HOME WORK 8, ANALYSIS I

Due December 3. Problems marked with asterisk are optional, but highly recommended. Please contact me if you have any questions!

1^{*}. Give an example of a function on \mathbb{R}, continuous at all irrational points but discontinuous at the rational points. Provide all the proofs.
2^{*}. Give a second proof of the fact that any continuous function on $[0,1]$ is uniformly continuous: use the exercise 4 from Home work 7 about finite subcover property of compacts.
3. Prove that f is uniformly continuous on A if and only if, for any pair of equivalent sequences $\left\{x_{n}\right\} \subset A$ and $\left\{y_{n}\right\} \subset A$, the sequences $\left\{f\left(x_{n}\right)\right\}$ and $\left\{f\left(y_{n}\right)\right\}$ are necessarily equivalent.
4. Find derivatives of
a) $x^{2}+3 x-1$ at $x_{0}=5$;
b) $\cos \frac{x^{2}}{x+1}+\sin \frac{1}{x^{2}}$ at $x_{0}=1$;
c) $\sqrt{x^{3}-\sin ^{2}(3 x)}$ at $x_{0}=10$.
5. Can it happen, that a function is differentiable at x_{0}, and has derivative equal to zero at x_{0}, but x_{0} is neither local maxima nor local minima?
6. Show that if $f: \mathbb{R} \rightarrow \mathbb{R}$ is everywhere differentiable, and the function f^{\prime} is bounded, then f is uniformly continuous.
7. Give an example of a function on $[-1,1]$ which is continuous, monotone, but not differentiable at $x=0$.

