SHORTEST CLOSED CURVE TO CONTAIN A SPHERE IN ITS CONVEX HULL

MOHAMMAD GHOMI AND JAMES WENK

Abstract

We show that in Euclidean 3-space any closed curve which contains the unit sphere within its convex hull has length $L \geq 4 \pi$, and characterize the case of equality. This result generalizes the authors' recent solution to a conjecture of Zalgaller. Furthermore, for the analogous problem in n dimensions, we include the estimate $L \geq C n \sqrt{n}$ by Nazarov, which is sharp up to the constant C.

1. Introduction

The convex hull of a set X in Euclidean space \mathbf{R}^{3} is the intersection of all convex sets which contain X. The inradius of X is the supremum of the radii of spheres which are contained in X. Here we show:

Theorem 1.1. Let $\gamma:[a, b] \rightarrow \mathbf{R}^{3}$ be a closed rectifiable curve of length L, and r be the inradius of the convex hull of γ. Then

$$
\begin{equation*}
L \geq 4 \pi r . \tag{1}
\end{equation*}
$$

Equality holds only if, up to a reparameterization, γ is simple, $\mathcal{C}^{1,1}$, lies on a sphere of radius $\sqrt{2} r$, and traces consecutively 4 semicircles of length πr.

In 1996 V . A. Zalgaller [18,22] conjectured that the above theorem holds subject to the additional assumption that γ lie outside a sphere S of radius r within its convex hull. The length minimizer, called the baseball curve, together with S, is shown in Figure 1. Zalgaller's conjecture was proved recently in [15] following earlier work in [13]. Here

Figure 1. The baseball curve
we refine the methods introduced in those papers to establish the more general result above. Our approach will be similar to that in [15]. We start by setting $r=1$ and

[^0]assuming that γ has the smallest length among closed curves which contain the unit sphere \mathbf{S}^{2} within their convex hull [15, Sec 2.]. The horizon of γ is the measure in \mathbf{S}^{2} counted with multiplicity of the set of points $p \in \mathbf{S}^{2}$ where the affine tangent plane $T_{p} \mathbf{S}^{2}$ intersects γ :
$$
H(\gamma):=\int_{p \in \mathbf{S}^{2}} \# \gamma^{-1}\left(T_{p} \mathbf{S}^{2}\right) d p
$$

Since γ is closed, one quickly sees that $\# \gamma^{-1}\left(T_{p} \mathbf{S}^{2}\right) \geq 2$ for almost every $p \in \mathbf{S}^{2}[13$, Lem. 7.1]. Hence $H(\gamma) \geq 8 \pi$. The efficiency of γ is given by

$$
E(\gamma):=\frac{H(\gamma)}{L(\gamma)}
$$

So to establish (1) it suffices to show that $E(\gamma) \leq 2$. To this end we note that for any partition of γ into subcurves γ_{i},

$$
E(\gamma)=\sum_{i} \frac{H\left(\gamma_{i}\right)}{L(\gamma)}=\sum_{i} \frac{L\left(\gamma_{i}\right)}{L(\gamma)} E\left(\gamma_{i}\right)
$$

So it suffices to construct a partition with $E\left(\gamma_{i}\right) \leq 2$. Similar to [15], this is achieved by unfolding γ into the plane (Section 3), and identifying a collection of subcurves of γ we call spirals (Section 4); however, these operations need to be generalized here as they were defined only for curves with $|\gamma| \geq 1$ in [15]. Furthermore, we will show that if $E(\gamma)=2$, then $|\gamma| \geq 1$. So the rigidity of (1) follows from Zalgaller's conjecture established in [15], and completes the proof of Theorem 1.1 (Section 5).

For curves in \mathbf{R}^{2} the isoperimetric inequality quickly yields $L \geq 2 \pi r$ as the analogue of (1). We will include in the Appendix a version of (1) by F. Nazarov for curves in \mathbf{R}^{n}, which is obtained by covering the unit sphere \mathbf{S}^{n-1} with certain slabs, and applying the correlation inequality $[16,19]$ to their Gaussian volume. This approach has implications for covering problems for the sphere by congruent disks [5], and yields a new proof of a result of Tikhomirov [20] (Note 5.4). There are many natural optimization problems for convex hull of space curves which remain open, including other questions of Zalgaller [22] which are closely related to well-known problems of Bellman [2-4] in operations research and search theory $[1,12]$; see also $[13,15,17]$ and references therein.

2. Minimal Inspection Curves

\mathbf{R}^{n} denotes the n-dimensional Euclidean space with inner product $\langle\cdot, \cdot\rangle$, norm $|\cdot|:=$ $\langle\cdot, \cdot\rangle^{1 / 2}$, and origin o. A curve is a continuous rectifiable mapping $\gamma:[a, b] \rightarrow \mathbf{R}^{n}$ with length $L=L(\gamma)$. We also use γ to refer to its image $\gamma([a, b])$. If $\gamma(a)=\gamma(b)$ then we say that γ is closed and identify $[a, b]$ with the topological circle $\mathbf{R} /(b-a)$. Rectifiable curves may be parameterized with constant speed [6], which we assume is the case throughout this work. In particular all curves below are Lipschitz continuous, and thus differentiable almost everywhere, with $\left|\gamma^{\prime}\right|=L /(b-a)$; see [15, Sec. 2] and references therein for basic facts on rectifiable curves. We say γ is a (generalized) inspection curve provided that γ is closed and its convex hull, $\operatorname{conv}(\gamma)$, contains the unit sphere \mathbf{S}^{2}. It follows from Arzela-Ascoli theorem that there exists an inspection curve γ whose length achieves the minimum value among all inspection curves [15, Sec. 2]. Then γ will be
called a minimal inspection curve. We let int, $c l$, and ∂, stand respectively for interior, closure, and boundary.
Lemma 2.1. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. Suppose that $\gamma(t) \in$ $\operatorname{int}(\operatorname{conv}(\gamma))$, for some $t \in \mathbf{R} / L$. Then there exists a connected open set $U \subset \mathbf{R} / L$, with $t \in U$, such that γ maps $\operatorname{cl}(U)$ injectively to a line segment with end points on $\partial \operatorname{conv}(\gamma)$. In particular, $\gamma(t)=o$ for at most finitely many $t \in \mathbf{R} / L$.
Proof. Let U be the component of $\gamma^{-1}(\operatorname{int}(\operatorname{conv}(\gamma)))$ which contains t. If $\left.\gamma\right|_{\mathrm{cl}(U)}$ does not trace a line segment, we may shorten γ by replacing $\gamma(\operatorname{cl}(U))$ with the line segment connecting the end points of $\gamma(\mathrm{cl}(U))$. But this operation preserves $\operatorname{conv}(\gamma)$, as it preserves the points of γ on $\partial \operatorname{conv}(\gamma)$. Hence we obtain an inspection curve shorter than γ, which is impossible. If $\gamma(t)=o$, then $L\left(\left.\gamma\right|_{U}\right) \geq 2$, since $\gamma(U)$ contains a diameter of \mathbf{S}^{2}. So there can be only finitely many such points, since γ is rectifiable.

We say that t is a regular point of a curve γ provided that γ is differentiable at t and $\gamma^{\prime}(t) \neq 0$. Then the tangent line of γ at t is well defined. Since we assume that curves are parameterized with constant speed, they are regular almost everywhere. Furthermore, by Lemma 2.1, all points $t \in \mathbf{R} / L$ with $\gamma(t) \in \operatorname{int}(\operatorname{conv}(\gamma))$ of a minimal inspection curve γ are regular.
Lemma 2.2. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve, $t \in \mathbf{R} / L$ be a regular point of γ, and ℓ be the tangent line of γ at t. Suppose that ℓ intersects $\operatorname{int}(\operatorname{conv}(\gamma))$. Then there exists an open interval $U \subset \mathbf{R} / L$, with $t \in U$, which is mapped injectively by γ into $\ell \cap \operatorname{int}(\operatorname{conv}(\gamma))$.

Proof. If $\gamma(t) \in \partial \operatorname{conv}(\gamma)$, then either $\gamma^{\prime}(t)$ or $-\gamma^{\prime}(t)$ points outside $\operatorname{conv}(\gamma)$. Hence, for some s close to $t, \gamma(s)$ lies outside $\operatorname{conv}(\gamma)$, which is impossible. So $\gamma(t) \in \operatorname{int}(\operatorname{conv}(\gamma))$, in which case Lemma 2.1 completes the proof.

Combining the last two observations we obtain:
Proposition 2.3. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. Then there exists an open set $U \subset \mathbf{R} / L$ such that tangent lines of γ on U do not pass through o. Furthermore if $U \neq \mathbf{R} / L$, then $\mathbf{R} / L \backslash U$ is the disjoint union of a finite number of closed intervals each mapped by γ into a line segment which passes through o and ends on $\partial \operatorname{conv}(\gamma)$.
Proof. Let X be the union of all closed intervals $I \subset \mathbf{R} / L$ such that $\gamma(I)$ is a line segment which passes through o and ends on $\partial \operatorname{conv}(\gamma)$. By Lemma 2.1, there are at most finitely many such intervals. Thus X is closed. Let $U:=\mathbf{R} / L \backslash X$. By Lemma 2.2, no tangent line of γ at a regular point of U may pass through o, which completes the proof.

3. Unfolding

Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. We will always assume that 0 is a local minimum point of $|\gamma|$. By Lemma 2.1, γ passes through o at most finitely many times which, if they exist, will be denoted by $0=: t_{0}, \ldots, t_{m}:=L$. Then the
projection $\bar{\gamma}: \mathbf{R} / L \rightarrow \mathbf{S}^{2}$, given by $\bar{\gamma}:=\gamma /|\gamma|$ is well defined on $\mathbf{R} / L \backslash\left\{t_{k}\right\}$. Furthermore since, by Proposition 2.3, γ traces line segments near $t_{k}, \bar{\gamma}$ is Lipschitz on each interval $\left(t_{k-1}, t_{k}\right)$. Thus $\bar{\gamma}$ is differentiable almost everywhere on \mathbf{R} / L. Consequently, the arclength function

$$
\theta(t):=\int_{0}^{t}\left|\bar{\gamma}^{\prime}(s)\right| d s
$$

is well defined on $[0, L]$ (θ measures the "cone angle" [7] or "vision angle" [8] of γ from the point of view of o). The unfolding of γ is the planar curve $\widetilde{\gamma}:[0, L] \rightarrow \mathbf{R}^{2}$ defined as

$$
\widetilde{\gamma}(t):=|\gamma(t)| e^{i(\theta(t)+(k-1) \pi)}, \quad \text { for } \quad t \in\left[t_{k-1}, t_{k}\right]
$$

Note that $|\gamma|=|\widetilde{\gamma}|$, and whenever γ passes through o, then $\widetilde{\gamma}$ will pass through o as well on a line segment. As in [15], we may also compute that

$$
\begin{equation*}
\left|\widetilde{\gamma}^{\prime}\right|=\left||\gamma|^{\prime}+i\right| \gamma\left|\theta^{\prime}\right|, \quad \text { and } \quad \theta^{\prime}=\left|\bar{\gamma}^{\prime}\right|=\frac{1}{|\gamma|^{2}} \sqrt{|\gamma|^{2}\left|\gamma^{\prime}\right|^{2}-\left\langle\gamma, \gamma^{\prime}\right\rangle^{2}} \tag{2}
\end{equation*}
$$

almost everywhere. It follows that, for almost all $t \in[0, L],\left|\widetilde{\gamma}^{\prime}\right|=\left|\gamma^{\prime}\right|=1$. So $\widetilde{\gamma}$ is parameterized by arclength, and $L(\gamma)=L(\widetilde{\gamma})$. Hence, by [15, Cor. 3.2], $E(\gamma)=E(\widetilde{\gamma})$ since points of γ with $|\gamma| \leq 1$ make no contribution to $E(\gamma)$. Furthermore, the angles $\alpha:=\angle\left(\gamma, \gamma^{\prime}\right)$ and $\widetilde{\alpha}:=\angle\left(\widetilde{\gamma}, \widetilde{\gamma}^{\prime}\right)$ are defined almost everywhere, and

$$
\begin{equation*}
\alpha=\cos ^{-1}\left(|\gamma|^{\prime}\right)=\cos ^{-1}\left(|\widetilde{\gamma}|^{\prime}\right)=\widetilde{\alpha} \tag{3}
\end{equation*}
$$

Lemma 3.1. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. Then $\widetilde{\gamma}$ is locally one-to-one.

Proof. Let U be as in Proposition 2.3. Then γ and γ^{\prime} are linearly independent at all regular points of U. So (2) shows that $\theta^{\prime}>0$ almost everywhere on U, via CauchySchwarz inequality. Hence θ is strictly increasing on U, which yields that $\widetilde{\gamma}$ is starshaped with respect to o in a neighborhood of each point of U. Since, by Proposition 2.3, γ traces a line segment on each component of $\mathbf{R} / L \backslash U,|\gamma|$ is strictly monotone on each of these components. Hence $\widetilde{\gamma}$ is one-to-one on each component of $\mathbf{R} / L \backslash U$, since $|\widetilde{\gamma}|=|\gamma|$. Finally, $\widetilde{\gamma}$ is one-to-one in a neighborhood of each point of ∂U, since $\widetilde{\gamma}$ is locally star-shaped on U and it maps each component of $\mathbf{R} / L \backslash U$ to a line passing through o.

A planar curve $\gamma:[a, b] \rightarrow \mathbf{R}^{2}$ is locally convex provided that it is locally one-to-one and each point $t \in[a, b]$ has a neighborhood $U \subset[a, b]$ such that $\gamma(U)$ lies on the boundary of a convex set. A side of a line $\ell \subset \mathbf{R}^{2}$ is one of the two closed half spaces determined by ℓ. A local supporting line ℓ for γ at t is a line passing through $\gamma(t)$ with respect to which $\gamma(U)$ lies on one side. If $\gamma(U)$ lies on a side of ℓ which contains o, then we say that ℓ lies above γ. Finally, if γ is locally convex and through each point of it there passes a local support line which lies above γ, then we say that γ is locally convex with respect to o. Note that if γ is locally convex with respect to o and passes through o, then γ must trace a line segment near o.
Lemma 3.2. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. Then $\widetilde{\gamma}$ is locally convex with respect to o.

Proof. Let U be as in Proposition 2.3, and $t \in U$. By Lemma 3.1, there exists a neighborhood V of t in U on which $\widetilde{\gamma}$ is one-to-one. Furthermore, $\widetilde{\gamma}(V)$ is star-shaped with respect to o. So connecting the end points of $\widetilde{\gamma}(V)$ to o by line segments yields a simple closed curve. It is shown in the proof of [15, Prop. 4.3] that this curve bounds a convex set, due to minimality of γ. Thus $\widetilde{\gamma}$ is locally convex with respect to o on U. Next suppose that $t \in \partial U$, and let V be a small neighborhood of t in $\operatorname{cl}(U)$. By Proposition 2.3, $\widetilde{\gamma}$ connects one end point of $\widetilde{\gamma}(V)$ to o by tracing a line segment. Connect the other end point of $\widetilde{\gamma}(V)$ to o by another line segment. Then the resulting simple closed curve again bounds a convex set by the argument in the proof of [15, Prop. 4.3]. So $\widetilde{\gamma}$ is locally convex with respect to o on $\operatorname{cl}(U)$. Finally, $\widetilde{\gamma}$ is locally convex with respect to o on the complement of $\operatorname{cl}(U)$, since these regions are mapped to line segments, by Proposition 2.3.

4. Spiral Decomposition

If $\gamma:[a, b] \rightarrow \mathbf{R}^{2}$ is a locally convex curve, parameterized with constant speed, then its one sided derivatives, $\gamma_{ \pm}^{\prime}$, are well-defined everywhere and are nonvanishing [14, Lem. 5.1]. Set $\gamma^{\prime}(a):=\gamma_{+}^{\prime}(a)$. We say that $\gamma:[a, b] \rightarrow \mathbf{R}^{2}$ is a (generalized) spiral provided that (i) γ is locally convex with respect to o, (ii) $|\gamma|$ is nondecreasing, and (iii) $\left\langle\gamma(a), \gamma^{\prime}(a)\right\rangle=0$. A spiral is called strict if $|\gamma|$ is increasing. A spiral decomposition of a curve $\gamma:[a, b] \rightarrow \mathbf{R}^{2}$ is a collection U_{i} of mutually disjoint open subsets of $[a, b]$ such that (i) $\left.\gamma\right|_{\mathrm{cl}\left(U_{i}\right)}$ is a strict spiral, after switching the direction of $\left.\gamma\right|_{\mathrm{cl}\left(U_{i}\right)}$ if necessary, and (ii) $|\gamma|^{\prime}=0$ almost everywhere on $[a, b] \backslash \cup_{i} \operatorname{cl}\left(U_{i}\right)$.

Lemma 4.1. Let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve. Then $\widetilde{\gamma}$ admits a spiral decomposition.

Proof. The argument follows the same outline as in [15, Prop. 5.2], with minor modifications. Recall that we assume 0 is a local minimum point of $|\gamma|$. If $|\gamma(0)|>0$, then it follows that $\widetilde{\alpha}(0)=\widetilde{\alpha}(L)=\pi / 2$. Otherwise, $|\widetilde{\gamma}(0)|=|\widetilde{\gamma}(L)|=0$, since $|\gamma|=|\widetilde{\gamma}|$. Let X be the set of points $t \in[0, L]$ such that $\widetilde{\gamma}$ has a local support line at $\widetilde{\gamma}(t)$ which is orthogonal to $\widetilde{\gamma}(t)$, or $|\widetilde{\gamma}(t)|=0$. Then $0, L \in X$ and $|\widetilde{\gamma}|^{\prime}=0$ almost everywhere on X. Also note that X is closed, since the limit of any sequence of support lines of a convex body is a support line, and the set of points with $|\widetilde{\gamma}(t)|=0$ is compact. Consequently each component U of $[0, L] \backslash X$ is an open subinterval of $[0, L]$. It remains to show that $\left.\widetilde{\gamma}\right|_{\mathrm{cl}(U)}$ is a spiral. By Lemma 3.2, $\left.\widetilde{\gamma}\right|_{\mathrm{cl}(U)}$ is locally convex with respect to o. Furthermore, as argued in the proof of [15, Prop. 5.2], $|\widetilde{\gamma}|^{\prime}$ is always positive or always negative at differentiable points of $|\widetilde{\gamma}|$ on U. So we may suppose that $|\widetilde{\gamma}|$ is increasing on U, after switching the direction of $\widetilde{\gamma}_{\mathrm{cl}(U)}$ if necessary. Finally, let $x \in \partial U$ be the initial point of $\left.\widetilde{\gamma}\right|_{\mathrm{cl}(U)}$. If $|\widetilde{\gamma}(x)|=0$, then $\left.\widetilde{\gamma}\right|_{\mathrm{cl}(U)}$ is a spiral. If $|\widetilde{\gamma}(x)|>0$, it follows that $\widetilde{\gamma}(x)$ it orthogonal to $\widetilde{\gamma}_{+}^{\prime}(x)$, which again shows that $\left.\widetilde{\gamma}\right|_{\mathrm{cl}(U)}$ is a spiral and completes the proof.

Let \mathbf{S}^{1} denote the unit circle in \mathbf{R}^{2}. The last observation quickly yields:

Lemma 4.2. Let $\gamma, \widetilde{\gamma}$ be as in Lemma 4.1 and $\sigma:[a, b] \rightarrow \mathbf{R}^{2}$ be a spiral in the decomposition of $\widetilde{\gamma}$. Let $t \in[a, b]$ be a regular point of both σ and γ, and ℓ be the tangent line of σ at t. Suppose that ℓ crosses \mathbf{S}^{1}. Then $\sigma([a, t])$ lies on ℓ.

Proof. Let $\bar{\ell}$ be the tangent line of γ at t. If ℓ crosses \mathbf{S}^{1}, then $\bar{\ell}$ crosses \mathbf{S}^{2}, by (3). In particular, $\bar{\ell}$ intersects the interior of $\operatorname{conv}(\gamma)$. Then Lemma 2.2 completes the proof.

The key point in the proof of Theorem 1.1 is:
Proposition 4.3. Let $\sigma:[a, b] \rightarrow \mathbf{R}^{2}$ be a spiral in the unfolding of a minimal inspection curve. Then $E(\sigma) \leq 2$. Furthermore, if $|\sigma(a)|<1$, then $E(\sigma)<2$.

Proof. If $|\sigma(a)| \geq 1$, then $E(\sigma) \leq 2$ by [15, Prop. 2.7]. So we assume $|\sigma(a)|<1$. We may also assume that $|\sigma(b)|>1$ for otherwise $H(\sigma)=0$ which yields $E(\sigma)=0$. Let b^{\prime} be the supremum of $t \in[a, b]$ such that $\sigma([a, t])$ is a line segment. By Lemma 2.1, $\left|\sigma\left(b^{\prime}\right)\right| \geq 1$. We may assume that $\sigma(a)$ lies on the nonnegative portion of the y-axis, and $\sigma\left(\left[a, b^{\prime}\right]\right)$ lies to the right of the y-axis, see Figure 2. If $b^{\prime}<b$, then we may choose

Figure 2. Construction of the competing curve
$b^{\prime}<b^{\prime \prime}<b$ such that $\sigma\left(\left[b^{\prime}, b^{\prime \prime}\right]\right)$ is convex, and lies to the right of the y-axis. Since σ is locally convex with respect to $o, \sigma\left(\left[b^{\prime}, b^{\prime \prime}\right]\right)$ lies below the line λ spanned by $\sigma\left(\left[a, b^{\prime}\right]\right)$, if $|\sigma(a)|>0$. If $|\sigma(a)|=0$, we may still assume that $\sigma\left(\left[b^{\prime}, b^{\prime \prime}\right]\right)$ lies below λ after a reflection. Consider the line which passes through $\sigma\left(b^{\prime}\right)$ and is tangent to the upper half of \mathbf{S}^{1}, say at a point x. Let τ be the curve obtained by joining the line segment $x \sigma\left(b^{\prime}\right)$ to the beginning of $\left.\sigma\right|_{\left[b^{\prime}, b\right]}$. We will show that (i) τ is a spiral, and (ii) $E(\sigma)<E(\tau)$. Then we are done, because $E(\tau) \leq 2$ since its initial height is ≥ 1.

First we check that τ is a spiral. This is obvious if $b^{\prime}=b$. So assume that $b^{\prime}<b$, and let $b^{\prime}<b^{\prime \prime}<b$ be as defined above. It suffices to check that τ is locally convex at $\sigma\left(b^{\prime}\right)$. Connect the end points of the portion $x \sigma\left(b^{\prime \prime}\right)$ of τ to $\sigma(a)$ to obtain a closed curve Γ. Note that Γ is simple since $x \sigma\left(b^{\prime}\right)$ lies above λ while $\sigma\left(\left[b^{\prime}, b^{\prime \prime}\right]\right)$ lies below it. Let θ be the interior angle of Γ at $\sigma\left(b^{\prime}\right)$. We need to show that $\theta \leq \pi$. To this end let $t_{i} \in\left(b^{\prime}, b^{\prime \prime}\right)$ be a sequence of regular points of σ converging to b^{\prime}, and ℓ_{i} be tangent lines of σ at t_{i}. Then ℓ_{i} converge to a support line of $\sigma\left(\left[b^{\prime}, b^{\prime \prime}\right]\right)$ at $\sigma\left(b^{\prime}\right)$, which we call ℓ. By Lemma 4.2, ℓ_{i} do not cross \mathbf{S}^{1}. Consequently ℓ does not cross \mathbf{S}^{1} either. So ℓ also supports $x \sigma\left(b^{\prime}\right)$. Hence ℓ is a support line of Γ at $\sigma\left(b^{\prime}\right)$, which yields that $\theta \leq \pi$ as desired.

It remains to check that $E(\sigma)<E(\tau)$. To see this consider the triangle $\sigma(a) x \sigma\left(b^{\prime}\right)$. The interior angle of this triangle at x is $\geq \pi / 2$, since $\sigma(a)$ lies on the nonnegative
portion of the y-axis. Hence $\left|x \sigma\left(b^{\prime}\right)\right|<\left|\sigma(a) \sigma\left(b^{\prime}\right)\right|$, which yields $L(\tau)<L(\sigma)$. On the other hand, tangent planes of \mathbf{S}^{2} intersect $\mathbf{R}^{2} \simeq \mathbf{R}^{2} \times\{0\} \subset \mathbf{R}^{3}$ in lines which do not cross \mathbf{S}^{1}, and any such line has exactly the same number of transverse intersections with σ as it does with τ. Hence $H(\tau)=H(\sigma)$ by definition of horizon. So $E(\sigma)<E(\tau)$ as desired.

5. Proof of Theorem 1.1

Set $r=1$ and let $\gamma: \mathbf{R} / L \rightarrow \mathbf{R}^{3}$ be a minimal inspection curve, as discussed in Section 2. To establish (1) it suffices to show then that $E(\gamma) \leq 2$, as outlined in Section 1. In Section 3 we established that $E(\gamma)=E(\widetilde{\gamma})$ where $\widetilde{\gamma}:[0, L] \rightarrow \mathbf{R}^{2}$ is the unfolding of γ. By Lemma 4.1, $\widetilde{\gamma}$ admits a spiral decomposition, generated by a collection of mutually disjoint open sets $U_{i} \subset[0, L], i \in I$. Set $U_{0}:=[0, L] \backslash \cup_{i} \operatorname{cl}\left(U_{i}\right)$, and let $\widetilde{\gamma}_{i}:=\left.\widetilde{\gamma}\right|_{\mathrm{cl}\left(U_{i}\right)}$, $\widetilde{\gamma}_{0}:=\widetilde{\gamma}_{U_{0}}$. As in the proof of Zalgaller's conjecture in [15, Sec. 10], we have

$$
\begin{equation*}
E(\widetilde{\gamma})=\frac{H(\widetilde{\gamma})}{L(\widetilde{\gamma})}=\frac{1}{L(\widetilde{\gamma})} \sum_{i} H\left(\widetilde{\gamma}_{i}\right)=\frac{1}{L(\widetilde{\gamma})}\left(L\left(\widetilde{\gamma}_{0}\right) E\left(\widetilde{\gamma}_{0}\right)+\sum_{i} L\left(\widetilde{\gamma}_{i}\right) E\left(\widetilde{\gamma}_{i}\right)\right) \tag{4}
\end{equation*}
$$

By Lemma 2.2, every point $t \in[0, L]$ with $|\gamma(t)|<1$ lies on a line segment in γ with end points on \mathbf{S}^{2}, and thus $\widetilde{\gamma}(t)$ belongs to a strict spiral (with origin of the spiral corresponding to the midpoint of that line segment). So $\left|\widetilde{\gamma}_{0}\right| \geq 1$. Then, as described in [15, Sec. 10], $E\left(\widetilde{\gamma}_{0}\right) \leq 2$. Furthermore $E\left(\widetilde{\gamma}_{i}\right) \leq 2$ for all i by Proposition 4.3. So $E(\widetilde{\gamma}) \leq 2$ by (4), as desired. To characterize the case of equality in (1), note that by (4), if $E(\widetilde{\gamma})=2$ then $E\left(\widetilde{\gamma}_{i}\right)=2$. Consequently, by Proposition $4.3,\left|\widetilde{\gamma}_{i}\right| \geq 1$. So $|\widetilde{\gamma}| \geq 1$, which yields $|\gamma| \geq 1$. Hence, by the proof of Zalgaller's conjecture [15, Thm. 1.1], γ is the baseball curve.

Appendix: Higher Dimensions

Here we establish a higher dimensional version of (1) due to Fedor Nazarov:
Theorem 5.1 (Nazarov). Let $\gamma:[a, b] \rightarrow \mathbf{R}^{n}$ be a curve of length L, and r be the inradius of the convex hull of γ. Then

$$
\begin{equation*}
L \geq C n \sqrt{n} r \tag{5}
\end{equation*}
$$

where $C>0$ is an absolute constant.
By absolute constant here we mean that C does not depend on n or γ. A Hamiltonian path in the edge graph of the cross polytope, i.e., the unit ball with respect to the L^{1} norm in \mathbf{R}^{n}, gives an example of a curve with $L \leq 2 n \sqrt{2 n} r$ [2]. Thus (5) is sharp up to the constant C. To establish (5), we may set $r=1$. Furthermore, we may assume that n is even. Indeed suppose that (5) holds for even n. If n is odd and bigger than 1 , then we may project γ into \mathbf{R}^{n-1} to obtain $L \geq C(n-1)^{3 / 2} \geq(C / 2) n^{3 / 2}$. Finally, it is enough to show that if $L \leq C n \sqrt{n}$, for some absolute constant C, then the inradius of $\operatorname{conv}(\gamma) \leq 1$, which means that there exists $u \in \mathbf{S}^{n-1}$ such that $\langle\gamma(t), u\rangle \leq 1$ for all $t \in[a, b]$. Equivalently, if $L \leq 2 n \sqrt{n}$, then $\langle\gamma(t), u\rangle \leq C / 2$. In summary, it suffices to show:

Proposition 5.2. Let $\gamma:[a, b] \rightarrow \mathbf{R}^{2 n}$ be a curve of length $\leq 2 n \sqrt{n}$. Then there exists $u \in \mathbf{S}^{2 n-1}$ such that $\langle\gamma(t), u\rangle \leq C$ for all $t \in[a, b]$.

To prove the above proposition, we again assume that γ has constant speed. Let $t_{i} \in$ $[a, b], i=0, \ldots, n$, be equidistant points with $t_{0}:=a, t_{n}:=b$, and set $s_{i}:=\left(t_{i-1}+t_{i}\right) / 2$ for $i=1, \ldots, n$. Let H be an n-dimensional subspace of $\mathbf{R}^{2 n}$ which is orthogonal to each $\gamma\left(s_{i}\right)$, and $\bar{\gamma}$ be the projection of γ into H. Then $\left.\bar{\gamma}\right|_{\left[t_{i-1}, s_{i}\right]},\left.\bar{\gamma}\right|_{\left[s_{i}, t_{i}\right]}$ are curves of length $\leq \sqrt{n}$ with one end at o, since γ has constant speed. So, identifying H with \mathbf{R}^{n}, we have reduced Proposition 5.2 to:

Proposition 5.3. Let $\gamma_{i}:[a, b] \rightarrow \mathbf{R}^{n}, i=1, \ldots, 2 n$, be curves of length $\leq \sqrt{n}$ with $\gamma_{i}(a)=o$. Then there exists $u \in \mathbf{S}^{n-1}$ such that $\left\langle\gamma_{i}(t), u\right\rangle \leq C$ for all $t \in[a, b]$.

To prove the last proposition we employ the standard Gaussian measure, which is defined for Borel sets $A \subset \mathbf{R}^{n}$ as

$$
\mu(A):=\frac{1}{(\sqrt{2 \pi})^{n}} \int_{A} e^{-|x|^{2} / 2} d \lambda(x)
$$

where λ is the n-dimensional Lebesgue measure. We also record that if K_{i} are a family of convex sets which are symmetric with respect to o, then

$$
\begin{equation*}
\mu\left(\bigcap_{i} K_{i}\right) \geq \prod_{i} \mu\left(K_{i}\right) \tag{6}
\end{equation*}
$$

by the Gaussian correlation inequality $[16,19]$. Here we need this fact only for slabs, which had been established in [21].
Proof of Proposition 5.3. We set $[a, b]=[0,1]$ and assume that γ_{i} have constant speed. For every $t \in[0,1]$ and i there exist vectors $v_{i k}(t) \in \mathbf{R}^{n}$, such that

$$
\gamma_{i}(t):=\sum_{k=1}^{\infty} v_{i k}(t), \quad \text { and } \quad\left|v_{i k}(t)\right| \leq \frac{\sqrt{n}}{2^{k}} .
$$

To generate these vectors, set $t_{0}:=0$, and let $t_{k}:=t_{k-1}-1 / 2^{k}$, if $t<t_{k-1}$, and $t_{k}:=t_{k-1}+1 / 2^{k}$ otherwise. Then we set $v_{i k}(t):=\gamma_{i}\left(t_{k}\right)-\gamma_{i}\left(t_{k-1}\right)$. Note that each $v_{i k}(t)$ is chosen from a set $V_{i k}$, of cardinality 2^{k-1}, which is independent of t. Now consider the slabs

$$
S(v):=\left\{x \in \mathbf{R}^{n}| |\langle x, v\rangle \left\lvert\, \leq \frac{\sqrt{n}}{k^{2}}\right.\right\}, \quad v \in V_{i k},
$$

which have width $2\left(\sqrt{n} / k^{2}\right) /|v| \geq 2\left(2^{k} / k^{2}\right)$, and set

$$
A:=\bigcap_{i=1}^{2 n} \bigcap_{k=1}^{\infty} \bigcap_{v \in V_{i k}} S(v)
$$

By Fubini's theorem, and a standard estimate for the Gaussian integral,

$$
\mu(S(v)) \geq \frac{1}{\sqrt{2 \pi}} \int_{-a_{k}}^{a_{k}} e^{-t^{2} / 2} d t \geq 1-e^{-a_{k}^{2} / 2}
$$

where $a_{k}:=2^{k} / k^{2}$. So by (6),

$$
\mu(A) \geq \prod_{i=1}^{2 n} \prod_{k=1}^{\infty} \prod_{v \in V_{i k}} \mu(S(v)) \geq\left(\prod_{k=1}^{\infty}\left(1-e^{-a_{k}^{2} / 2}\right)^{2^{k-1}}\right)^{2 n}
$$

Since $\ln \left(1-e^{-x}\right) \geq-2 e^{-x}$ for $x \geq 32 / 81$, which is the smallest value of $a_{k}^{2} / 2$ (achieved for $k=3$), we have

$$
\begin{aligned}
\prod_{k=1}^{\infty}\left(1-e^{-a_{k}^{2} / 2}\right)^{2^{k-1}} & =\exp \left(\sum_{k=1}^{\infty} 2^{k-1} \ln \left(1-e^{-a_{k}^{2} / 2}\right)\right) \\
& \geq \exp \left(-\sum_{k=1}^{\infty} 2^{k} e^{-a_{k}^{2} / 2}\right)=: \sqrt{\delta}>0
\end{aligned}
$$

So we conclude that $\mu(A) \geq \delta^{n}$ where $\delta>0$ is an absolute constant. Next note that, if B_{r}^{n} is the ball of radius r centered at o in \mathbf{R}^{n}, with volume $\left|B_{r}^{n}\right|$, then

$$
\mu\left(B_{r}^{n}\right) \leq \frac{\left|B_{r}^{n}\right|}{(\sqrt{2 \pi})^{n}}=\left(\frac{\sqrt{e} r}{\sqrt{n}}\right)^{n} \frac{\left|B_{\sqrt{n}}^{n}\right|}{(\sqrt{2 \pi})^{n}(\sqrt{e})^{n}} \leq\left(\frac{\sqrt{e} r}{\sqrt{n}}\right)^{n} \mu\left(B_{\sqrt{n}}^{n}\right) \leq\left(\frac{\sqrt{e} r}{\sqrt{n}}\right)^{n} .
$$

So if $r:=\delta \sqrt{n} / \sqrt{e}$, then $\mu\left(B_{r}^{n}\right) \leq \delta^{n} \leq \mu(A)$. Consequently, $A \not \subset \operatorname{int}\left(B_{r}^{n}\right)$ which means that there exists $u_{0} \in A$ with $\left|u_{0}\right| \geq r$. Now setting $u:=u_{0} /\left|u_{0}\right|$, we have

$$
\left\langle\gamma_{i}(t), u\right\rangle=\sum_{k=1}^{\infty}\left\langle v_{i k}, u\right\rangle \leq \frac{1}{r} \sum_{k=1}^{\infty}\left\langle v_{i k}, u_{0}\right\rangle \leq \frac{\sqrt{e}}{\delta \sqrt{n}} \sum_{k=1}^{\infty} \frac{\sqrt{n}}{k^{2}} \leq \frac{2 \sqrt{e}}{\delta}=: C,
$$

as desired.
Note 5.4. When γ_{i} in Proposition 5.3 trace lines segments, we obtain the following result in discrete geometry: if $N \leq 2 n$ points in \mathbf{R}^{n} contain \mathbf{S}^{n-1} within their convex hull, then at least one of them has distance $\geq \sqrt{n} / C$ from o. Equivalently, if $N \leq 2 n$ disks of geodesic radius ρ cover \mathbf{S}^{n-1}, then $\cos (\rho) \leq C / \sqrt{n}$, which had been observed earlier by Tikhomirov [20]. Furthermore, proof of Proposition 5.3 allows an estimate for C as follows. If γ_{i} trace line segments, we may set $k=1$. Then $\mu(S(v)) \geq \int_{-2}^{2} e^{-t^{2} / 2} d t / \sqrt{2 \pi} \geq 0.95$. So $\delta=(0.95)^{2}$, which yields $C=\delta /(2 \sqrt{e}) \simeq 3.65$. It has been conjectured that the optimal value of C is 1 , which would correspond to the case where the points form the vertices of a cross polytope [5, Conj.1.3]. This has been shown only for $n=3$ [10], see [11, p. 34], and $n=4$ [9].

Acknowledgments

We thank Fedor Nazarov for communicating the proof of Theorem 5.1 to us, and Galyna Livshyts for useful discussions and interest in this problem. Thanks also to the anonymous referee for suggestions to improve the exposition of this work.

References

[1] S. Alpern and S. Gal, The theory of search games and rendezvous, International Series in Operations Research \& Management Science, vol. 55, Kluwer Academic Publishers, Boston, MA, 2003. MR2005053 $\uparrow 2$
[2] A. Antoniadis, R. Hoeksma, S. Kisfaludi-Bak, and K. Schewior, Online search for a hyperplane in high-dimensional Euclidean space, Inform. Process. Lett. 177 (2022), Paper No. 106262, 4. MR4388498 $\uparrow 2,7$
[3] R. Bellman, A minimization problem, Bulletin of the AMS 62 (1956), 270. $\uparrow 2$
[4] _, An optimal search, Siam Review 5 (1963), no. 3, 274. $\uparrow 2$
[5] K. Böröczky Jr. and G. Wintsche, Covering the sphere by equal spherical balls, Discrete and computational geometry, 2003, pp. 235-251. MR2038476 $\uparrow 2$, 9
[6] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR1835418 (2002e:53053) $\uparrow 2$
[7] J. Cantarella, R. B. Kusner, and J. M. Sullivan, On the minimum ropelength of knots and links, Invent. Math. 150 (2002), no. 2, 257-286. MR1933586 $\uparrow 4$
[8] J. Choe and R. Gulliver, The sharp isoperimetric inequality for minimal surfaces with radially connected boundary in hyperbolic space, Invent. Math. 109 (1992), no. 3, 495-503. MR1176200 $\uparrow 4$
[9] L. Dalla, D. G. Larman, P. Mani-Levitska, and C. Zong, The blocking numbers of convex bodies, Discrete Comput. Geom. 24 (2000), no. 2-3, 267-277. MR1758049 $\uparrow 9$
[10] L. Fejes Tóth, Covering the sphere with congruent caps, Mat. Fiz. Lapok 50 (1943), 40-46. $\uparrow 9$
[11] , Regular figures, A Pergamon Press Book, The Macmillan Company, New York, 1964. MR0165423 $\uparrow 9$
[12] S. Gal, Search games: a review, Search theory, 2013, pp. 3-15. MR3087858 $\uparrow 2$
[13] M. Ghomi, The length, width, and inradius of space curves, Geom. Dedicata 196 (2018), 123-143. MR3853631 $\uparrow 1,2$
[14] M. Ghomi and J. Wenk, Shortest closed curve to inspect a sphere, arXiv preprint arXiv:2010.15204v1 (2020). $\uparrow 5$
[15] , Shortest closed curve to inspect a sphere, J. Reine Angew. Math. 781 (2021), 57-84. MR4343095 $\uparrow 1,2,4,5,6,7$
[16] R. Latał a and D. Matlak, Royen's proof of the Gaussian correlation inequality, Geometric aspects of functional analysis, 2017, pp. 265-275. MR3645127 $\uparrow 2,8$
[17] Y. G. Nikonorov, Properties of a curve whose convex hull covers a given convex body, Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry 63 (2022/09/01), no. 3, 505-513. $\uparrow 2$
[18] J. O'Rourke, Shortest closed curve to inspect a sphere (question posted on mathoverflow), mathoverflow.net (2011June). $\uparrow 1$
[19] T. Royen, A simple proof of the Gaussian correlation conjecture extended to some multivariate gamma distributions, Far East J. Theor. Stat. 48 (2014), no. 2, 139-145. MR3289621 $\uparrow 2,8$
[20] K. E. Tikhomirov, On the distance of polytopes with few vertices to the Euclidean ball, Discrete Comput. Geom. 53 (2015), no. 1, 173-181. MR3293493 个2, 9
[21] Z. Šidák, Rectangular confidence regions for the means of multivariate normal distributions, J. Amer. Statist. Assoc. 62 (1967), 626-633. MR216666 $\uparrow 8$
[22] V. A. Zalgaller, Extremal problems on the convex hull of a space curve, Algebra i Analiz 8 (1996), no. 3, 1-13 (Translation in St. Petersburg Math. J. 8 (1997), no. 3, 369-379). MR1402285 个1, 2

School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
Email address: ghomi@math.gatech.edu
URL: www.math.gatech.edu/~ghomi
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332
Email address: jwenk3@math.gatech.edu
URL: www.math.gatech.edu/~ jwenk3

[^0]: Date: March 25, 2024 (Last Typeset).
 2000 Mathematics Subject Classification. Primary: 53A04, 52A40; Secondary: 60G15, 58E.
 Key words and phrases. Inradius of convex bodies, Unfolding of space curves, Sphere covering by equal disks, Bellman's search problems, Normal distribution, Gaussian correlation inequality.

 Research of M.G. was supported in part by NSF Grant DMS-2202337.

