HOME WORK I, ANALYSIS I

Due September 5. Problems marked with asterisk are optional, but highly recommended. Please contact me if you have any questions!

- 1. Let $g(x) = x^2$ and f(x) = x + 2 for $x \in \mathbb{R}$ and let $h = g \circ f$.
- a) Find the direct image h(E) of $E = \{x \in \mathbb{R} : x \in [0, 1]\}$.
- b) Find the inverse image $h^{-1}(G)$ of $G = \{x \in \mathbb{R} : x \in [0, 4]\}$.

2. Show that if $f : A \to B$ and G, H are subsets of B, then a) $f^{-1}(G \cup H) = f^{-1}(G) \cup f^{-1}(G) \cup f^{-1}(H);$ b) $f^{-1}(G \cap H) = f^{-1}(G) \cap f^{-1}(H).$

3. a) Show that if $f : A \to B$ is injective and $E \subset A$, then $f^{-1}(f(E)) = E$. Give an example to show that the equality need not hold if f is not injective.

b) Show that if $f : A \to B$ is surjective and $H \subset B$, then $f(f^{-1}(H)) = H$. Give an example to show that the equality need not hold if f is not surjective.

4. Try and guess a formula for 1 + 3 + 5 + ... + (2n - 1), and prove the formula using induction.

5. Prove that for all natural numbers n such that $n \ge 2$, one has

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \dots + \frac{1}{\sqrt{n}} > \sqrt{n}.$$

 6^* . Given the set of 51 integers between 1 and 100 (inclusive), show that at least one member of the set must divide another member of the set. Hint: use induction 7. Let n be a natural number. Prove that

$$1 + \frac{1}{2^3} + \frac{1}{3^3} + \dots + \frac{1}{n^3} < \frac{3}{2}.$$

 $8^*.$ Let $n\geq 3$ be a natural number. Let S denote an $n\times n$ lattice square, that is

$$S = \{(k, m) : k, m \in \mathbb{N}, k \in [1, n], m \in [1, n]\}.$$

Show that it is possible to draw a polygonal path consisting of 2n - 2 segments which will pass through all of the n^2 lattice points of S.