HOME WORK I, ANALYSIS I

Due September 5. Problems marked with asterisk are optional, but highly recommended. Please contact me if you have any questions!

1. Let $g(x)=x^{2}$ and $f(x)=x+2$ for $x \in \mathbb{R}$ and let $h=g \circ f$.
a) Find the direct image $h(E)$ of $E=\{x \in \mathbb{R}: x \in[0,1]\}$.
b) Find the inverse image $h^{-1}(G)$ of $G=\{x \in \mathbb{R}: x \in[0,4]\}$.
2. Show that if $f: A \rightarrow B$ and G, H are subsets of B, then
a) $f^{-1}(G \cup H)=f^{-1}(G) \cup f^{-1}(G) \cup f^{-1}(H)$;
b) $f^{-1}(G \cap H)=f^{-1}(G) \cap f^{-1}(H)$.
3. a) Show that if $f: A \rightarrow B$ is injective and $E \subset A$, then $f^{-1}(f(E))=E$. Give an example to show that the equality need not hold if f is not injective.
b) Show that if $f: A \rightarrow B$ is surjective and $H \subset B$, then $f\left(f^{-1}(H)\right)=H$. Give an example to show that the equality need not hold if f is not surjective.
4. Try and guess a formula for $1+3+5+\ldots+(2 n-1)$, and prove the formula using induction.
5. Prove that for all natural numbers n such that $n \geq 2$, one has

$$
\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\ldots+\frac{1}{\sqrt{n}}>\sqrt{n}
$$

6^{*}. Given the set of 51 integers between 1 and 100 (inclusive), show that at least one member of the set must divide another member of the set.
Hint: use induction
7. Let n be a natural number. Prove that

$$
1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots+\frac{1}{n^{3}}<\frac{3}{2}
$$

8^{*}. Let $n \geq 3$ be a natural number. Let S denote an $n \times n$ lattice square, that is

$$
S=\{(k, m): k, m \in \mathbb{N}, k \in[1, n], m \in[1, n]\} .
$$

Show that it is possible to draw a polygonal path consisting of $2 n-2$ segments which will pass through all of the n^{2} lattice points of S.

