number of vertices must
be even.

First we show that the inerior of Γ2 must contain at least one vertex.
Suppose not. Then the curvature of Γ2 is monotone, so its minimum must
be either at A or B. Suppose that the minimum of curvature is at A. Let
A′ be the point in Γ2 so that A and A′ divide Γ2 ∪AB into portions of same
length. In one of these portions the curvature is less than the other, which
contradicts the Arm lemma proved earlier.

So there exists a point p in the interior of Γ2 which is a vertex. Suppose
that Γ has only two vertices. Then it follows that p must be a maximum
point of curvature of Γ2. Suppose that the length of the arc pA in Γ2 is not
bigger than the length of pB. Lat x(t) be a parametrization of pA from p
to A, and let y(t) be a point of pB, if one exists, so that the curvature at
y(t) is equal to the curvature at x(t). Suppose there exists a time t1 so that
x(t1) and y(t1) divide the length of Γ2∪AB in half. Then one of the portions
determined by x(t1) and y(t1) will have smaller curvature than other at every
point, which contradicts the Arm Lemma.

So we may suppose that t1 does not exist. This implies that there exists
a point A′ in the segment pB of Γ2 such that the curvature at A′ is equal to
the curvature at A and the length of AA′ in Γ2 is less than half the length of
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Γ2 ∪ AB. In this case, let A′′ be the point in the segment A′B of Γ2 so that
A and A′′ divide the length of Γ2 ∪ AB in half. Then one of the portions
determined by A and A′′ will have everywhere bigger curvature than the
other, which is again a contradiction.

1.18 Area of planar regions and the Isoperimetric in-
equality

The area of a rectangle is defined as the product of lengths of two of its
adjacent sides. Let X ⊂ R2 be any set, R be a collection of rectangles which
cover X, and Area(X,R) be the sum of the areas of all rectangles in R.
Then area of X is defined as the infimum of Area(X,R) where R ranges
over all different ways to cover X by rectangles. In particular it follows
that, if X ⊂ Y , then Area(X) ≤ Area(Y ), and if X = X1 ∪ X2, then
Area(X) = Area(X1) + Area(X2). These in turn quickly yield the areas of
triangles and polygons.

Exercise 16 (Invariance under isometry and the Special linear group). Show
that area is invariant under rigid motions of R2, and that dilation by a factor
of r, i.e., multiplying each point R2 by r, changes the area by a factor of r2.
More generally show that any linear transformation A : R2 → R2 changes
the area by a factor of det(A).

Exercise 17 (Archemedes). Compute the area of a circle (Hint: For any
n compute the area of regular n-gons which are inscribed in the circle, and
take the limit. Each of these areas is the sum of n isoceles triangles with
an angle 2π/n, and adjacent sides of length equal to the radius of the circle.
This gives a lower bound for the area. An upper bound may also be obtained
by taking the limit of regular polygons which circumscribe the circle.)

Recalling the defintion of Riemann sums, one quickly observes that

Area(X) =

∫ ∫
X

1 dxdy.

We say that a subset X of Rn is connected provided that the only subsets
of X which are both open and closed in X are the X and the emptyset. Every
subset of X which is connected and is different from X and the empty set is
called a component of X.
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Let α : I → R2 be a simple closed planar curve. By the Jordan curve
theorem (which we will not prove here), R2 − α(I) consists of exactly two
connected components, and the boundary of each component is α(I). Fur-
ther, one of these components, which we call the interior of α, is contained
in some large sphere, while the other is unbounded. By area of α we mean
the area of its interior.

Theorem 18. For any simple closed planar curve α : I → R2,

Area[α] ≤ Length[α]2

4π
.

Equality holds only when α is a circle.

Our proof of the above theorem hinges on the following subtle fact whose
proof we leave out

Lemma 19. Of all simple closed curves of fixed length L, there exists at least
one with the biggest area. Further, every such curve is C1.

Exercise* 20. Show that the area maximizer (for a fixed length) must be
convex. (Hint : It is enough to show that if the maximizer, say α, is not
convex, then there exist a line ` with respect to which α(I) lies on one side,
and intersects α(I) at two points p and q but not in the intervening open
segment of ` determined by p and q. Then reflecting one of the segments
of α(I), determined by p and q, through ` increases area while leaving the
length unchanged.)

We say that α is symmetric with respect to a line ` provided that the
image of α is invariant under reflection with respect to `.

Exercise 21. Show that a C1 convex planar curve α : I → R2 is a circle, if
and only if for every unit vector u ∈ S1 there exists a line perpendicular to
u with respect to which α is symmetric (Hint Suppose that α has a line of
symmetry in every direction. First show that each line of symmetry is unique
in the corresponding direction. After a translation we may assume that α
is symmetric with respect to both the x-axis and the y-axis. Show that this
yields that α is symmetric with respect to the origin, i.e. rotation by 180◦.
From this and the uniqueness of the lines of symmetry conclude that every
line of symmetry passes through the origin. Finally show that each line of
symmetry must meet the curve orthogonally at the intersection points. This
shows that 〈α(t), α′(t)〉 = 0, which in turn yields that ‖α(t)‖ = const.)
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Now we are ready to prove the isoperimetric inequality. The proof we
give here is based on Steiner’s symmetrization technique.

Let α : I → R2 be an area maximizer. By Exercise 20 we may assume
that α is convex. We claim that α must have a line of symmetry in every
direction, which would show, by Exercise 21, that α is a circle, and hence
would complete the proof.

Suppose, towards a contradiction, that there exists a direction u ∈ S1

such that α has no line of symmetry in that direction. After a rigid motion,
we may assume that u = (0, 1).

Let [a, b] be the projection of α(I) to the x-axis. Then, since α is convex,
every vertical line which passes through an interior point of (a, b) intersects
α(I) at precisely two points. Let f(x) be the y-coordinate of the higher
point, and g(x) be the y-coordinate of the other points. Then

Area[α] =

∫ b

a

f(x)− g(x) dx.

Further note that if α is C1 then f and g are C1 as well, thus

Length[α] = f(a)−g(a)+

∫ b

a

√
1 + f ′(x)2 dx+

∫ b

a

√
1 + g′(x)2 dx+f(b)−g(b).

Now we are going to define a new curve α which is composed of the graph of
the function f : [a, b]→ R given by

f(x) :=
f(x)− g(x)

2
,

on top, the graph of −f in the bottom, and vertical segments, which may
consist only of a single point, on right and left (We may think of this curve
as the boundary of the region which is obtained when we move the segments
with end points at f(x) and g(x) parallel to themselves until their centers lie
on the x-axis). One immdediately checks that

Area[α] = Area[α].

Further, note that since by assumption α is not symmetric with respect to
the x-axis, f is strictly positive on (a, b). This may be used to show that

Length[α] < Length[α].

Exercise 22. Verify the last inequlaity above (Hint : It is enough to check

that
∫ b

a

√
1 + f

′
(x)2dx is strictly smaller than either of the integrals in the

above formula for the length of α).
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