HOME WORK 6, ANALYSIS I

Due November 5.

1. Finish the proof of the Cauchy criterion: recall that a_{n} is a decreasing sequence of nonnegative real numbers, and

$$
S_{N}=\sum_{n=1}^{N} a_{n}
$$

and

$$
T_{K}=\sum_{k=0}^{K} 2^{k} a_{2^{k}}
$$

Show that

$$
2 S_{2^{k+1}} \geq 2 S_{2^{k}}+2^{k+1} a_{2^{k+1}}
$$

and

$$
S_{2^{k+2}-1} \leq S_{2^{k+1}-1}+2^{k+1} a_{2^{k+1}}
$$

2*. Prove the root test formulated in class.

3*. Give an example of a convergent series with a divergent rearrangement. (note that by the theorem we proved in class, it is impossible if a series is absolutely convergent!)
4. Let $x \in(-1,1)$ and $q \in \mathbb{R}$. Show that $\sum_{n=1}^{\infty} n^{q} x^{n}$ is absolutely convergent.
5. Is $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\log _{2} n}$ convergent? Is it absolutely convergent? Include proofs.

