ANALYSIS I, HOME WORK 5, FALL 2018

Due October 24.

1. Show that any decreasing sequence a_{n} in \mathbb{R}, which is bounded from below, is convergent.
2. Prove that $\lim _{n \rightarrow \infty} \min \left(a_{n}, b_{n}\right)=\min \left(\lim _{n \rightarrow \infty} a_{n}, \lim _{n \rightarrow \infty} b_{n}\right)$.
3. Show that there exists a positive real number x such that $x^{4}=5$.
4.* Does there exist a sequence with infinitely many limit points? Give an example if the answer is yes.
4. Let a_{n} and b_{n} be two sequences of real numbers such that $a_{n} \leq b_{n}$ for all natural n. Show that $\lim \sup _{n \rightarrow \infty} a_{n} \leq \lim \sup _{n \rightarrow \infty} b_{n}$.
5. For $x \in \mathbb{R}$, does $\lim _{n \rightarrow \infty} x^{n}$ exist, and if so, what does it equal to? In class we studied that case when $x \in(0,1)$; consider, with the proof, all the necessary cases.
