HOME WORK II, ANALYSIS I

Due September 19.

1. Construct an explicit bijection between sets $A \times B$ and $B \times A$.
2. Let A, B, C be sets (not necessarily finite!). Show that the sets $\left(A^{B}\right)^{C}$ and $A^{B \times C}$ have the same cardinality.
3. Let A, B, C be finite sets. Show that
a) For any $a \notin A$ we have $\operatorname{card}(A \cup\{a\})=\operatorname{card}(A)+1$;
b) If $A \subset B$ then $\operatorname{card}(A) \leq \operatorname{card}(B)$;
c) $\operatorname{card}(A \cup B) \leq \operatorname{card}(A)+\operatorname{card}(B)$;
c') $\operatorname{card}(A \cup B)=\operatorname{card}(A)+\operatorname{card}(B)$ if and only if $A \cap B=\emptyset$;
d) $\operatorname{card}(A \times B)=\operatorname{card}(A) \operatorname{card}(B)$.
4. Let A_{1}, \ldots, A_{n} be finite sets such that card $\left(\cup_{i=1}^{n} A_{i}\right) \geq n+1$. Show that for at least one $i \in\{1, \ldots, n\}$ we have $\operatorname{card}\left(A_{i}\right) \geq 2$.
5. Recall that we say that $\operatorname{card}(A) \leq \operatorname{card}(B)$ if there exists an injection from A to B. Prove that this introduces an order on the class of all sets. Hint: Theorem of Shroeder-Bernstein proved in class is allowed to quote directly.
6. Show that $\sqrt[3]{17}$ is irrational.
7. Show that for rational numbers x, y, for a rational $z \neq 0$, and for positive rational ϵ, one has the following implication: if $|x-y|<\epsilon$ then $|x z-y z|<\epsilon|z|$.
