## HOME WORK 7, ANALYSIS I

Due November 14. Problems marked with asterisk are optional, but highly recommended. Please contact me if you have any questions!

- 1. In class we showed that there is a bijection  $f:(-1,1)\to\mathbb{R}$ . Please show that there is a bijection  $g:[0,1]\to\mathbb{R}$ .
- 2. Give an example of a set which is simultaniously:
- a) not closed,
- b) its compliment in  $\mathbb{R}$  is not closed,
- c) not countable,
- d) and is not a finite union of intervals.

Please prove each fact about this set.

- 3. Prove that every point of [0, 1] is a limit point.
- $4^*$ . For a set  $K \subset \mathbb{R}$ , we say that from every covering of K by open intervals one may select a finite subcovering, if the following holds: for every set  $A \subset \mathbb{R}$ , for every family of intervals  $I_{\alpha} = (\alpha_{\alpha}, b_{\alpha})$ , where  $\alpha \in A$ , such that

$$K \subset \bigcup_{\alpha \in A} I_{\alpha}$$
,

there exists a **finite** set  $N \subset A$  such that

$$K \subset \bigcup_{\alpha \in \mathbb{N}} I_{\alpha}$$
.

- a) With K = (0, 1), give an example of a covering (indexed by some infinite set A) such that one may not select a finite subcovering.
- b) Prove that from every covering of K by open intervals one may select a finite subcovering if and only if K is a compact (i.e. if from every sequence in K one may select a subsequence converging to an element of K).
- 5. a) Give an example of a function on [-1, 1] which has limit 5 at x = 0;

- b) Give an example of a function on [-1, 1] which does not have a limit at x = 0.
- $6^*$ . Give an example of a function on [0, 1] which is continuous at only one point (and is discontinuous at the rest).
- $7^*$ . Prove that for every non-compact set  $S \subset \mathbb{R}$  there exists a continuous function  $f: S \to \mathbb{R}$  which is unbounded.
- 8. Let  $f:[0,1] \to [0,1]$  be a continuous function. Show that there exists an  $x \in [0,1]$  such that f(x) = x.

Hint: how and to what function should you apply the intermediate value theorem?