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Abstract. It was shown in [21] that the maximal surface area
of a convex set in Rn with respect to a rotation invariant log-

concave probability measure γ is of order
√
n

4
√

V ar|X|
√

E|X|
, where X

is a random vector in Rn distributed with respect to γ. In the
present paper we discuss surface area of convex polytopes PK with
K facets. We find tight bounds on the maximal surface area of

PK in terms of K. We show that γ(∂PK) .
√
n

E|X| ·
√

logK · log n

for all K. This bound is better then the general bound for all

K ∈ [2, e
c√

V ar|X| ]. Moreover, for all K in that range the bound

is exact up to a factor of log n: for each K ∈ [2, e
c√

V ar|X| ] there
exists a polytope PK with at most K facets such that γ(∂PK) &√

n
E|X|
√

logK.

1. Introduction

In this paper we study properties of the surface area of convex poly-
topes with respect to log-concave rotation invariant probability mea-
sures. For sets A,B ⊂ Rn the Minkowski sum is defined as

A+B = {a+ b | a ∈ A, b ∈ B}.
For a scalar λ the dilated set is

λA := {λa | a ∈ A}.
A measure γ on Rn is called log-concave if for any measurable sets

A,B ⊂ Rn and for any λ ∈ [0, 1],

γ(λA+ (1− λ)B) ≥ γ(A)λγ(B)1−λ.

It was shown by Borrell [6], that a measure is log-concave if and only
if it has a density with respect to the Lebesgue measure on some affine
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hyperplane, and this density is a log-concave function. Log-concave
measures have been studied intensively in the recent years. For the
background and numerous interesting properties, see for example [16],
[17], [19] and [23].

A measure γ is called rotation invariant if, for every rotation T and
for every measurable set A,

γ(TA) = γ(A).

Log-concave rotation invariant measures appear for example in [19],
[2], [3], [4] and [21].

In the present paper we restrict our attention to probability measures
(that means that the measure of the whole space is equal to 1). Ex-
amples of log-concave rotation invariant probability measures are the
Standard Gaussian Measure γ2 and the Lebesgue measure restricted
on a ball.

LetX be a random vector in Rn distributed with respect to a measure
γ. We introduce

(1) E := E|X|
and

(2) S :=

√
E (|X| − E|X|)2

E|X|
,

the expectation and the normalized standard deviation of the absolute
value of X. E and S are natural parameters of the measure γ. For
rotation invariant measures S ∈ [ c1

n
, c2√

n
], where c and c′ are absolute

constants (see [16] or [21], Remark 2.9). The parameter S is closely

related to σ =
√

E (|X| − E|X|)2. The famous Thin Shell Conjecture

suggests that σ is bounded from above by an absolute constant for all
isotropic (see, for example, [23], [16] for definitions and properties) log-
concave measures (see [16], [17], [18], [11], [13], [10], [13]). Currently,

the best bound is Cn
1
3 and is due to Gudeon and E. Milman [13].

The Minkowski surface area of a convex set Q with respect to the
measure γ is defined to be

(3) γ(∂Q) = lim inf
ε→+0

γ((Q+ εBn
2 )\Q)

ε
,

where Bn
2 denotes Euclidian ball in Rn. In many cases the Minkowski

surface area has an integral representation:

(4) γ(∂Q) =

∫
∂Q

f(y)dσ(y),
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where f(y) is the density γ and dσ(y) stands for the Lebesgue surface
measure on ∂Q (see for example Appendix of [14] and Appendix of
[21]).

The questions of estimating the surface area of n−dimensional con-
vex sets with respect to the Standard Gaussian Measure have been
actively studied. Sudakov, Tsirelson [26] and Borell [5] proved, that
among all convex sets of a fixed Gaussian volume, half spaces have
the smallest Gaussian surface area. Mushtari and Kwapien asked the
reverse version of the isoperimetric inequality, i.e. how large the Gauss-
ian surface area of a convex set Q ⊂ Rn can be. It was shown by Ball
[1], that Gaussian surface area of a convex set in Rn is asymptoti-

cally bounded by Cn
1
4 , where C is an absolute constant. Nazarov [24]

proved the sharpness of Ball’s result and gave the complete solution to
this asymptotic problem:

(5) 0.28n
1
4 ≤ max

Q∈Kn
γ2(∂Q) ≤ 0.64n

1
4 ,

where by Kn we denote the set of all convex sets in Rn.
Further estimates for γ2(∂Q) for the special case of polynomial level

set surfaces were provided by Kane [14]. He showed that for any poly-
nomial P (y) of degree d, γ2(P (y) = 0) ≤ d√

2
.

For the case of all rotation invariant log-concave measures it was
shown in [21], that

max
Q∈Kn

γ(∂Q) ≈
√
n

E ·
√

S
.

Let K be a given positive integer. In the present paper we consider
the family of n−dimensional convex polytopes with K facets, where
by a “polytope” we mean the intersection of K half-spaces (we do not
assume compactness as it is irrelevant for the type of questions we
consider). We obtain the bounds on the surface area of the polytope
with K facets with respect to rotation invariant log-concave measure
γ in terms of K and the natural parameters of γ.

It is not hard to show that the γ−surface area of any half-space does

not exceed C
√
n

E
, for some absolute constant C (see (21) below). Thus

the immediate bound for the surface area of a polytope with K facets

is CK
√
n

E
. In the present paper we show a sharper estimate from above.

We also show an estimate from below on the maximal surface area of
a convex polytope with K facets. Both of the estimates match up to a
log n factor.

The estimate from above is the content of the following Theorem:
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Theorem 1.1. Let n ≥ 2. Fix positive integer K ∈ [2, e
c
S ]. Let P be

a convex polytope in Rn with at most K facets. Let γ be a rotation
invariant log-concave measure with E and S defined by (1) and (2).
Then

γ(∂P ) ≤ C

√
n

E
·
√

logK · log
1

S logK
,

where C and c stand for absolute constants.

Remark 1.2. We note that for K ≥ e
c
S the bound from Theorem 1.1

becomes worse then the general bound
√
n

4
√
V ar|X|

√
E|X|

. The latter bound

is also optimal for all K ≥ e
c
S .

Remark 1.3. Since S ∈ [ c
n
, C√

n
] for all log-concave rotation invariant

measures, Theorem 1.1 reads in fact, that for all K ∈ [1, e
c
S ],

γ(∂P ) ≤ C

√
n

E
·
√

logK · log
n

logK
≤ C

√
n

E
·
√

logK · log n.

Theorem 1.1, up to a log factor, is a generalization of the following
Theorem of Nazarov [25]:

Theorem 1.4 (F. Nazarov). Let n ≥ 2 and K ≥ 2 be integers. Let
P be a convex polytope in Rn with at most K facets. Let γ2 be the
Standard Gaussian Measure. Then there exist a positive constant C
such that

γ2(∂P ) ≤ C
√

logK.

For a generalization of the Theorem of Nazarov in an entirely differ-
ent set up see [15]. See also Section 5 of the present paper for the proof

of the analogous result for measures with densities C(n, p)e−
|y|p
p . The

case p = 2 corresponds to the Gaussian measure. Theorem 5.1 from
Section 5 is a generalization of the Theorem of Nazarov.

We also obtain a lower bound for the maximal surface area of a
convex polytope with K facets. It proves sharpness of Theorem 1.4 of
Nazarov. It also shows sharpness of Theorem 1.1 up to a log n factor:

Theorem 1.5. Let n ≥ 2. Let γ be a rotation invariant log-concave
measure with E and S defined by (1) and (2). Fix positive integer
K ∈ [2, e

c
S ]. Then there exists a convex polytope P in Rn with at most

K facets such that

γ(∂P ) ≥ C ′
√
n

E

√
logK,

where c and C ′ stand for absolute constants.
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The next section is dedicated to some technical preliminaries. In
Section 3 we give the proof of Theorem 1.1. In Section 4 we prove
Theorem 1.5. Finally, in Section 5 we show that Theorem 1.1 can be
refined in some partial cases of measures, which include the Standard
Gaussian measure.

2. Preliminaries and definitions

This section is dedicated to some general properties of rotation in-
variant log-concave measures. We outline some elementary facts which
are needed for the proof. Some of them have appeared in literature.
See [16] for an excellent overview of the properties of log-concave mea-
sures; see also [21] for more details and the proofs of the facts listed in
the present section.

We use notation | · | for the norm in Euclidean space Rn; |A| stands
for the Lebesgue measure of a measurable set A ⊂ Rn. We write Bn

2 =
{x ∈ Rn : |x| ≤ 1} for the unit ball in Rn and Sn−1 = {x ∈ Rn : |x| = 1}
for the unit sphere. We denote νn = |Bn

2 | = π
n
2

Γ(n/2+1)
.

We shall use notation - for an asymptotic inequality: we say that
A(n) - B(n) if there exists an absolute positive constant C (indepen-
dent of n), such that A(n) ≤ C ·B(n). Correspondingly, A(n) ≈ B(n)
means that B(n) - A(n) - B(n). Also in the present paper C, c, c1

etc denote absolute constants which may change from line to line.
We fix a convex nondecreasing function ϕ(t) : [0,∞) → [0,∞]. Let

γ be a probability measure on Rn with density Cne
−ϕ(|y|). The normal-

izing constant Cn equals to [nνnJn−1]−1, where

(6) Jn−1 =

∫ ∞
0

tn−1e−ϕ(|y|)dt.

The measure γ is rotation invariant and log-concave; conversely, ev-
ery rotation invariant log-concave measure is representable this way
in terms of some convex function ϕ. Since we normalize the measure
anyway, we may assume that ϕ(0) = 0. We will be aiming for the
estimates for

γ(∂P ) = [nνnJn−1]−1

∫
∂P

e−ϕ(|y|)dσ(y),

where P is a convex polytope with K facets.
Without loss of generality we assume that ϕ ∈ C2[0,∞). This can

be shown by the standard smoothing argument (see, for example, [9]).
We introduce the notation

(7) gn−1(t) = tn−1e−ϕ(t).
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Definition 2.1. We define t0 to be the point of maxima of the function
gn−1(t), i.e., t0 is the solution of the equation

(8) ϕ′(t)t = n− 1.

The equation (8) has a solution, since tϕ′(t) is non-decreasing, con-
tinuous and limt→+∞ tϕ

′(t) = +∞. This solution is unique, since tϕ′(t)
strictly increases on its support. This definition appears in most of
the literature dedicated to spherically symmetric log-concave measures:
see, for example, [19] or [16] (Lemma 4.3), as well as [21] (Definition
2).

The following Lemma is proved in [19]. It provides asymptotic
bounds for Jn−1.

Lemma 2.2.
gn−1(t0)t0

n
≤ Jn−1 ≤

√
2π(1 + o(1))

gn−1(t0)t0√
n− 1

.

The following definitions appear in [21] (Definition 3).

Definition 2.3. Define the ”outer” λo to be a positive number satisfy-
ing:

(9) ϕ(t0(1 + λo))− ϕ(t0)− (n− 1) log(1 + λo) = 1.

Similarly, define the ”inner” λi as follows:

(10) ϕ(t0(1− λi))− ϕ(t0)− (n− 1) log(1− λi) = 1.

We put

(11) λ := λi + λo.

We note that (9) is equivalent to

(12) gn−1(t0) = e · gn−1(t0(1 + λo)),

and (10) is equivalent to

(13) gn−1(t0) = e · gn−1(t0(1− λi)).
Parameter λ from (11) has a nice property.

Lemma 2.4.
Jn−1 ≈ λt0gn−1(t0).

See [21] (Lemma 4) for the details and the proof. The following fact
is also presented in [21] (Lemma 5).

Lemma 2.5. For all n ≥ 2,

Jn
Jn−1

≈ t0.
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The above implies, that t0 ≈ E = E|X|, where X is a random vector
in Rn distributed with respect to γ. Also, λ ≈ S, where S is defined by
(2) (see [21] (Lemmas 9 and 10) for the details).

Remark 2.6. We note that Lemma 2.4 together with Lemma 2.2 imply

that λ ∈ [
c′1
n
,
c′2√
n
]. Both of the estimates are exact: it is equal to c

n

for Lebesgue measure concentrated on a ball and to C√
n

for Standard

Gaussian Measure.
Since λ ≈ S, we claim also that S ∈ [ c1

n
, c2√

n
].

We are now after the restated versions of the Theorems 1.1 and 1.5:

Theorem 2.7. Let n ≥ 2. Let K ∈ [2, e
c
λ ]. Let P be a convex polytope

in Rn with at most K facets. Let γ be a rotation invariant log-concave
measure. Then

γ(∂P ) ≤ C

√
n

t0
·
√

logK · log
1

λ logK
.

and

Theorem 2.8. Let n ≥ 2. Let γ be a rotation invariant log-concave
measure. Fix positive integer K ∈ [2, e

c
λ ]. Then there exists a polytope

P in Rn with at most K facets such that

γ(∂P ) ≥ C ′
√
n

t0

√
logK.

The following Lemma is an elementary fact about log-concave func-
tions (for example, it appears in [21] as Lemma 3).

Lemma 2.9. Let g(t) = ef(t) be a log-concave function on [a,b] (where
both a and b may be infinite). We assume that f ∈ C2[a, b]. Let t0 be
the point of maxima of f(t). Assume that t0 > 0. Consider x > 0 and
ψ > 0 such that

f(t0)− f((1 + x)t0) ≥ ψ.

Then, ∫ b

(1+x)t0

g(t)dt ≤ xt0g(t0)

ψeψ
.

Similarly, if f(t0)− f((1− x)t0) ≥ ψ,∫ (1−x)t0

a

g(t)dt ≤ xt0g(t0)

ψeψ
.

The next Lemma is similar to Lemma 12 from [21].
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Lemma 2.10. Pick ψ ∈ [1, c log 1
λ
]. Define µ to be smallest positive

number such that

(14) ϕ (t0(1 + µ))− ϕ(t0)− (n− 1) log(1 + µ) ≥ ψ.

Define

A := (1 + µ)t0B
n
2 \

t0
2e
Bn

2 .

We claim, that such µ is well-defined and

γ(∂Q \ A) -

√
n

t0λ
√
ψeψ

.

Proof. First, consider M = Q ∩ t0
2e
Bn+1

2 . Then,

γ(M) ≤ 1

(n− 1)νnJn−1

∫
M

e−ϕ(|y|)dσ(y) ≤ |M |
(n− 1)νnJn−1

≤

(15)
| t0
2e
Sn−1|

(n− 1)νnJn−1

≈ tn−1
0

(2e)n−1λt0e−ϕ(t0)tn−1
0

=
1

λt0
· eϕ(t0)

(2e)n−1
,

where the equivalency follows from Lemma 2.4 and (18). By the Mean

Value Theorem, ϕ(t0) ≤ n, so we estimate (15) from above by c2−n

λt0
.

In a view of Remark 2.6, the latter bound is much better then the one
stated in the Lemma.

Next, let N = ∂Q\(1+µ)t0B
n
2 . In the current range of ψ, we observe:

(16) ψ =
(n− 1)µ2

2
+ o(1).

We obtain the following integral expression for e−ϕ(|y|) (inspired by
[1]):

e−ϕ(|y|) =

∫ ∞
|y|

ϕ′(t)e−ϕ(t)dt =

∫ ∞
0

ϕ′(t)e−ϕ(t)χ[0,t](|y|)dt,

where χ[0,t] stands for characteristic function of the interval [0, t]. In
the current range of |y|,

e−ϕ(|y|) =

∫ ∞
(1+µ)t0

ϕ′(t)e−ϕ(t)χ[0,t](|y|)dt.

Using the above, passing to the polar coordinates and integrating by
parts, we get

γ(N) ≤ 1

Jn−1

∫ ∞
(1+µ)t0

tn−1ϕ′(t)e−ϕ(t)dt ≈

(17)
gn−1((1 + µ)t0) + (n− 1)

∫∞
(1+µ)t0

gn−2(t)dt

λt0gn−1(t0)
.
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Lemma 2.9, applied with x = µ and ψ, together with (16) entails that
(17) is asymptotically less than

e−ψ

λt0
+

nµ

λt0ψeψ
≤ 1

λt0
· (1 +

µn

ψ
)e−ψ -

√
n

t0λ
√
ψeψ

,

which implies the estimate. �

We use Lemma 2.10 with µ ≈
√

log 1
λ
√
logK√

n
≤ 1. We get, that for

A :=

1 +

√
log 1

λ
√

logK√
n

 t0B
n
2 \

t0
2e
Bn

2 ,

it holds that

γ(∂Q \ A) -

√
n

t0

√
logK.

Let y ∈ ∂Q. In an account of the above, we may assume that

(18) |y| ≈ t0

throughout the proof.
We consider the hyperplane H passing through the origin.

(19) γ(H) ≈ 1

nνnJn−1

∫
Rn−1

e−ϕ(|y|)dσ(y) =
(n− 1)νn−1Jn−2

nνnJn−1

.

It is well known that

(20)
νn−1

νn
≈
√
n.

Applying (20) together with Lemma 2.5 and (19), we obtain that

(21) γ(H) ≈
√
n

t0
.

Thus the trivial bound on the surface area of a polytope P with K

facets in Rn is
√
n
t0
K =

√
n

E
K. We shall improve it.

3. Proof of the upper bound part

Let Q be a convex set in Rn. For y ∈ ∂Q define

(22) α(y) := cos(y, ny),

where ny stands for the normal vector at y. We also define

(23) ψ(y) := log
gn−1(t0)

gn−1(|y|)
= ϕ(t0)− ϕ(|y|)− (n− 1) log

|y|
t0
.

It was shown in [21] (Equation (46)) that
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(24) γ(∂Q) . max
y∈∂Q

1

λ|y|α(y)eψ(y)
.

It was also shown in [21] (Equation (49) and Proposition 1) that

(25) γ(∂Q) . max
y∈∂Q

√
n
√
ψ(y)

α(y)
√
n
√
ψ(y) + 1

|y|
.

Pick any θ ∈ Sn−1 and ρ > 0. Let

Hρ = {x ∈ Rn | 〈x, θ〉 = ρ}

be a hyperplane at distance ρ from the origin. We note that for y ∈ Hρ,
α(y)|y| = ρ. So we introduce another function

(26) r(y) :=

√
n

t0
α(y)|y|.

For all y ∈ Hρ the function r(y) =
√
n
t0
ρ. Applying (18), we rewrite (24)

and (25) in terms of r(y):

(27) γ(∂Q) .

√
n

t0
max
y∈∂Q

1

λr(y)eψ(y)
,

(28) γ(∂Q) .

√
n

t0
max
y∈∂Q

(
r(y)ψ(y) +

√
ψ(y)

)
.

We are going to estimate the measure of each facet using both (27)
and (28), and “the breaking point” is going to depend on how far the
facet is from the origin. So we minimize the expression

(29)
1

λreψ
+ rψ +

√
ψ

in ψ in terms of r. If r . 1√
ψ

, the minimum of (29) is equivalent to

the minimum of 1
λreψ

+
√
ψ which is achieved when ψ ≈ log 1

λr
and

is approximately equal to
√

log 1
λr

. If r - 1√
ψ

, the minimum of (29)

is equivalent to the minimum of 1
λreψ

+ rψ which is achieved when

ψ ≈ log 1
r2λ

and is approximately equal to r log 1
r2λ

. We conclude that
the minimum of (29) is asymptotically less then

max

(√
log

1

λr
, r log

1

λr2

)
.
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We fix a positive number R (which we will select later). Consider
a convex polytope P1 such that all its facets are close enough to the
origin. In other words, assume that r(y) < R for all y ∈ ∂P1. Then

(30) γ(∂P1) .

√
n

t0
max
r∈[0,R]

(√
log

1

λr
, r log

1

λr2

)
.

We note that for R ∈ (0, 1), the right hand side of (30) is infinitely
large. But as long as we assume that R ∈ (1, 1

e
√
λ
) the right hand side

of (30) is asymptotically equal to

(31)

√
n

t0
max
r∈[0,R]

(
r log

1

λr2

)
≈
√
n

t0
R log

1

λR2
,

since r log 1
λr2

is increasing on (1, 1
e
√
λ
).

The estimate (31) is the first key ingredient for our proof. The other
key ingredient is the following Lemma.

Lemma 3.1.

γ(Hρ) .

√
n

t0

(
e−n + e

−cnρ
2

t20

)
,

where c is an absolute constant.

Proof. We write

γ(Hρ) =
1

nνnJn−1

∫
Rn−1

e−ϕ(
√
|y|2+ρ2)dσ(y).

Passing to the polar coordinates in Rn−1, we get:

γ(Hρ) =
(n− 1)νn−1

nνnJn−1

∫ ∞
0

sn−2e−ϕ(
√
s2+ρ2)ds.

We make a change of variables t =
√
s2 + ρ2 and use (20):

γ(Hρ) =
(n− 1)νn−1

nνnJn−1

∫ ∞
ρ

tn−2(1− ρ2

t2
)
n−2
2 e−ϕ(t) t√

t2 − ρ2
dt ≈

(32)

√
n

Jn−1

∫ ∞
ρ

tn−2(1− ρ2

t2
)
n−3
2 e−ϕ(t)dt.

It was shown in [19] (Lemma 2.1) that

(33)

∫ ∞
5t0

tn−2e−ϕ(t)dt ≤ e−nJn−2.
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We note that (1 − ρ2

t2
)
n−3
2 ≤ 1 for n ≥ 3. Applying (33) together with

Lemma 2.5, we conclude that for n ≥ 3, (32) is asymptotically smaller
then

√
n

t0

(
e−n + max

t∈[ρ,5t0]
(1− ρ2

t2
)
n−2
2

)
.

√
n

t0

(
e−n + e

−cnρ
2

t20

)
.

For n = 2 the surface area of any convex set is bounded by a con-
stant. Thus for n = 2 the result follows with the proper choice of C in
Theorem 1.1. This concludes the proof of the Lemma. �

Consider a polytope P2 with K facets such that all its facets are far
enough from the origin. Namely, assume that r(y) ≥ R for all y ∈ ∂P2.
Then Lemma 3.1 implies that

(34) γ(∂P2) .

√
n

t0
Ke−cR

2

,

as long as we chose R .
√
n.

Now we glue everything together. Let R ∈ (1, 1
e
√
λ
) (note that (34)

is applicable for this range of R since by Remark 2.3, 1
e
√
λ
.
√
n). We

split the surface of our polytope P into two parts P1 and P2, where P1

consists of the facets which are closer then R to the origin and P2 is
the rest, i.e. the facets which are farther then R from the origin. In
other words,

P1 = {y ∈ ∂P | r(y) ≤ R}

and

P2 = {y ∈ ∂P | r(y) > R}.

Applying (31) and (34) we observe, that

(35) γ(∂P ) .

√
n

t0

(
R log

1

λR2
+Ke−R

2

)
.

The estimate (35) holds for every R ∈ (1, 1
e
√
λ
). Minimizing (35) in R

we get that

(36) γ(∂P ) .

√
n

t0

√
logK log

1

λ logK
.

Here we plugged R ≈
√

logK, so the above estimate is valid for all
K ∈ [1, e

c
λ ] for some absolute constant c. This finishes the proof of

Theorem 2.7, and thus Theorem 1.1.�
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4. Proof of the lower bound part

Fix an integer K ≤ e
c
λ . We consider K independent uniformly dis-

tributed random vectors xi ∈ Sn−1. Let ρ ∈ (0, c t0√
λn

) (we will chose

it later). Consider a random polytope P in Rn, circumscribed around
the ball of radius ρ:

P = {x ∈ Rn : 〈x, xi〉 ≤ ρ, ∀i = 1, ..., K}.

Passing to the polar coordinates as in Lemma 3.1 and restricting the
integration to [t0(1−λ), t0(1+λ)] we estimate the expectation of γ(∂P )
from below:

E(γ(∂P )) %

1

nνnJn−1

K(n− 1)νn−1

∫ t0(1+λ)

t0(1−λ)

tn−2e−ϕ(t)(1− ρ2

t20
)
n−3
2 (1− p(t))K−1dt %

(37)

√
n

Jn−1

K

(
1− ρ2

t20(1− λ)2

)n−3
2
∫ t0(1+λ)

t0(1−λ)

e−ϕ(t)tn−2(1− p(t))K−1dt,

where p(t) is the probability that the fixed point on the sphere of
radius t is separated from the origin by the hyperplane Hi = {x :
〈x, xi〉 = ρ}. It was shown in [21], Equation (70) (see also [24]), that
for t ∈ [(1− λ)t0, (1 + λ)t0]

(38) p(t) -
t0√
nρ

(
1− ρ2

t20(1 + λ)2

)n−3
2

.

We chose ρ so that

K−1 =
t0√
nρ

(
1− ρ2

t20(1 + λ)2

)n−3
2

,

which in the current range of ρ means that ρ = c t0√
n

√
logK, and

K

(
1− ρ2

t20(1− λ)2

)n−3
2

=

√
nρ

t0
.

We use the above together with (37) to conclude that the expectation
E(γ(∂P )) is greater than

√
n

t0
K(1− ρ2

t20(1− λ)2
)
n−3
2 ≈

√
n

t0

√
nρ

t0
=

√
n

t0

√
logK,

which finishes the proof of Theorem 2.8 and thus Theorem 1.5. �
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5. Improvements in some partial cases

In certain cases Theorem 1.1 may be improved and made prescize.

Namely, we fix p > 0 and consider ϕ(y) = ϕp(y) = |y|p
p

which corre-

sponds to a measure γp with density e−
|y|p
p . Such measures are log-

concave for p ≥ 1. They were considered in [20]. It was shown there,
that for every convex body Q in Rn,

γp(∂Q) . n
3
4
− 1
p .

The definition of t0 implies that t0 ≈ n
1
p for the measures γp. Thus the

above estimate can be rewritten:

γp(∂Q) .

√
n

t0
n

1
4 .

In particular, it was shown in [20] that for every convex body Q,

(39) γp(∂Q) . max
y∈∂Q

α(y)|y| p2 + 1

|y| p2−1
≈ max

y∈∂Q

√
n

t0
(r(y) + 1),

where, as before, α(y) = cos(y, ny) and r(y) =
√
n
t0
α(y)|y|. Using the

scheme from the proof of Theorem 2.7 we observe that for any polytope
P with K facets, and for any R > 0,

(40) γp(∂Q) .

√
n

t0
(R +Ke−cR

2

).

Minimizing (40) in R, we get the following

Theorem 5.1.

γp(∂P ) .

√
n

t0

√
logK ≈ n

1
2
− 1
p

√
logK.

The above estimate is optimal since it coincides with the lower bound
from Theorems 1.5 and 2.8.
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