MIDTERM, PROBABILITY I, FALL 2016

Each problem is worse 25 points. To get the full score (100 points) please select 4 out of 6 problems of your choice and solve them. Please indicate which problems you select at the first page of the exam; only those problems shall be graded. This scheme is used for qualifying exams, and the problems at the qualifying exam shall be similar in difficulty.

1. Let $p \geq 1$. Show that if $\mathbb{E}\left|X-X_{n}\right|^{p} \rightarrow 0$, and X_{n} converges to Y almost surely, then $X=Y$ almost surely.
2. Consider the sample space $\Omega=\{0,1,2\} \times\{0,1,2\}$ with uniform probability measure on Ω. Using the notation $\omega=\left(\omega_{1}, \omega_{2}\right)$, consider random variables $X(\omega)=\omega_{1}$ and $Y(\omega)=\omega_{2}$. Define $A=X, B=(X+Y) \bmod 3$ and $C=(X+2 Y) \bmod 3$. Show that A, B, C are pairwise independent, but not jointly independent.
3. For a $p>0$, let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector distributed according to the density $f(x)=1_{Q} \cdot(p+1)^{n} \cdot \prod_{i=1}^{n} x_{i}^{p}$, where $Q=[0,1]^{n}=\left\{x \in \mathbb{R}^{n}: x_{i} \in[0,1] \forall i=1, \ldots, n\right\}$. Assume that for every $\delta>0$ there exists a positive integer N so that for all $n \geq N$,

$$
\mathrm{P}\left(|X| \in \sqrt{\mathrm{n}}\left[\frac{\sqrt{3}}{2}-\delta, \frac{\sqrt{3}}{2}+\delta\right]\right) \geq 0.1
$$

Find p.
4. Assume that $\mathrm{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right)=1$ and $\mathrm{P}\left(\liminf _{n \rightarrow \infty} \mathrm{~B}_{\mathrm{n}}\right)=1$. Prove that

$$
P\left(\limsup _{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)\right)=1
$$

5. Suppose $X_{n}, n=\{1,2, \ldots\}$ and X are random variables with bounded first moments. Assume that $X_{n} \geq 0$ almost surely, $\mathbb{E} X_{n}=1$ and $\mathbb{E}\left(X_{n} \log X_{n}\right) \leq 1$. Assume that for every bounded random variable $Y, \mathbb{E}\left(X_{n} Y\right) \rightarrow_{n \rightarrow \infty} \mathbb{E}(X Y)$. Show that:

- $X \geq 0$ almost surely;
- $\mathbb{E} X=1$;
- $\mathbb{E}(X \log X) \leq 1$.

6. Let X_{1}, X_{2}, \ldots be independent random variables with $\mathbb{E} X_{i}=\mu_{i}<\infty$ and $\operatorname{Var}\left(X_{i}\right)=\sigma_{i}^{2}<\infty$. Let $S_{n}=X_{1}+\ldots+X_{n}$. Show that

$$
P\left(\max _{1 \leq k \leq n}\left|S_{k}-\sum_{i=1}^{k} \mu_{i}\right| \geq t\right) \leq \frac{1}{t^{2}} \sum_{i=1}^{n} \sigma_{i}^{2} .
$$

