AFFINE UNFOLDINGS OF CONVEX POLYHEDRA

MOHAMMAD GHOMI

ABSTRACT. We show that every convex polyhedron admits a simple edge unfold-
ing after an affine transformation. In particular there exists no combinatorial
obstruction to a positive resolution of Diirer’s unfoldability problem, which an-
swers a question of Croft, Falconer, and Guy. Among other techniques, the proof
employs a topological characterization for embeddings among the planar immer-
sions of the disk.
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1. INTRODUCTION

A well-known problem in geometry [5, 16, 17, 23], which may be traced back to
the Renaissance artist Albrecht Direr [7], is concerned with cutting a convex poly-
hedral surface along some spanning tree of its edges so that it may be isometrically
embedded, or unfolded without overlaps, into the plane. Here we show that this
is always possible after an affine transformation of the surface. In particular, un-
foldability of a convex polyhedron does not depend on its combinatorial structure,
which settles a problem of Croft, Falconer, and Guy [3, B21].

In this work a (compact) convex polyhedron P is the boundary of the convex
hull of a finite number of affinely independent points of Euclidean space R3. A cut
tree T C P is a (polygonal) tree which includes all the vertices of P, and each of
its leaves is a vertex of P. Cutting P along T yields a compact surface Pr which
admits an isometric immersion Pr — R? (see Section 4), called an unfolding of
P. This unfolding is simple, or an embedding, if it is one-to-one. We say P is in
general position with respect to a unit vector or direction u provided that the height
function h(-) := (-,u) has a unique maximizer and a unique minimizer on vertices
of P. Then T is monotone with respect to u provided that h is (strictly) decreasing
on every simple path in 7" which connects a leaf of T' to the vertex minimizing h.
For A > 0, we define the (normalized) affine stretching parallel to u as the linear
transformation Ay: R3 — R3 given by

A) = (p+ O = Do),

and set X* := A,(X) for any X C R?. Note that if u = (0,0, 1), then Ay(z,y,z) =
(x/A,y/A, z). Thus Ay makes any convex polyhedron arbitrarily “thin” or “needle-
shaped” for large A. Our main result is as follows:

Theorem 1.1. Let P be a convex polyhedron, u be a direction with respect to which
P is in general position, and T C P be a cut tree which is monotone with respect to
w. Then the unfolding of P* generated by T™ is simple for sufficiently large \.

When a cut tree is composed of the edges of P, or is a spanning tree of the edge
graph of P, the corresponding unfolding is called an edge unfolding. If P admits
a simple edge unfolding, then we say P is unfoldable. Note that there exists an
open and dense set of directions u in the sphere S? with respect to which P is in
general position. Furthermore, it is easy to construct monotone spanning edge trees
for every such direction. They may be generated, for instance, via the well studied
“steepest edge” algorithm [19, 13, 5], or a general procedure described in Note 1.6.
Thus Theorem 1.1 quickly yields:

Corollary 1.2. An affine stretching of a convex polyhedron, in almost any direction,
is unfoldable. O

An example of this phenomenon is illustrated in Figure 1. The left side of this
figure shows a truncated tetrahedron (viewed from “above”) together with an over-
lapping unfolding of it generated by a monotone edge tree. As we see on the right
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FiGure 1.

side, however, the same edge tree generates a simple unfolding once the polyhedron
has been stretched.

The rest of this work will be devoted to proving Theorem 1.1. We will start in
Sections 2 and 3 by recording some basic definitions and observations concerning
the composition of paths in convex polyhedra and their developments in the plane.
In particular we discuss the notion of “mixed developments” which arises naturally
in this context and constitutes a useful technical tool. Then, in Section 4, we will
show that to each cut tree there is associated a path whose development coincides
with the boundary of the corresponding unfolding. Thus Diirer’s problem may be
viewed as the search for spanning edge trees with simple developments. To this
end, we will obtain in Section 5 a topological criterion for deciding when a closed
planar curve which bounds an immersed disk is simple. This will be the principal
tool for proving Theorem 1.1, which will be utilized by means of an induction on
the number of leaves of the cut tree. To facilitate this approach we will study the
structure of monotone cut trees in Section 6, and the effect of affine stretchings on
their developments in Section 7. Finally, these observations will be synthesized in
Section 8 to complete the proof.

The earliest known examples of simple edge unfoldings for convex polyhedra are
due to Diirer [7], although the problem which bears his name was first formulated
by Shephard [20]. Furthermore, the assertion that a solution can always be found,
which has been dubbed Diirer’s conjecture, appears to have been first published by
Griinbaum [10, 11]. There is empirical evidence both for and against this supposi-
tion. On the one hand, computers have found simple edge unfoldings for countless
convex polyhedra through an exhaustive search of their spanning edge trees. On
the other hand, there is still no algorithm for finding the right tree [19, 13], and
computer experiments suggest that the probability that a random edge unfolding
of a generic polyhedron overlaps itself approaches 1 as the number of vertices grow
[18]. General cut trees have been studied at least as far back as Alexandrov [1]
who first established the existence of simple unfoldings (not necessarily simple edge
unfoldings) for all convex polyhedra, see also [12, 14, 4] for recent related results.
Other references and background may be found in [5].
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Note 1.3. A chief difficulty in assailing Diirer’s problem is the lack of any intrinsic
characterization for an edge of a convex polyhedron P. Indeed the edge graph of P is
not the unique graph in P whose vertices coincide with those of P, whose edges are
geodesics, and whose faces are convex. It seems reasonable to expect that Diirer’s
conjecture should be true if and only if it holds for this wider class of generalized
edge graphs. This approach has been studied by Tarasov [22], who has announced
some negative results in this direction.

Note 1.4. As we mentioned above, one way to generate some monotone trees in
a convex polyhedron is via the “the steepest edge” algorithm which has been well
studied due to its relative effectiveness in finding simple unfoldings. Indeed Schlick-
enrieder [19] had conjectured that every convex polyhedron contains at least one
steepest edge tree which generates a simple unfolding. He had successfully tested
this conjecture in thousands of cases, after a thorough examination of various kinds
of spanning edge trees and cataloguing their failure to produce simple unfoldings.
Subsequently, however, Lucier [13] produced a counterexample to Schlickenrieder’s
conjecture. Although it is not clear whether all monotone trees in Lucier’s example
fail to produce simple unfoldings.

Note 1.5. Diirer’s problem is usually phrased in somewhat broader terms than
described above: can every convex polyhedral surface be cut along some collection
T of its edges so that the resulting surface Pr is connected and admits an isometric
embedding into the plane? In other words, it is not a priori assumed that T is
a spanning tree. Assuming that this is the case, however, does not cause loss of
generality. Indeed it is obvious that the cut set T" must contain every vertex of P
(for otherwise Pr will not be locally isometric to the plane), and 7' may not contain
any cycles (for then Pr will not be connected). Furthermore, it follows fairly quickly
from the Gauss-Bonnet theorem that 7" must be connected [5, Lem. 22.1.2]. So T
is indeed a spanning tree.

Note 1.6. A general procedure for constructing monotone spanning edge trees T’
in a convex polyhedron P may be described as follows. The only requirement here
is that P be positioned so that it has a unique bottom vertex r. Then, since P
is convex, every vertex v of P other than r will be adjacent to a vertex which lies
below it, i.e., has smaller z-coordinate. Thus, by moving down through a sequence
of adjacent vertices, we may connect v to r by means of a monotone edge path (with
respect to u = (0,0,1)). Let vy be a top vertex of P, and By be a monotone edge
path which connects vg to r. If By covers all vertices of P, then we set T' := By and
we are done. Otherwise, from the remaining set of vertices choose an element v
which maximizes the z-coordinate on that set. Then we generate a monotone edge
path B; by connecting v; to an adjacent vertex which lies below it and continue to
go down through adjacent vertices until we reach a vertex of By (including r). If
By and B cover all the vertices of P, then we set T := By U By and we are done.
Otherwise we repeat the above procedure, until all vertices of P have been covered.
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2. PRELIMINARIES

For easy reference, we begin by recording here the definitions and notation which
will be used most frequently in the following pages.

2.1. Basic terminology. Throughout this work R” is the n-dimensional Fuclidean
space with standard inner product (-,-) and norm || - |. Further S"~! denotes the
unit sphere in R™. The height function is the mapping h: R®™ — R given by
h(z1,...,xy) := zp, and P denotes (the boundary of) a (compact) convex polyhe-
dron in R? which is oriented by the outward unit normals to its faces. We assume
that P is positioned so that it has a single top vertex ¢y and a single bottom vertex
r, i.e., h has a unique maximizer and a unique minimizer on P. Furthermore, T is
a cut tree of P which is rooted at . The leaves of T' are the vertices of T" of degree
1 which are different from r. The simple paths in 7" which connect its leaves to r
will be called the branches of T. We will assume, unless stated otherwise, that T
is monotone, by which we will always mean monotone with respect to v = (0,0, 1).
So h will be (strictly) decreasing on each branch of 7. We let Pr be the surface
obtained by cutting P along T, and 7w: Pr — P be the corresponding projection
(as will be defined in Section 4). Further Pr will denote the image of Pr under an
unfolding Pr — R2. We say Pr is simple if the unfolding map is one-to-one. More
generally, for any mapping f: X — R? and subset Xg C X, we set X¢ := f(Xo)
and say X is simple if f is one-to-one on Xy. Finally, by sufficiently large we mean
for all values bigger than some constant.

2.2. Paths and their compositions. A line segment in R™ is oriented if one of
its end points, say a, is designated as the “initial point” and the other, say b, as the
“final point”. Then the segment will be denoted by ab. A path I' is a sequence of
oriented line segments in R™ such that the final point of each segment coincides with
the initial point of the succeeding segment. These segments are called the edges of
I", and their end points constitute its vertices. The vertices of I' inherit a natural
ordering o, . . . , V&, where ~q is the initial point of the first edge, 4 is the final point
of the last edge, and successive elements share a common edge. Conversely, any
sequence of points 7y, ..., of R™ with distinct successive elements determines a
path denoted by:

I'= [0, 7k == (071, - -5 Ve—17k)-

Then g, & are the initial and final vertices of I respectively. Any other vertex of
I" will be called an interior vertex. If only consecutive edges of I' intersect, and do
so only at their common vertex, then I' is simple. We say that I' is closed if v = 7o,
in which case we set v, := Yk, and consider all vertices of I" to be interior vertices.
An interior vertex is simple if its adjacent vertices are distinct. The trace of I' is the
union of the edges of I'; which will again be denoted by I'. For any pair of vertices
v, w of I we let vw = (vw)r denote the subpath of I" with initial point v and final
point w. The trace of this path will also be denoted by vw.
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We utilize two different notions for combining a pair of paths I' = [yo, ..., 7] and
Q = |wo, ..., wy], when 7, = wy. The concatenation of these paths is given by

FeQ):= [707"'77]67“}17"'7“}@]7

while their composition is defined as

FOQ = [707' e Ye—my Wm+1, - - - 7(")5]7

where m is the largest integer such that v;_; = w; for 0 < i < m. One may think
of I' o Q) as the path obtained from I' e 2 by excising its largest subpath centered at
~ which double backs on itself, see Figure 2. This notion has also been studied in
[2, p. 1770]. Finally we set T~ := [y4,...,70]. Note that T'o I'"! = [yy] which may
be considered a trivial path.

AN NN S

T Q Te(d T'oQ

FIGURE 2.

2.3. Sides and angles. In this section P needs not be compact; in particular, it
may stand for R? ~ R? x {0} C R? with “outward normal” (0,0,1). A side of a
simple closed path I" in P is the closure of a component of P—I". We may distinguish
these sides as follows. Choose a point z in the interior of an edge ;7,41 of I', pick a
side S of I, let F' be the face of S which contains z, n be the outward unit normal
to F, and v be a unit normal to v;v;4+1 which points inside S. Then S lies to the
left of T' provided that (v;+1 — 7i,n, ) has positive determinant; otherwise, S lies
to the right of I'. If I is not simple or closed, one may still define a local notion of
sides near its interior vertices as we describe below.

For any point o € P, let st, denote the star of o, i.e., the union of faces of P
which contain o. Orient the boundary curve dst, by choosing a cyclical ordering
for its vertices, so that st, lies to the left of it. Any point = € st, —{0} generates
a ray R, C R3 which emanates from o and passes through z. Let st, denote the
intersection of these rays with the unit ball in R? centered at 0. Then the total angle
of P at o, denoted by Zp(0), is the length of dsto. Next, for any pair of points a,
b in st, —{o}, we define the (left) angle Z(a,o0,b) of the path [a,o0,b]. Consider the
projection st, —{o} — dst, given by x — T := R,Ndst,. This establishes a bijection
Ost, — Ost, which orients dst,. Let | - | denote the length of oriented segments of
as/:co and set
|bal,

Zp(o),

£

Q) Q)

SRS

Z(a,o0,b) := {

In particular note that if a@ # /b\, then
(1) Z(a,0,b) + Z(b,0,a) = Zp(0).
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Ifa= Z, then we define the entire st, as the left side of [a,0,b]. Otherwise, R, U Ry,
divides st,, into a pair of components. The closure of each of these components will
be called a side of [a, 0,b]. The projection st, —{o} — dst, maps one of these regions
to the (oriented) segment @b and the other to ba, which will be called the right and
left sides of [a, 0, b] respectively. Finally, ¢ € st, lies strictly to the left (resp. right)
of [a, 0,b] if ¢ lies in the left (resp. right) side of [a, 0,b] and is disjoint from R, U Ry.
The following elementary observations will be useful throughout this work.

Lemma 2.1. Leto € P, and a, b, ¢ € st, —{0o}. Then we have:

(i) ¢ lies strictly to the left of [a,0,b] if and only if Z(a,0,c) < Z(a,0,b).
(ii) If c lies strictly to the left of [a,0,b], then Z(a,o0,c)+ Z(c,0,b) = Z(a,0,b).

Proof. To see (i) first assume that a = b, see the left diagram in Figure 3. Then
¢ lies strictly to the left of [a,0,b] if and only if ¢ # @,b. Furthermore Z(a,o,c) <
Zp(o) = Z(a,o0,b) if and only if ¢ # a, b. Next we establish (i) when @ # b, see
the right dlagram in Figure 3. In this case, if ¢ lies strictly to the left of [a, o0, b],
then ¢ € 1nt(ba) the interior of ba in dst,. Thus Z(a,o0,c) = |cal < |ba| Z(a,0,b).

Sa)

Q)

FiGURE 3.

Conversely, if L(a,o0,¢) < A(a 0,b) (and a # b), then ¢ # 4, b. Consequently
ca| < [ba| which yields € € ba. So, since ¢ c#a, b, it follows that c lies strictly to the
left of [a, 0,b]. To see (ii) note that if @ = band ¢ # @, b, then Z(a,o0,¢)+ Z(c,0,b) =
/(a,0,¢) + Z(c,0,a) = Zp(o) = Z(a,0,b). If, on the other hand, @ # b, and c lies
strictly to left of [a,0,b], then ¢ € int(ba). Thus Z(a,0,b) = |ba| < [bc| + [éa| =
Z(a,o0,c)+ Z(c,0,b). O

3. MIXED DEVELOPMENTS OF PATHS

In this section we describe a general notion for developing a path ' = [yo, ..., V]
of P into the plane, and show (Proposition 3.1) how this concept interacts with that
of composition of paths discussed in the last section. First we define the left angle
of I' at an interior vertex -; by

0i = 0i[I'] = 0, [I'] := Z(vi-1, %, Yit1)-
Further the corresponding right angle is given by
0;" == Z(Yi1,%i,Yi-1) = £p (%) — 0,
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where the last equality follows from (1). In particular we have
(2) 0; +0; = Zp(vi) < 2m,

due to the convexity of P. Tt will also be useful to note that 6;'[[] = 6 ;[T ~"]. A
mized development of T is a path T = [7,,...,7;] in R? with left angles ;, and
right angles @l, such that

(1) v = vi-1ll = (7 = Vizall, for 1 <d < ks

(ii) 91291 or?i/:@-’, for 1 Sigk—l.
If 6; = 0; for all i, then T is a (left) development. We say T is a mized development
based at an interior vertex -y if Ei/ =0, fori < ¢, and 6; = 6; for all i > ¢. This path
will be denoted by (I'),,, and unless noted otherwise, the term I will be reserved
to indicate a (left) development. We also set (T'),, := I. Note that I is uniquely
determined once its initial condition (¥,,uo) € R? x S! has been prescribed, where
o := (71 — o)/ 71 — Foll is the direction of the first edge. A pair of paths I', Q in
R? are congruent if they coincide up to a (proper) rigid motion, in which case we
write I' = Q.

7 5
wo . [T ° i~ k+6—2m
W, ° °
’yo. A\v/—)
T y 5k—m
[ ] [ ]
* Yk * Jp
FIGURE 4.

Proposition 3.1. Let ' = [yo,...,7%], Q = [wo, . ..,we] be a pair of paths in P such
that v; = w; fori=0,...,m < {£. Further suppose that either m =k, or else w11
lies strictly to the left of [Ym—1, Ym, Ym—+1]. Then

(f)_l 0oQ=(T"100Q)

Ym?’
provided that T and Q have the same initial conditions.
Proof. Let A:=T"1oQ and A := (T)"! 0 Q. Then
A= [’Yk» . 'a’YO] o [L‘)Ov"'vwé] = [’Yk‘? <o Ymo W41, - - - 70‘)4]7

A = [ka cee 770] © [w()? cee 755] = [ﬁka cee 77m7wm+17 cee 7‘“‘)(]'
In particular note that A, A each have n := k + ¢ — 2m + 1 vertices. If we denote
these vertices by 9;, d;, where 0 < i <n — 1, then we have

f - {7’617 { S k — m, g {"}/k_i, 1 S k — m,

P =

Wi—k42m, &=k —m; Wi—kt2m, &=k —m;
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see Figure 4. In particular, v, = d;x_,. So we have to show that A= (A)
which means we need to check:

() 116: = 851l = 5 — Byl for 1 < i <n—1;
(ii) 6,/[A] = 0,/[A] for 1 <i <k —m, and 6;[A] = 0;[A] for k—m <i<n-—1.
To establish (i) note that, for 1 <i < k —m,

o

16; = Gizall = llve—i = Ve—i1ll = [Fr—i = Vo—izall = 16 — dizal]-
Furthermore, for k —m <i<n—1,

16; — i1l = llwi—krom — Wi—krom—1ll = |@i—kr2m — Gikrom—1l = 16 — di—1]-
Next we check (ii). For 1 <i <k —m,

0,'[A] = 0[] = 0 _i[T'] = 6ps[T] = 6/[(T) '] = 6:/[A].

Furthermore, for k —m <i<n —1,

0:i[A] = 0i—k12m[Q] = 0i—k2m[C] = 0;[A].
It remains to check that 6 [A] = Gz_m[ﬁ], and to this end it suffices to show:

(3) 0 n[A] = 0[] — 0,,]Q) and  6),_,,[A] = 0, [T] — 0]
To establish the first equation in (3) note that
Om[Q + 0, [A] = Z(Win—1,Wm, Win+1) + £(0k—m+15 Fk—ms Ok—m—1)
= Z(Ym—-1,Yms Wm+1) + Z(Wmt1, Ym, Ymt1)-
Further, since wy,+1 lies strictly on the left of [Yi—1, Ym, Ym+1], Lemma 2.1(ii) yields

4(’Ym—1u’>/muwm+l) + é(wm—i-l,’)/m)’)/m—i-l) = 4(7m—177m7’7m+1) = em[r}

The second equation in (3) follows from a similar calculation, once we check that
Wi+ lies strictly to the left of [¥,,_1, ¥, Ym1)- Indeed, since wp, 11 lies strictly on
left of [Ym—1,Ym, Ym+1], Lemma 2.1(i) yields

em[Q] = é(wm—lawmawm—i—l) = A(Vm—l,")/m’wm—l-l) < Z('}’m—la’)’mem—l—l) = em[F]

S0 0, [Q] = 0,,[Q] < 0,,[T'] = 0,,[I']. Consequently,

4(7m—17ﬁm7wm+1) = 4<wm—17wﬂwwm+1) = em[Q] < Hm[r] = 4(7m—177m7ﬁm+1)'
So, by Lemma 2.1(i), Wy, lies strictly to the left of [%,, 1, ¥, V1] as claimed. O

4. THE TRACING PATH OF A CUT TREE

Here we describe precisely how a cut tree T" determines an unfolding of P. Further
we show that the boundary of this unfolding coincides with a development of a
certain path I't which traces T. This leads to the main result of this section,
Proposition 4.4 below, which shows that an unfolding of P generated by T is simple
if and only if the development of I'r is simple. We start by recording some basic
lemmas. In this section T' needs not be monotone.

Since leaves of T are vertices of P, T partitions each face of P into a finite
number of polygons. Let Fr(P) := {F;} be the disjoint union of these polygons,
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and 7: Fp(P) — P be the projection generated by the inclusion maps F; — P.
Glue each pair F;, F; € Fr(P) along a pair Ej,, Ejy of their edges if and only if
m(Ein), 7(Ejm) € T and 7(Eiy,) = 7(Ejm). This yields a compact surface Pr (which
we may think of as having resulted from “cutting” P along T'). The inclusion maps
F;, — P again define a natural projection 7w: Pr — P, which is the identity map
on int(Pr) := Pr — OPr = P —T. So, since T is contractible, Pr is a topological
disk. Also note that Pr inherits an orientation from P, which in turn induces a
cyclical ordering vy, . .., v, on the vertices of Pr so that Pr lies to the left of 0Py,
i.e., every v; has an open neighborhood U; in Pr such that w(U;) lies to the left
of [7(Vi—1),7(v;), m(Vi+1)] in P. Since Pr contains no vertices in its interior, and
all the interior angles of dPr are less than 27, it is locally isometric to the plane.
Therefore, since Pr is simply connected, it may be isometrically immersed in the
plane, e.g., see [9, Lem. 2.2]. An immersion is a locally one-to-one continuous map,
and is isometric if it preserves distances. So we have established:

Lemma 4.1. Pr is simply connected and is locally isometric to R%. In particular,
there exists an isometric immersion Pr — R2. ]

Any such immersion will be called an unfolding of P (generated by T') provided
that it is orientation preserving, i.e., Pr lies locally on the left of Py, with respect
to the orientation that OPr inherits from OPp. Recall that for any set X C Pr, we
let X denote the image of X under the unfolding Pr — R?, and say X is simple
provided that X — R? is one-to-one.

Lemma 4.2. Pr is simple if and only if OP7 is simple.

Proof. This is a special case of the following general fact, see [8]: if M is a connected
compact surface with boundary components 9M;, and M — R? is an immersion,
then M is simple if and only if each dM; is simple. g

So, as far as Diirer’s problem is concerned, we just need to decide when OPr7 is
simple. To this end it would be useful to think of P not as the restriction of the
unfolding of Pr to 0Pr, but rather as the development of a path of P. This path is
given by

FT = [?}0, ey Un] = [Tl'(f?jo), . ,W(ﬂn)],
where vy, ..., U, is the cyclical ordering of the vertices of dPr mentioned above.
Thus 'y traces m(0Pr) = T, and 7 establishes a bijection v; <> v; between the
vertices of I'r and 0Pp. For each v; let ;t:gi denote the star of v; in Pp. Then, since
Py lies to the left of 9Pp, it follows that

Lemma 4.3. For every vertex v; of I'p, the left side of [vi—1,vi, vi+1] in P coincides
with 7 (stg,). O

In particular, the left angles of I'r in P are the same as the interior angles of Pr. So,
since the unfolding Pr — R? is orientation preserving, it follows that the left angles
of OP7 are the same as those of a development I'r of I'r. Thus Pr is congruent
to 'z, and Lemma, 4.2 yields:

Proposition 4.4. Py is simple if and only if D1 is simple. O
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5. CRITERIA FOR EMBEDDEDNESS OF IMMERSED DISKS

As we discussed in the last section, an immersed disk in the plane is simple (or
embedded) if and only if its boundary is simple. Here we generalize that observation.
Let D C R? be the unit disk centered at the origin, with oriented boundary 9D.
For p, ¢ € 9D, let pqg C 0D denote the segment with initial point p and final point
q. Recall that an immersion is a continuous locally one-to-one map. Further recall
that for any X C D, and mapping f: D — R?, we set X := f(X), and say X is
simple if f is one-to-one on X. A simple curve segment in R?, whose end points do

FIGURE 5.

not have the same height, is weakly monotone (with respect to the direction (0, 1))
if it may be extended to an unbounded simple curve by attaching a vertical ray
to its top end point which extends upward, and a vertical ray to its bottom end
point which extends downward, see Figure 5. The main result of this section is that
an immersed disk is embedded whenever its boundary admits a decomposition into
weakly monotone paths:

Proposition 5.1. Let D i> R? be an immersion with polygonal boundary. Suppose
there is a pair of points po, p1 in OD such that pop1 and pipo are weakly monotone.
Then D is simple.

The basic strategy for proving the above proposition is to extend f to an immer-
sion of a larger disk which has simple boundary and thus is one-to-one. To this end
first note that by polygonal boundary here we mean that there are points v;, i € Zy,
cyclically arranged along 0D so that f maps each oriented segment v;v;11 to a line
segment. Then we obtain a closed polygonal path [g,...,] in R2. Since f is
locally one-to-one, each v; has a neighborhood U; in D such that U; lies one side of
[Ui—1,7;,Tir1] as defined in Section 2.3, and it is easy to see that this side must be
the same for all 4. Thus we may say that D lies locally on one side of D.

Proof of Proposition 5.1. As discussed above, D lies locally one one side of the path
OD. We may assume that this is the left hand side after composing f with a reflection
of R?. Since pop1, Pipo are weakly monotone, they are simple and their end points
have different heights. Suppose that p, is the end point with the lower height, and
let Ry be the vertical ray which emanates from p, and extends downward. Similarly,
let Ry be the vertical ray which emanates from p; and extends upward. Let C be
a circle so large which contains D in the interior of the region it bounds. Then Ry,
R, intersect C' at precisely one point each, say at xg and x1 respectively, see Figure
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6. Now consider the oriented composite path zox1 := xopy U pop1 U D121 shown on
the right diagram in Figure 6. Since popr is weakly monotone, xox; is simple, and
thus it divides the region bounded by C into a pair of disks. Let Dy be the disk
which lies to the right of xgz;. Similarly, let x1z¢ := x1p; U P1po U Pyxo, and Dq
be the disk which lies on the right of the oriented path x1xg, as shown in the left
diagram in Figure 6. Now glueing Dy and D; along the segments zop, and z1p;
yields an immersed annulus A. Note that by construction A lies locally on the right
of dD. Thus, gluing A to D along 0D yields an immersed disk, say D’. Note that
0D’ = C which is simple. Thus it follows (via [8, Lem. 1.1], or Lemma 8.4) that D’
and consequently D is simple as claimed. O

The criteria proved above were the precise conditions we need in the proof of The-
orem 1.1. See Appendix A for more general criteria concerned with embeddedness
of immersed disks.

6. STRUCTURE OF MONOTONE CUT TREES

Here we describe how the leaves of T" inherit a cyclical ordering from P, which in
turn orders the branches of T'. This will be used to define a sequence of paths I'; in
T, together with a class of related paths I';. The paths I'; join the top and bottom
vertices of P, while I'; are closed paths which correspond to the boundary of certain
disks D; C Pr.

6.1. Leaves ¢; and junctures j;. Let ' := 'y be the path tracing T defined in
Section 4. Note that each edge F of T appears precisely twice in I', because there
are precisely two faces Fy, Fy of Pp such that w(F}) and 7(F3) are adjacent to E.
This quickly yields:

Lemma 6.1. Let v be a vertex of T which has degree n in T. Then there are
precisely n vertices of I' which coincide with v. ]

In particular each leaf of T occurs only once in I'. Consequently, I' determines a
unique ordering ¢y, ¢1,...,¢;_1 of the leaves of T. Further we set ¢;, := ¢;, and
designate ¢y (the top vertex of P) as the initial vertex of I". Recall that a vertex of
I" is simple if its adjacent vertices are distinct.

Lemma 6.2. Any vertex of I' which is not a leaf or root of T is simple.
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Proof. Let v; be a vertex of I' which is not simple. We will show that the degree of
v; in T is 1, which is all we need. Since v; is non-simple, the left side of [v;_1, v;, Vit1]
is the entire star st,, by definition. Thus, by Lemma 4.3, W(gcgi) = sty;. Choose
r > 0 so small that the metric “circle” C' C Pr of radius r centered at v; lies in the
interior of sty,. Then 7(C) C int(sty,) is a simple closed curve enclosing v; which
intersects T' only once. Thus degp(v;) =1 as claimed. O

Using the last lemma, we now show that the leaves of T' may be characterized via
the height function h as follows:

Lemma 6.3. A vertex of I is a local mazimum point of h on the sequence of vertices
of ' if and only if it is a leaf of T.

Proof. Suppose that v is a leaf of T', and let u, w be its adjacent vertices in I'. Since
T is monotone, and v # r, there exists a vertex v’ of T" which is adjacent to v and
lies below it. Since degp(v) = 1, u = v/ = w. In particular, u, w lie below v. So
v is a local maximizer of h. Conversely, suppose that v is a local maximizer of h.
Then u, w lie below v, because T' does not have horizontal edges. Let €, €, be
the simple monotone paths in 7" which connect u, w to r respectively. Then vu e 2,
and vw e ), are simple, since they are monotone. Hence v = w, by the uniqueness
of simple paths in T'. So v is not simple and therefore must be either a leaf or the

root of T', by Lemma 6.2. The latter is impossible, since v is a local maximizer of
h. 0

{1
Jo
o

FIGURE 7.

It follows from Lemma 6.3 that between every pair of consecutive leaves ¢;, €;11
of I' there exists a unique vertex j;, called a juncture, which is a local minimizer of
h, see Figure 7. Note that some junctures of I' may coincide with each other, or
with the root r of T. For any ordered pair (v, w) of vertices of T' let (vw)r be the
(unique) simple path in 7" joining v to w. Note that the paths ¢;j; and j;¢;11 of I’
are monotone and therefore simple. Thus

(4) (tigi)r = (biji)r, and  (jiliv1)r = (Jiliv1)T-
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6.2. Branches 5; and the paths I';. For 0 < < k — 1, we define the branches of
T as the paths 5; := (¢;r)p, which connect each leaf of T" to its root. Note that, by
(4), we have

(5) Bi = (bir)r = (liji)r ® (jir)r = (Liji)r @ (jir)7-
Having ordered the branches of T', we now describe the first class of paths which are
useful for our study of monotone trees:

(6) Li = (boli)r ® Bi = (boji)r ® (Jir)T,
for 0 < i < k—1. See Figure 8 for some examples. Next we record how the
composition of these paths is related to the branches of T

FIGURE 8.

Lemma 6.4. For 0 <i <k —2, F;l ol = 5;_11 ® i1,
Proof. By (4), (5) and (6)
F-_l O FZ+

; ((Logi)r 7“)T)71 o ((Lolis1)r ® Biy1)
= (rji)r ® (Mo)r 10 (Loji)r @ (Jiliv1)r ® Bit1
= (rji)r ® (jili+1)T ® Bit1
= (1lit1)T ® Bit1
= i_+11 ® fit1. O
The following observation shows, via Lemma 2.1(i), that I';4; lies to left of I';
near j;, if j; is an interior vertex of I';.
Lemma 6.5. If j; # r, then 6;,[I'it1] < 6;,[I], for 0 <i <k —2.

Proof. Let v, w be the vertices of ;41 which precede and succeed j; respectively.
By Lemma 6.2, v # w. Next let u denote the vertex of I'; which succeeds j;,
see Figure 9. We need to show that Z(v,j;,w) < Z(v,j;,u). Suppose, towards
a contradiction, that Z(v,j;,w) > Z(v,ji,u). The equality in the last inequality
cannot occur, because by definitions of I'; and I';11, u lies below j; while w lies
above it (so u # w). Thus we may assume that Z(v,j;,w) > Z(v,j;,u). Then,
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FIGURE 9.

by Lemma 2.1(i), u lies strictly in the left side S of [v,j;, w]. Consequently uj;
intersects the interior of S, which means int(S) N'T # (). But this is impossible
because S = w(st;i) by Lemma 4.3 which yields

(7) int(S) = int (w(st5)) = 7 (int(st; )) C 7 (int(Pr)) = P —T. O
Now we are ready to prove the main result of this subsection:

Proposition 6.6. For 0 <i<k—2, ([;) 'ol;y = (ﬁ;rll ® Bit1)j,-

7

Proof. By Proposition 6.4, /6’;_11 ® i1 = I lo I';41. So we just need to check that

(T, oTiy1);, = (T;)~! o Tyy1, which follows from Proposition 3.1 via Lemma 6.5.
More specifically, there are two cases to consider. If j; = r, then I'; is a subpath
of I'; 11, which corresponds to the case “m = k” in Proposition 3.1. If j; # r, then
Lemma 6.5 together with Lemma 2.1(i) ensure that I';4; lies to the left of I'; near

ji, and so the hypothesis of Proposition 3.1 is again satisfied. ]

6.3. Dual branches ] and the paths I',. To describe the second class of paths
which we may associate to a monotone tree, we first establish the existence of a
collection of paths ] which are in a sense dual to the branches f3; defined above.

Proposition 6.7. Fach leaf ; of a monotone cut tree T may be connected to the
top leaf Ly of T via a monotone path B in P, which intersects T only at its end
points.

Assume for now that the above proposition holds. Then for each leaf ¢;, we fix a
path 8] given by this proposition and set

T = {(fomr-ﬁé, 1<i<k-1;

® r 1=k.

Note that since the interior of /5 lies in P — T, it lifts to a unique path 5{ in Pr,
see Figure 10, such that W(B;) = B!. Consequently each I'; corresponds to a simple
closed curve f; in Pr where f; = (ZOE)aPT . EZ’, for1<i<k-—1, and 1:2, := OPr.
Let D; C Pr be the disk bounded by f; which lies to the left of it, and note that
D, = Pr. The unfolding Pr — P7 C R? induces unfoldings D; — D; C R?. Thus,
as was the case for 0 Pp discussed in Section 4, there are two congruent ways to map
each boundary curve dD; to R?: one via the development of 7 o f; = TI", and the
other via the restriction of the unfolding D; to dD;. So we may record:
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Lemma 6.8. For 1 < i < k, the mappings 0D; — R? generated by I'; and 0D;
coincide, up to a rigid motion. In particular, I'; bounds an immersed disk. ]

To prove Proposition 6.7, we need the following lemma whose proof is similar
to that of Lemma 6.5. Recall that j; are local minimizers of h on I' which traces
T = w(0Pr). Thus j; are local minimizers of h o7 on OPr. The next observation
generalizes this fact.

Lemma 6.9. Fach juncture j; of I' is a local minimizer of how on Prp.

Proof. Let v, w be vertices of I' which are adjacent to j;. If j; = 7, then there
is nothing to prove, since r is the absolute minimizer of h on P. So assume that
ji # 7. Then v # w by Lemma 6.2. Consequently vw := [v, j;, w| determines a pair
of sides in stj,. Let X C st;, be the set of points whose heights are smaller than
h(j;). Then X is connected and is disjoint from vw. Thus X lies entirely on one
side of vw which will be called the bottom side, while the other side will be the top
side. Recall that S := 7T(St~) is one of the sides of vw by Lemma 4.3. We claim
that S is the top side, Wthh is all we need. To this end note that the path j;r of T
intersects X. So T intersects the interior of the bottom side. But int(S)NT = 0 by
(7). Thus S cannot be the bottom side. O

Now we are ready to prove the main result of this subsection:

Proof of Proposition 6.7. Let us say a path in Pr is monotone if its projection into
P is monotone. We will connect E to Zo with a monotone path Ez’ in Pr which
intersects OPr only at its end points. Then S := W(B;) is the desired path We
will proceed in two stages: first (Part I) we construct a monotone path B’ in Pr
which connects € to 60, and then (Part II) perturb ﬂ’ to make sure that its interior
is disjoint from dPr. See Figure 11 and compare it to Figure 10.

(Part I) If £; = £y (i.e., 1 = 0), we set B = ﬁg and we are done. So suppose that
£; # Lo. Then there is a Vertex v of P adjacent to ¢; which lies above it. The only
edge of T' which is adjacent to £; connects to it from below. Thus £;v is not an edge
of T', and therefore corresponds to a unique edge Eﬁ of Pr. This will constitute the

first edge of BZ . There are three cases to consider:

(i) v =to,
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(ii) v is a leaf of T" other than /y,

(iii) v is not a leaf of T'.
If (i) holds, we are done. If (ii) holds, then we may connect v to an adjacent vertex
v’ lying above it to obtain the next edge vv’ of BZ’ If (iii) holds, then, by Lemma
6.9, v cannot be a juncture of I', because it is the highest point of ¢;v. Thus v lies in
the interior of a subpath £, j, or j,¢,11 of I'. In particular, there exists a monotone
subpath v¢,, of I or vl 41 of T which connects v to a leaf v’ of T' which lies above
it. Lifting this path to dPr will extend our path to ©v'. Now again there are three
cases to consider fgr v/, as listed above, and repeating this process eventually yields
the desired path /..

(Part II) After a subdivision, we may assume that all faces of Pr are triangles.
If an edge E of ,B’Z lies on OPr, let F' be the face of 0Pr adjacent to F, choose a
point p in the interior of F' which has the same height as an interior point of E,
and replace E' with the pair of line segments which connect the vertices of E to
p, see the left diagram in Figure 12. Thus we may perturb each edge of 3! which

I

FIGURE 12.

lies on OPr so that Eg intersects dPr only at some of its vertices. Let v be such a
vertex. Further let a (resp. b) be a point in the interior of the edge of ] adjacent

to v which lies above (resp. below) v. We need to replace the segment ab of BZ’ with
another monotone segment in Pr which avoids v; see the right diagram in Figure
12. Pick a point p in the interior of the star of Pr at v which has the same height
as v. It suffices to construct a pair of monotone paths in int(Pr) = P — T which
connect a and b to p. The first path may be constructed as follows, and the other
path is constructed similarly. Let R,, Rp be the rays which emanate from v and
pass through a, b respectively. These rays determine a region R in the star of Pr
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at v which is contained between them. There exists a face F' of Py which contains
a and intersects the interior of R. If p € F, then we connect a to p with a line
segment and we are done. If p € F', then F' has a unique edge E which lies in the
interior of R and is adjacent to v. There is a point @’ in the interior of E which lies
below a (because E is adjacent to v which is below a). Connect a to a’ with a line
segment. Next consider the face of Py which is adjacent to E and is different from
F. If this face contains p then we connect a’ to p with a line segment and we are
done. Otherwise we repeat the above procedure until we reach p. ]

7. AFFINE DEVELOPMENTS OF MONOTONE PATHS

Here we study the effects of the affine stretchings of P on the developments of its
piecewise monotone paths. The main results of this section are Propositions 7.5 and
7.6 below. The first proposition shows that affine stretchings of piecewise monotone
paths have piecewise monotone developments, and the second proposition states
that this development is simple if the original curve double covers a monotone path.
First we need to prove the following lemmas. At each interior vertex -; of a path '
in P, let ©; denote the angle between ~;_1 — v;, and vj+1 — ~; in R>. Further recall
that 6;, 0;' denote the left and right angles of I" in P.

Lemma 7.1. At any interior vertex v; of a path I in P, we have 0;, 0;' > ©;.

Proof. Let S be a unit sphere in R? centered at ;, and 5;_1, 7,41 be the projections
of ;1 and ;41 into S as defined in Section 2.3. Then O; is the geodesic distance
between 7;11 and 4;_1 in S. So it cannot exceed the length of any curve in S
connecting ¥;;1 and 7;_1, including those which correspond to 6;, 6; . (|

Let P* denote the image of P under the affine stretching (z,v, 2) — (/) y/\, 2).
For any object X associated to P we also let X* denote the corresponding object
of P*. Further, we let X* denote the limit of X* as A\ — oco. In particular note
that P lies on the z-axis. A path is monotone if the heights h of its vertices form
a strictly monotone sequence.

Lemma 7.2. Let T’ be a monotone path in P. Then 65° = (/) = =.

Proof. For each vertex v; of I', h(v?) is constant. Thus h(y°) = h(v;). Since T
is monotone, it follows that 77 lies in between 77°; and 7Y, on the z-axis. So
Y521 —5° and 7Yy — 15° are antiparallel vectors, which yields that ©¢° = . By
Lemma 7.1, 62, (6;)* > ©2. Thus 6, (6,/)>* > 7. On the other hand, by (2),
6?0 + (9/)00 < 2m. So 0;)0 = (91/)00 = T. ]

The last lemma leads to the following observation.

Lemma 7.3. Let v be a vertex of P. Then, Zp(v)® = 27 if v is not the top or
bottom vertex of P. Otherwise, Zp(v)> = 0.

Proof. The last statement is obvious. To see the first statement note that if v is
not an extremum point of h, then since P is convex there exists a monotone path
[u,v,w] in P, where u and w are adjacent vertices of v. Let 6, 6’ be the angles of
this path at v. Then 0 = (¢)*° = 7 by Lemma 7.2. So Zp(v)>® =27 by (2). O
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A path is piecewise monotone if it is composed of monotone subpaths, or does
not contain any horizontal edges. The last two lemmas yield:

Lemma 7.4. Let I" be a piecewise monotone path in P, and ; be an interior vertex
of U. If v; is a local extremum of h on T, then 6°, (6;)>° = 0 or 2w. Otherwise
0° = (0,)>*° = 7.

Proof. If 7; is not a local extremum of h (on I'), then [v;—1,7:,Vi+1] is a monotone
path. Consequently, 67° = (6,)>° = 7 by Lemma 7.2 as claimed. Next suppose
that +; is a local extremum of h. If ~; is the top or bottom vertex of P, then
Zp(7:)® =0, by Lemma 7.3, which yields that 62° = (6;,')> = 0 by (2), and again
we are done. So suppose that ~; is not an extremum vertex. Then Zp(v;)® = 27
by Lemma 7.3, and consequently 65° + (6;')> = 27 by (2). So we just need to check
that 6% = 0 or 27. To see this note that if 4; is not simple, then 0} = Zp(y;)*,
which yields that 67° = 27, by Lemma 7.3. So we may assume that «; is simple. If
~i is a local maximum (resp. local minimum) of h, then there exists a vertex v of P
which is adjacent to v; and lies above (resp. below) it. Consequently, v lies strictly
either to the right or left of [vi_1,7i,Vi+1]. Suppose that v lies strictly to left of
[Vi—1,7i,Yi+1]. Then 49;\ = Z(vi—1,7,v) + Z(v,7,7i+1)", by Lemma 2.1(ii). But
[vi—1,7,v] and [v,7;,¥it1] are monotone. Thus by Lemma 7.2, Z(vi—1,7vi,v)® =
T = Z(v, %, Yit1)>°. S0 07° = m+m = 2x. If, on the other hand, v lies strictly to the
right of [vi—1, Y4, Vi+1], then v lies strictly to the left of [y;11,7i,vi—1], and a similar
reasoning shows that (6;")> = 2, or 62° = 0. O

We will assume that all developments below have initial condition ((0,0), (0, —1)),
as defined in Section 3. A monotone path is positively (resp. negatively) monotone
provided that the heights of its consecutive vertices form an increasing (resp. de-
creasing) sequence.

Proposition 7.5. Let T be a piecewise monotone path in P and T be a mized
development of T. Then T ° is a path with vertical edges. Furthermore, each subpath
of T which corresponds to a positively (resp. negatively) monotone subpath of T'
will be positively (resp. megatively) monotone.

Proof. Recall that h(y3°) = h(v;). So since I' is monotone, 77° # ~7°,. Then,
since [7; =734 || = 0 =4I, it follows that [[F5° — 77 | = |17 — 77% ]| # 0.
So 47° # 72°,, which means that T is a path. In particular 6, (9/)00 are well
defined, and are limits of 5;\ , (51-/)’\ respectively. Now Lemma 7.4 quickly completes
the argument. O

The doubling of a path ' = [, ..., 7] is the path

DT =T o T = [0, 71+« s Yoy Yooy Yoy - -+ » Y15 70) == [0« - - » Y2k]-

Our next result shows that doublings of monotone paths which end at vertices of P
have simple unfoldings once they get stretched enough.
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Proposition 7.6. Let I' = [yo,...,7%] be a monotone path in P such that vy is a
verter of P different from its top or bottom vertex, and DI := (DF)Ve be a mized
development of DI based at ~yp for some 0 < £ < k. Then, for sufficiently large A:
(i) DT is simple.
(ii) The line which passes through 7}, Wg‘k, intersects DI'A at no other point.

(iil) If o), B denote the interior angles of DT e [7%\14’7())\] at 7y, Wg‘k, then o +
,6’3‘ < 7. Furthermore, a(}, 66\ may be arbitrarily close to w/2.

Proof. We proceed by induction on the number of edges of I'. Clearly the proposition
holds when I' has only one edge. Suppose that it holds for the subpath F{‘ =
[, ...,7] of T*. Then we claim that it also holds for I'*. Henceforth we will
assume that A is arbitrarily large and drop the explicit reference to it. Let Li be
the line passing through the end points 7, 79,_; of DI'1, and o be the midpoint
of ¥1¥9,_1. We may assume, after rigid motions, that o is fixed, L; is horizontal,
and DT'q lies above L1, see Figure 13. Furthermore, since by assumption ~; is not
the top or bottom vertex of P, we may assume that the left angle of DI' at 4
(which coincides with the total angle of P at 7y) is arbitrarily close to 27 by Lemma
7.3. Then it follows that #5._; lies to the right of 7; on L;, just as depicted in

Yok

FiGURE 13.

Figure 13. Now we claim that 7, 75, lie below L;. To see this, let ay, 81 be the
interior angles of DTy ® [Yo_1,7;] at 7y, Jo,_1 respectively. Further let 01, Ogp_1
denote respectively the left angles of DT at 7, and 7F,;,_;. We may assume that oy,
B1 =~ 7/2 by the inductive hypothesis on I';. By Lemma 7.2, we may also assume

that 61,05,_1 =~ 7. So
_ 3T — 3
©) ar+ 6~ 5 and S+ 01~ 5

which show that 7, 7y, lie below L; as claimed. Next we show that ¥,%¢, Yor_17V2k
do not intersect, which will establish (i). To this end it suffices to check that
o) + 1 > m, where

0/1 =21 —a; — 0, and Bi =21 — B1 — Ogp_1.

There are two cases to consider: either 6, = 0 or 51’ = 6, by the definition of
mixed development. If §; = 01, then

01+ 001 =01+ 02,1 =01 + 6,/ = Lp(m1) < 2,
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where the identity 9,1 = 67’ used here follows from the definition of DT'. If, on
the other hand, @1/ =0/, then

01+ 0o 1 = 2 — 61 + O 1 = 27 — 01/ + Oop_1 = 2.

So we always have 6 + 05,1 < 2m. Also note that a1 + 81 < 7 by the inductive
hypothesis on I'y. Thus it follows that,

(10) o+ By =dm — (a1 + B1) — (01 + O —1) > 4m — 7 — 21 =,

as desired. To establish (ii), let Ly be the line passing through ¥, 7. By (10)
the quadrilateral Q) := %¥¥ar_17V2r is convex. Thus 7, 79,_; lie on the same
side or “above” L. It remains to check that DI'; is disjoint from Lg. To this
end note that the length of DI'; is bounded from above, since affine stretchings
do not increase lengths. So DI’ is contained in a half disk H of some constant
radius which lies above L; and is centered at o. Further 7,7, and 7q,_179, are
almost orthogonal to Ly by (9), and they have the same length, which is bounded
from below (by |h(y1) — h(70)]). Thus Lg is nearly parallel to L; while its distance
from o is bounded from below. So Lg will be disjoint from H. Finally, (iii) follows
immediately from (10), since @) is a simple quadrilateral and thus the sum of its
interior angles is 2. O

8. PROOF OF THEOREM 1.1

For convenience, we may assume that v = (0,0,1). Let I' := I'r be the path
which traces T as defined in Section 4. Recall that, as we showed in Section 6, I'
admits a decomposition into monotone subpaths:

I'=/tojoejolie---elp 1511 jr_14o.

Also recall that ¢;j; are negatively monotone, and j;¢;11 are positively monotone.

By Proposition 4.4 we just need to show that the development ™ s simple for
large . To this end, we first record how large A needs to be, and then proceed by
induction on the number of leaves of T'.

8.1. Fixing the stretching factor \. Let I';, I'; be the paths defined in Section
6, and recall that these paths also admit decompositions into monotone subpaths:
[; = flojoejolie---eli 1, 1@ 1lielir, 0<i<k-—1,

i = lojoejolye---eli_1ji_1eji_1lielily, 1<i<k.
Let I'?, (I'))* denote the affine stretching of these paths, and f?, (Fj))‘ be their
corresponding developments with initial condition ((0,0),(0,—1)), as in Section 7.
We need to choose A so large that:
(C1) For each positively (reizf\. negaftively) monotone subpath of T'; or ', the cor-
responding subpath of I'; or (Fg))‘ is positively (resp. megatively) monotone.
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(C2) (f?)_l o fj\ﬂ is simple and lies on one side of the line L passing through
its end points. Furthermore, L* is not vertical (see Figure 14).
To see that (C1) holds let ~;, 7;° denote the vertices of T, T, and set

1, .= _ 1,
0 <e<gmf |77 =755l = 5 inflh(y) — h(y;-1)l.

Choose A so large that |W])‘ —7;°|l < €. Then 7;‘ lies below (resp. above) 73\_1 if and
only if 75° lies below (resp. above) 752 ;. Thus monotone subpaths of fj‘ correspond

to those of f?o, which by Proposition 7.5 correspond to the monotone subpaths of
I;. Similarly we may obtain an estimate for A in (I'})*. To see that (C2) holds note
that, by Proposition 6.6,

AN-1 T — _
() oTi = (B )t e {\+1)j3 = (Dﬁi)\Jrl)jl?"
So, since [3; are monotone, it follows from Proposition 7.6 that the right hand side
of the above expression is simple and lies on one side of the line L* passing through

its end points. Further, L*» becomes arbitrarily close to meeting (f;-\)*l o f;-\ 11

orthogonally, as A grows large. At the same time, the edges of (f;-\)*l of;-\ 11 become
arbitrarily close to being vertical, by Proposition 7.5. Thus L* cannot be vertical
for large A. For the rest of the proof we fix A to be so large that (C1), (C2) hold,
and drop the explicit reference to it.

8.2. The inductive step. It remains to show that I is simple. To this end recall
the definition of weakly monotone from Section 5, and observe that:

Lemma 8.1. For 0 <i <k — 1, if T; is weakly monotone, then I"; ;1 is simple.

Proof. By Lemma 6.8, I';.; bounds an immersed disk. So, by Proposition 5.1, it
suffices to show that I'/;; admits a decomposition into a pair of weakly monotone
curves. Indeed, I7;41 = fyj; ®jilo, see Figure 15. Note that £yj; is weakly monotone,
because it is a subpath of T';. To show that 5;{y is also weakly monotone, via (C1), it
suffices to check that j;¢y is monotone. This is the case, since j;lg = jili+104;i+140 =

Jiliy1 0 B, 1, and jiliy1, Bi,, are both positively monotone. O
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FIGURE 15.

Now recall that I') = T' by (8). Thus, by Lemma 8.1, to complete the proof
of Theorem 1.1 it suffices to show that T'y_; is weakly monotone. By (C1), Ty is
monotone, since I'g = fy is monotone. So it remains to show:

Lemma 8.2. For 0 <i <k — 2, if I'; is weakly monotone, then so is I;,.

To establish this lemma, let a be a point on the y-axis which lies above all paths
T, I‘7 Further let 7; be the final point of I'; and b; be a point with the same z-
coordinate as 7; which lies below all paths fj, FT We may also assume that all b;
have the same height. Now set

fz‘ = CLZ() Ofi o T;b;.

Then T; is weakly monotone if and only if fz is simple. Thus to prove Lemma
8.2, we need to show that I';11 is simple, if I'; is simple. To this end note that
Ty = aZiH ° Zi+1bi+1. Thus it suffices to check that

(1) a@-ﬂ and liy1bita are each simple,
(D) aliy1 N lizabipr = {lipa }.

8.3. Proof of the inductive step. It remains to establish items (I) and (II) above

subject to the assumption that fz is simple, or I'; is weakly monotone, in which case
I;11 is also simple by Lemma 8.1.

8.3.1. (I). First we check that £;1b;1 is simple. Note that
livrbigr = lig1Tip1 @ Tig1bip1 = lip17 @ Tig1biya,

see the right diagram in Figure 16. Recall that 7;;1b;+1 is negatively monotone by
the definition of b;y;. Further, by (C1), ¢; 117 is negatively monotone as well, since
£; 117 is negatively monotone by the definition of I';y;. Sﬁo lit1biqq is monotone
and therefore simple. Next we establish the simplicity of af; 1. Note that al;11 =
aj; ® jiliv1, and aj; is simple because it is a subpath of T';, see the left diagram in
Figure 16. Furthermore, j,f; 11 is simple as well, because it is a subpath of I";4.
It remains to check that aj; N 7;¢i+1 = {j;}. To see this note that aj; = aly e {yj;.
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Thus it suffices to show that

lojiNgiliy1 ={j;}, and alyNjlipy =0
The first equality holds because?oji and j;/;11 are both subpaths of T”; ;1. To see
the second equality note that j;¢i41 = jifi1 is positively monotone by (C1) while
aly is negatively monotone by definition of a. So it suffices to check that ¢; 1 lies
below ¢y. This is the case because ¢; 10y = liy10y = Bg+1, and 5£+1 is positively

monotone. Thus ¢; 11/ is positively monotone by (C1).

8.3.2. (II). Let

A = b o (riji)g—1 ® (Jilo)
see the middle diagram in Figure 16. Since each of the paths in this composition is
positively monotone, A is simple. Let S C R? be the slab contained between the
horizontal line passing through a and the horizontal line on which all b; lie. Then
S — A will have precisely two components, whose closures will be called the sides of
A, and may be distinguished as the left and the right side in the obvious way. To
establish claim (II) above it suffices to show:

(i) al;y1 lies to the left of A,
(ii) one point of £;1b;41 lies strictly to the right of A,
(iii) Zﬂ_lbﬂ_l NA= {Zﬂ_l}.
Indeed, (ii) and (iii) show that all of £;1b;11 lies to the right of A, because £;11b;11
is connected and lies in the slab S. This together with (i) show that af;y; and

li+1bi+1 may intersect only along A, and then (iii) ensures that the intersection is
l;1q. It remains to establjsh (zach of ‘Ehe three items lis:ced abovg:
(i) We have alii1 = aly @ loj; ® j;liy1. Note that aly and j;fiy1 lie on A. Thus

it remains to check that £gj; lies to the left of A. We have

g1 * boa,

A= bljz (] EZZO (] an.
Note that fpj; meets fpa and b;j; only at its end points, since all these paths lie

on T;. Further ¢5j; meets j;0 again only at its end points, since these paths lie on
f; +1- So A meets lyj; only at its end points. It suffices to show then that a point
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in the interior of ZOEi lies on the left of A. This is so, because D;; lies on the left
of IV;;1 and the orientations of A and I’;;1 agree where they meet.

(ii) Near £;,1, A coincides with I7;;1. Let C be a circle centered at f;1 whose
radius is so small that it intersects I7;;1 and A only at two points, see the right
diagram in Figure 17. Then there exists a neighborhood U of Ziﬂ in D;41 whose

=

r T, _
i+1 Di-i-l +1 v T C
- _ e
lig 1" E
E »

FIGURE 17.

image U coincides with the left side of ﬁi.ﬁrl in C. Consider the edge E of E+1bi+1
which is adjacent to f;;1, and let E be the corresponding edge of fi+1 in OPr,
see the left diagram in Figure 17. We claim that there is a point of E inside
C' which lies strictly to the right of I';,q, or is disjoint from U, which is all we
need. To see this recall that the unfolding Pr — R? is locally one-to-one. Thus it
suffices to note that the interior of E is disjoint from D;;1. Indeed, since F C dPr,
ENDjy = Eﬁﬂ Dix1NOPr=EnN{yli1 = {€i+1}-

(17i) Since ¢;+1b;4+1 is negatively monotone, it may intersect A only along its
subpath which lies below /;,1, that is b;/; ;1. So it suffices to check that b;f; ;1 N
liv1bir1 = {is1}, or bibiyq = bili 1 @ ;1 1b;11 is simple. To see this note that

bibiy1 = biT; @ T;T; {1 ®Tiy1biy1,

see Figure 18. The first and third paths in this decomposition are simple. Further,
Tl = f;l oTl; 11 which is also simple by (C2). Furthermore, again by (C2), 7771
lies above the line L passing through its end points, while b;7; and 7;11b;41 lie below
L (“above” and “below” here are all well-defined, since L is not vertical by (C2)).
So b;b;11 is simple, as claimed.

lit1e

S g A
bit  4bit1

FIGURE 18.
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APPENDIX A: MORE ON EMBEDDEDNESS OF IMMERSED DISKS

Here we generalize Proposition 5.1, in case it might be useful in making further
progress on Diirer’s problem. We say R C R? is a ray emanating from p if there
exists a continuous one-to-one map 7: [0, 00) — R? such that 7([0,00)) = R, r(0) =
p and ||r(t) — p|| — oo as t — oo. Also, as before, for any X C D, and mapping
f: D — R? weset X := f(X), and say X is simple if f is one-to-one on X.

Theorem 8.3. Let D i) R? be an immersion. Suppose there are k > 2 distinct
points p;, i € Zy, cyclically arranged in 0D such that P;pi+1 is simple. Further
suppose that there are rays R; C R? emanating from p; such that

(i) RiNRip1 =0,

(ii) R Npiipie1 = {pi}

(iii) there is an open neighborhood U; of p; in D and a point r; € R; — {p;} such

that U; N p;ri = {p; }-

Then D is simple.

To prove this theorem we need a pair of lemmas, which follow from the theorem
on the invariance of domain (if M and N are manifolds of the same dimension and
without boundary, U C M is open, and f: U — N is a one-to-one continuous map,
then f(U) is open in N). The first lemma also uses the fact that a simply connected
manifold admits only trivial coverings.

Lemma 8.4. Let M be a compact connected surface, and M i> fﬁ be an immersion.
Suppose that OM lies on a simple closed curve C C R2. Then M is simple.

Proof. There is a homeomorphism ¢: R? — R? which maps C to S!, by the theorem
of Schoenflies [15]. So we may assume that M C S!, after replacing f with ¢ o f.
Since M is compact, it contains a point z which maximizes || f||: M — R. By
invariance of domain, int(M) is open in R2 Thus it follows that z € dM, or
Z € S!, which in turn implies that ||f|| < 1, or M C D. Now since 9M C S = 9D,
f: M — D is a local homeomorphism. To see this let U be an open neighborhood
in M such that f is one-to-one on the closure clU of U. Then clU is homeomorphic
to clU (any one-to-one continuous map from a compact space into a Hausdorff
space is a homeomorphism onto its image). So U is homeomorphic to U. Further
since (U NAM) C 0D it follows that U is open in D, as claimed. Now since M is
compact and D is connected, f is a covering map (this is a basic topological fact,
e.g., see [6, p. 375]). But D is simply connected, and M is connected; therefore, f
is one-to-one. g

For every € R? let B,(z) denote the (closed) disk of radius 7 centered at z.
Then for any X C R?, we set B,.(X) 1= Uzex B ().

Lemma 8.5. Let D — R? be an immersion, and A C 0D be a closed set such
that A is simple. Then for every closed connected set X C int(A) and € > 0, there
exists a connected open neighborhood U of X in D such that U is simple and lies in
B.(X). Furthermore, U — A is open, connected, and U — AN A = ().
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Proof. Let U := int(Bs(X))N D, see Figure 19. We claim that if 6 > 0 is sufficiently
small, then U is the desired set. Indeed (for small §) U C B(X), since D — R?
is continuous and X is compact. Further, since D — R? is locally one-to-one, X
is compact, and X is simple, it follows that U is simple (this is a basic fact, e.g.,
see [21, p. 345]). Next note that since X C int(A), X is disjoint from 9D — int(A),

A A
D U
U/x X

FiGURE 19.

which is compact. Thus U will be disjoint from dD — A as well. Consequently
U — A = U — 90D which is open in R?. So, since U — A is simple, it follows from
the invariance of domain that U — A is open, and it is connected as well since
U — A is connected. Finally note that if we set V := int(Bs(A)) N D, then V
will be simple, just as we had argued earlier for U. So, since U, A C V, we have
U-ANA=U-A)NA=0. O

Now we are ready to prove the main result of this section:

Proof of Theorem 8.3. We will extend f to an immersion f M — R? where M is a
compact connected surface containing D, f fon D, and f (8M ) lies on a simple
closed curve. Then f is one-to-one by Lemma 8.4, and hence so is f.

(Part I: Constructions of M and f.) Let C C R? be a circle which encloses D
and is disjoint from it. Then each ray R; must intersect C' at some point. Let ¢; € R;
be the first such point, assuming that R; is oriented so that p; is its initial point, see
Figure 20. Now set A; := D;¢; U DiDi+1 U P;41Gi+1- Then, by conditions (i) and (ii)

q;
\ Pi
T Ti7
D, &
Pit1
Git1
Ficure 20.
of the theorem, A; is a simple curve. Consequently it divides the disk bounded by
C into a pair of closed subdisks, which we call the sides of A;. Let z € Ll’lt(pipi+1).
By Lemma 8.5, there is an open neighborhood W of z in D such that W — p;p;1

is connected and is disjoint from p;p;z1. Further, choosing € sufficiently small in
Lemma 8.5, we can make sure that W is disjoint from p;¢; and p;,1¢iy1. So it
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follows that W — A; is connected and is disjoint from A;. Consequently, it lies in the
interior of one of the sides of A;. Let D; be the opposite side. Glue each D; to D;4;
along p; 1gi+1. Further, glue each D; to D by identifying p;p;;1 with pipit1 via f.
This yields a compact connected surface M which contains D. Define f M — R?
by letting f = fon D, and f be the inclusion map D; < R? on D;. Then f is
continuous and f(0M) C C as desired.

(Part I1: Local injectivity of f ) Recall that fis locally one-to-one on the interiors
of D and each D; by definition. Also note that iis one-to-one near every point of
C different from ¢;. So it remains to check that f is one-to-one near every point of
Dipir1 and p;q;. There are four cases to consider:

(i) First we check the points 2’ € int(p;p;11). It suffices to show that there exists
an open neighborhood W’ of 2’ in D such that W’ — A; is disjoint from D; (this
would show that D; and D lie on different sides of A; near ?) To see this let X be
the segment zz’ of A;, and W’ be a small open neighborhood of X in D given by
Lemma 8.5. Then, just as we had argued earlier, W’ — A; will be disjoint from A;,
and thus will lie on one side of it. Since z € X, W’ — A; intersects W — A;, which
by definition lies outside D;. Thus W’ — A; also lies outside D;, as claimed.

(i) Next we check p;. Let B := B(p;), where € > 0 is so small that p; 1, p;,; and
g; lie outside B. Let a, b, ¢ be the first points where the (oriented curves) p;p;—1,
DiDi+1, D;qi intersect 0B respectively. Assuming e is small, ab will be simple, since
0D is locally simple. Also note that p;c is simple, since R; is simple. Furthermore,
picNab C R;Npi_1ipir1 = {p:i} by the second condition of the theorem. So abU p;c
divides B into 3 closed sectors, see the left diagram in Figure 21. Let S; be the

Di—12d
Sl o C
S 4 D; ig
qi <2 S ]
$b | D;
Pit1
Ficure 21.

sector which contains a and b, Sy be the sector which contains a and ¢, and Ss be
the sector which contains ¢ and b. Next note that an open neighborhood of p; in
M consists of three components: a neighborhood V; of p in D, and neighborhoods
Ui, Ui—1, of p; in D;, D;_; respectively. We claim that when these neighborhoods
are small, each lies in a different sector of B. Then, since f is one-to-one on each
of these neighborhoods, it will follow that f is one-to-one near p;, as desired. To
establish the claim note that by the third condition of the theorem there is an open
neighborhood V; of p; in D such that V; is disjoint from the interior of p;c (assuming
€ is small). Further, we may assume that V; is connected and is so small that V,; fits
inside B. Then V; must lie in S;. Next, by Lemma 8.5, we may choose a connected
open neighborhood U; of p; in D; such that U,; = U, fits in B, and U; — bc = U; — be
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is connected, where bc := p;b U p;c. Note that U; contains some interior points of
p;c and p;pi+1. So U; — be cannot lie entirely in S7 or S, and therefore intersects
S3. Consequently U; — be C S3, because U; — be is connected and disjoint from the
boundary of S3. So U; C S3. A similar argument shows that U;_1 C Ss.

(11i) Now we check the points 2’ € int(p;q;). Let X C int(p;q;) be a connected
compact set which contains 2’ and a point of the neighborhood U;_; of p; discussed
in part (ii). Then again by Lemma 8.5, there exists a connected open neighborhood
W' of X in D;_1 such that W’ — A, lies entirely on one side of A;. By design W' — A;
intersects U;—1 — A;, which lies outside D; as we showed in part (ii). Thus W' — A;
also lies outside D;. So D;, D;_; lie on opposite sides of A; near z’, which shows
that f is one-to-one near 2.

(iv) It remains to check g;. Again, we have to show that there exists an open
neighborhood of ¢; in D;_1 which lies outside D;. The argument is similar to that
of part (ii), and uses part (iii). Let B := B¢(g;), where ¢ > 0 is so small that B
intersects C' in precisely two points and p; lies outside B, see the right diagram
in Figure 21. Then the segment of C in B together with the smallest segment of
¢;p; in B determine three sectors. Only two of these sectors border both C' and a
neighborhood of ¢; in ¢;p;, and these are where D; and D;_; lie near ¢;. We have
to show that, near ¢;, D; and D;_1 lie in different sectors. To this end it suffices to
note that every open neighborhood of ¢; in D;_1, given by Lemma 8.5, intersects a
neighborhood of the type W’ discussed in part (iii), which lies outside D;. ]
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APPENDIX B: INDEX OF SYMBOLS
Principal Use

a convex polyhedron

a cut tree of P

the compact disk obtained by cutting P along T’
the height function

the stretching factor

the natural projection

image of Pr under an unfolding

the tracing path of T’

image of I under a (left) development

a mixed development of I" based at the vertex ~;
star of P at a point o,

star of Pr at a point o

a path with vertices ~;

the operation for concatenation of two paths
the operation for composition of two paths
inverse of a path I

total angle of P at a point o

(left) angle of the path [a,0,b] at o

left angles of I

right angles of I'

vertices of I'p

vertices of I'r which correspond to v;

vertices of Pr which correspond to v;

leaves of T as ordered by I'p

the top leaf of T

the root of T'

junctures of I'r

branches of T'

dual branches of T’

concatenation of the subpath £y¢; of I'p with 5;
concatenation of the subpath ¢o¢; of T'r with ]
the closed path in Pr corresponding to I

the sub disk of Pr bounded by f;

doubling of a path T’
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