
ANALYSIS I, HOME WORK 4, FALL 2018

Due October 3.

1. Limits.

1.1. Example 1. Prove that limn→∞ n
n+3

= 1.

Proof. By the definition of the limit, we are required to show that for every ε > 0 there exists an
N ∈ N such that for any n ≥ N, ∣∣∣∣ n

n+ 3
− 1

∣∣∣∣ ≤ ε.
Select any ε > 0. Let

(1.1) N = Nε = [
3

ε
].

(It is recommended to leave the right hand side of the above blank, as you are working through
the proof, and then fill it in, once it is clear what you want to write there.)

For any positive number n, we have

(1.2)
∣∣∣∣ n

n+ 3
− 1

∣∣∣∣ =
∣∣∣∣∣n− n− 3

n+ 3

∣∣∣∣∣ = 3

n+ 3
.

Next, for any integer n ≥ Nε, we estimate

(1.3) 3

n+ 3
≤ 3

Nε + 3
.

By the definition of integer part, we have, for any number a,

(1.4) a− 1 ≤ [a] ≤ a

In view of (1.4), applied with a = 3
ε
, and recalling the definition of Nε given in (1.1), we write

(1.5) 3

Nε + 3
=

3

[ 3
ε
] + 3

≤ 3
3
ε
+ 2

< ε.

Combining (1.2), (1.3) and (1.5), we see that we showed, that for every ε > 0 there exists
a positive integer N = Nε, such that for all n ≥ Nε, we have | n

n+3
− 1| ≤ ε. Therefore,

limn→∞ n
n+3

= 1. The proof is complete. �
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1.2. Example 2. Prove that an = 2 · (−1)n does not have a limit.

Proof. Suppose, by contradiction, that an has a limit. Let us call this limit a. By the definition
of the limit, we have, that for every ε > 0, there exists a positive integer N ∈ N such that for
every n ≥ N,

(1.6) |a− 2 · (−1)n| ≤ ε.

Since we assume that this holds for every ε > 0, it must hold for ε = 1. Which means, that there
exists a positive integer N = N1 such that for all n ≥ N1 we have (1.6) with ε = 1. In particular,
plugging n = N1 and n = N1 + 1 correspondingly, we arrive to a pair of inequalities

(1.7) |a− 2 · (−1)N1 | ≤ 1;

(1.8) |a− 2 · (−1)N1+1| ≤ 1.

One of the numbers N1 and N1 + 1 is necessarily even, while the other is necessarily odd. Hence
we have, by (1.7) and (1.8), that

(1.9) |a− 2| ≤ 1,

and

(1.10) |a+ 2| ≤ 1.

Therefore, combining (1.9) and (1.10), we have

(1.11) a ∈ [1, 3] ∩ [−3,−1].

However, the set [1, 3]∩ [−3,−1] is empty, and we arrive to the contradiction to our assumption
that an has a limit. Therefore, an has no limit. The proof is complete. �

1.3. Exercises. 1. Show that limn→∞ 2n−1
n

= 2.

2. Show that limn→∞ 3
n2 = 0.

3. Show that limn→∞ (−1)n

n+2
= 0.

4. Show that an = −7 · (−1)n does NOT have a limit.

5. Show that 3 is NOT a limit of an = n
2n+3

(note: regardless of what you were told in calculus,
we do not yet know whether or not a limit is always unique, and you are not allowed to make and
use any such statements).
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2. Cauchy sequences – exercizes

6. Show that an = 3n2

n2+1
is a Cauchy sequence.

7. Show that an = 2n− 1 is NOT a Cauchy sequence.

3. Equivalent sequences, bounded sequences, R – exercises

8. Show that an = 1
n
and bn = 1

2n+1
are equivalent sequences.

9. Finish showing that the multiplication of real numbers is well-defined: that is, show that
if an and bn are equivalent Cauchy sequences, and cn and dn are equivalent Cauchy sequences,
than an · cn and bn · dn are equivalent Cauchy sequences. (In class, we verified that they are
Cauchy).

10. Using directly the definition of the bounded sequence, show that an = 3n2−5
n2+1

is bounded.

11. Show that
√
5 ∈ R \Q.
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