On the dimensional Brunn-Minkowski conjecture: the role of symmetry
 (based on the joint work with Alexander Kolesnikov.)

Galyna V. Livshyts
Georgia Institute of Technology
UGA
February 2019.

Brunn-Minkowski inequality

Recall: Minkowski's sum of arbitrary sets K and L in \mathbb{R}^{n}

$$
K+L=\{x+y: x \in K, y \in L\}
$$

Brunn-Minkowski inequality

Recall: Minkowski's sum of arbitrary sets K and L in \mathbb{R}^{n}

$$
K+L=\{x+y: x \in K, y \in L\}
$$

Brunn-Minkowski inequality:

$$
\begin{equation*}
|\lambda K+(1-\lambda) L| \geq|K|^{\lambda}|L|^{1-\lambda} . \tag{1}
\end{equation*}
$$

Brunn-Minkowski inequality

Recall: Minkowski's sum of arbitrary sets K and L in \mathbb{R}^{n}

$$
K+L=\{x+y: x \in K, y \in L\}
$$

Brunn-Minkowski inequality:

$$
\begin{equation*}
|\lambda K+(1-\lambda) L| \geq|K|^{\lambda}|L|^{1-\lambda} \tag{1}
\end{equation*}
$$

Equivalently, the (apriori stronger) additive form:

$$
\begin{equation*}
|\lambda K+(1-\lambda) L|^{\frac{1}{n}} \geq \lambda|K|^{\frac{1}{n}}+(1-\lambda)|L|^{\frac{1}{n}} . \tag{2}
\end{equation*}
$$

Brunn-Minkowski inequality

Recall: Minkowski's sum of arbitrary sets K and L in \mathbb{R}^{n}

$$
K+L=\{x+y: x \in K, y \in L\} .
$$

Brunn-Minkowski inequality:

$$
\begin{equation*}
|\lambda K+(1-\lambda) L| \geq|K|^{\lambda}|L|^{1-\lambda} \tag{1}
\end{equation*}
$$

Equivalently, the (apriori stronger) additive form:

$$
\begin{equation*}
|\lambda K+(1-\lambda) L|^{\frac{1}{n}} \geq \lambda|K|^{\frac{1}{n}}+(1-\lambda)|L|^{\frac{1}{n}} . \tag{2}
\end{equation*}
$$

- Brunn-Minkowski inequality constitutes a fundamental concavity property of Lebesgue measure in \mathbb{R}^{n}.
- Impies Young's convolution inequality;
- Is a fundamental tool in convexity (duality\&volumes, sections of convex bodies, projections of convex bodies, upper estimates on difference bodies, center of mass, coverings);
- Is a fundamental tool for obtaining concentration properties in probability;
- Is a fundamental tool in PDE thanks to its equality cases characterizations...

Relations of Brunn-Minkowski inequality to the isoperimetric inequality

Isoperimetric inequality

For any K such that $|K|=\left|B_{2}^{n}\right|$ we have $|\partial K|_{n-1} \geq\left|\partial B_{2}^{n}\right|_{n-1}$.

Relations of Brunn-Minkowski inequality to the isoperimetric inequality

Isoperimetric inequality

For any K such that $|K|=\left|B_{2}^{n}\right|$ we have $|\partial K|_{n-1} \geq\left|\partial B_{2}^{n}\right|_{n-1}$.

Brunn-Minkowski \rightarrow Isoperimetric inequality
$|\partial K|_{n-1}=\lim _{\epsilon \rightarrow 0} \frac{\left|K+\epsilon B_{2}^{n}\right|-|K|}{\epsilon} \geq \lim _{\epsilon \rightarrow 0} \frac{\left(|K|^{\frac{1}{n}}+\epsilon\left|B_{2}^{n}\right|^{\frac{1}{n}}\right)^{n}-|K|}{\epsilon}$

Relations of Brunn-Minkowski inequality to the isoperimetric inequality

Isoperimetric inequality

For any K such that $|K|=\left|B_{2}^{n}\right|$ we have $|\partial K|_{n-1} \geq\left|\partial B_{2}^{n}\right|_{n-1}$.

Brunn-Minkowski \rightarrow Isoperimetric inequality
$|\partial K|_{n-1}=\lim _{\epsilon \rightarrow 0} \frac{\left|K+\epsilon B_{2}^{n}\right|-|K|}{\epsilon} \geq \lim _{\epsilon \rightarrow 0} \frac{\left(|K|^{\frac{1}{n}}+\epsilon\left|B_{2}^{n}\right|^{\frac{1}{n}}\right)^{n}-|K|}{\epsilon}=n|K|^{\frac{n-1}{n}}\left|B_{2}^{n}\right|^{\frac{1}{n}}$,
and hence

$$
\frac{|\partial K|_{n-1}}{|K|^{\frac{n-1}{n}}} \geq \frac{\left|\partial B_{2}^{n}\right|_{n-1}}{\left|B_{2}^{n}\right|^{\frac{n-1}{n}}} .
$$

More generally: log-concavity

Log-concave functions
A function is called log-concave if its logarithm is concave, i.e. $f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}$.

More generally: log-concavity

Log-concave functions

A function is called log-concave if its logarithm is concave, i.e. $f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}$.

Log-concave measures

A measure μ is called log-concave if $\mu(\lambda K+(1-\lambda) L) \geq \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.

More generally: log-concavity

Log-concave functions

A function is called log-concave if its logarithm is concave, i.e. $f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}$.

Log-concave measures

A measure μ is called log-concave if $\mu(\lambda K+(1-\lambda) L) \geq \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.

Borell's theorem (which implies Brunn-Minkowski)

A measure with log-concave density is log-concave.

More generally: log-concavity

Log-concave functions

A function is called log-concave if its logarithm is concave, i.e. $f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} f(y)^{1-\lambda}$.

Log-concave measures

A measure μ is called log-concave if $\mu(\lambda K+(1-\lambda) L) \geq \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.

Borell's theorem (which implies Brunn-Minkowski)

A measure with log-concave density is log-concave.

- Gaussian measure γ with density $\frac{1}{\sqrt{2 \pi}^{n}} e^{-\frac{|x|^{2}}{2}}$;
- Lebesgue measure;
- Poisson density...

Preliminaries

- A convex body in \mathbb{R}^{n} is a convex set with non-empty interior.

- They shall be usually denoted K, L.
- We shall usually assume that they contain the origin.
- A body K is called symmetric if $x \in K \Longrightarrow-x \in K$.

Preliminaries

- Support function $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$of a convex body K is defined

$$
h_{K}(x)=\max _{y \in K}\langle x, y\rangle
$$

If $u \in \mathbb{S}^{n-1}$ then $h_{K}(u)$ is the distance from the origin to the support hyperplane to K, orthogonal to u.

Preliminaries

- Support function $h_{K}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$of a convex body K is defined

$$
h_{K}(x)=\max _{y \in K}\langle x, y\rangle
$$

If $u \in \mathbb{S}^{n-1}$ then $h_{K}(u)$ is the distance from the origin to the support hyperplane to K, orthogonal to u.

- $h_{K+L}=h_{K}+h_{L}, h_{\lambda K}=\lambda h_{K}$.

Brunn-Minkowski inequality is equivalent to its local form

Claim

Fix a convex body K with support function h, and pick an arbitrary function $\psi: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$. Consider a family of convex bodies K_{s} with support functions $h_{s}=h+s \psi$. Set $F(s)=\left|K_{s}\right|$. Then

$$
|\lambda K+(1-\lambda) L|^{\frac{1}{n}} \geq \lambda|K|^{\frac{1}{n}}+(1-\lambda)|L|^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0 .
$$

Brunn-Minkowski inequality is equivalent to its local form

Claim

Fix a convex body K with support function h, and pick an arbitrary function $\psi: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$. Consider a family of convex bodies K_{s} with support functions $h_{s}=h+s \psi$. Set $F(s)=\left|K_{s}\right|$. Then

$$
|\lambda K+(1-\lambda) L|^{\frac{1}{n}} \geq \lambda|K|^{\frac{1}{n}}+(1-\lambda)|L|^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0
$$

Analogously, log-concavity of F at $s=0$ is equivalent to the multiplicative form of Brunn-Minkowski inequality.

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets: relations to Poincare inequality

In the case $n=2$,

$$
|K|=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}\left(h_{K}+\ddot{h_{K}}\right)=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}^{2}-{\dot{h_{K}}}^{2}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets: relations to Poincare inequality

In the case $n=2$,

$$
\begin{equation*}
|K|=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}\left(h_{K}+\ddot{h_{K}}\right)=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}^{2}-{\dot{h_{K}}}^{2} \tag{3}
\end{equation*}
$$

Hence,

$$
F(s)=\left|K_{s}\right|=\frac{1}{2} \int_{-\pi}^{\pi}(h+s \psi)^{2}-(\dot{h}+s \dot{\psi})^{2}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets: relations to Poincare

 inequalityIn the case $n=2$,

$$
\begin{equation*}
|K|=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}\left(h_{K}+\ddot{h_{K}}\right)=\frac{1}{2} \int_{-\pi}^{\pi} h_{K}^{2}-{\dot{h_{K}}}^{2} \tag{3}
\end{equation*}
$$

Hence,

$$
F(s)=\left|K_{s}\right|=\frac{1}{2} \int_{-\pi}^{\pi}(h+s \psi)^{2}-(\dot{h}+s \dot{\psi})^{2}
$$

and $\frac{1}{2}$-concavity of F

$$
F(0) F^{\prime \prime}(0)-\frac{1}{2} F^{\prime}(0)^{2} \leq 0
$$

writes as

$$
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Note: if $h=1$ (corresponds to perturbing the unit ball), (10) becomes the Poincare inequality:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \int \dot{\psi}^{2} \tag{5}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Note: if $h=1$ (corresponds to perturbing the unit ball), (10) becomes the Poincare inequality:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \int \dot{\psi}^{2} \tag{5}
\end{equation*}
$$

It is true since

$$
\begin{equation*}
\sum_{k \neq 0} \hat{\psi}(k)^{2} \leq \sum_{k \neq 0} k^{2} \hat{\psi}(k)^{2} \tag{6}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Note: if $h=1$ (corresponds to perturbing the unit ball), (10) becomes the Poincare inequality:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \int \dot{\psi}^{2} \tag{5}
\end{equation*}
$$

It is true since

$$
\begin{equation*}
\sum_{k \neq 0} \hat{\psi}(k)^{2} \leq \sum_{k \neq 0} k^{2} \hat{\psi}(k)^{2} \tag{6}
\end{equation*}
$$

Moreover, if ψ is π-periodic, then $\hat{\psi}(1)=\hat{\psi}(-1)=0$, and we get

$$
\begin{equation*}
\sum_{|k| \geq 2} \hat{\psi}(k)^{2} \leq \sum_{|k| \geq 2} k^{2} \hat{\psi}(k)^{2} \tag{7}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Note: if $h=1$ (corresponds to perturbing the unit ball), (10) becomes the Poincare inequality:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \int \dot{\psi}^{2} \tag{5}
\end{equation*}
$$

It is true since

$$
\begin{equation*}
\sum_{k \neq 0} \hat{\psi}(k)^{2} \leq \sum_{k \neq 0} k^{2} \hat{\psi}(k)^{2} \tag{6}
\end{equation*}
$$

Moreover, if ψ is π-periodic, then $\hat{\psi}(1)=\hat{\psi}(-1)=0$, and we get

$$
\begin{equation*}
\sum_{|k| \geq 2} \hat{\psi}(k)^{2} \leq \frac{1}{4} \sum_{|k| \geq 2} k^{2} \hat{\psi}(k)^{2} \tag{7}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

$$
\begin{equation*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{4}
\end{equation*}
$$

Note: if $h=1$ (corresponds to perturbing the unit ball), (10) becomes the Poincare inequality:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \int \dot{\psi}^{2} \tag{5}
\end{equation*}
$$

It is true since

$$
\begin{equation*}
\sum_{k \neq 0} \hat{\psi}(k)^{2} \leq \sum_{k \neq 0} k^{2} \hat{\psi}(k)^{2} \tag{6}
\end{equation*}
$$

Moreover, if ψ is π-periodic, then $\hat{\psi}(1)=\hat{\psi}(-1)=0$, and we get

$$
\begin{equation*}
\sum_{|k| \geq 2} \hat{\psi}(k)^{2} \leq \frac{1}{4} \sum_{|k| \geq 2} k^{2} \hat{\psi}(k)^{2} \tag{7}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \frac{1}{4} \int \dot{\psi}^{2} \tag{8}
\end{equation*}
$$

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

Conclusion: Poincare inequality improves when symmetry is assumed:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \frac{1}{4} \int \dot{\psi}^{2} \tag{9}
\end{equation*}
$$

How about Brunn-Minkowski?

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

Conclusion: Poincare inequality improves when symmetry is assumed:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \frac{1}{4} \int \dot{\psi}^{2} \tag{9}
\end{equation*}
$$

How about Brunn-Minkowski?

$$
\begin{gathered}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \\
\left(\hat{h}(0)^{2}-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{h}(k)^{2}\right)\left(\hat{\psi}(0)^{2}-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{\psi}(k)^{2}\right) \\
\leq\left(\hat{h}(0) \hat{\psi}(0)-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{h}(k) \hat{\psi}(k)\right)^{2}
\end{gathered}
$$

(11) can be verified directly! BUT: killing $k=1$ does not help:(

Brunn-Minkowski inequality in \mathbb{R}^{2} for convex sets

Conclusion: Poincare inequality improves when symmetry is assumed:

$$
\begin{equation*}
\int \psi^{2}-\left(\int \psi\right)^{2} \leq \frac{1}{4} \int \dot{\psi}^{2} \tag{9}
\end{equation*}
$$

How about Brunn-Minkowski?

$$
\begin{gather*}
\left(\int h^{2}-\dot{h}^{2}\right) \cdot\left(\int \psi^{2}-\dot{\psi}^{2}\right)-\left(\int h \psi-\dot{h} \dot{\psi}\right)^{2} \leq 0 \tag{10}\\
\left(\hat{h}(0)^{2}-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{h}(k)^{2}\right)\left(\hat{\psi}(0)^{2}-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{\psi}(k)^{2}\right) \tag{11}\\
\leq\left(\hat{h}(0) \hat{\psi}(0)-\sum_{k \neq 0}\left(k^{2}-1\right) \hat{h}(k) \hat{\psi}(k)\right)^{2}
\end{gather*}
$$

(11) can be verified directly! BUT: killing $k=1$ does not help:(

Question

How does Brunn-Minkowski inequality improve under the symmetry and convexity assumptions?

Log-Brunn-Minkowski conjecture

Geometric average of convex bodies

$$
\lambda K+0(1-\lambda) L:=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}^{\lambda}(u) h_{L}^{1-\lambda}(u) \forall u \in \mathbb{S}^{n-1}\right\}
$$

Log-Brunn-Minkowski conjecture

Geometric average of convex bodies

$$
\lambda K+0(1-\lambda) L:=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}^{\lambda}(u) h_{L}^{1-\lambda}(u) \forall u \in \mathbb{S}^{n-1}\right\} .
$$

Log-Brunn-Minkowski Conjecture (Böröczky, Lutwak, Yang, Zhang, 2011)
Let $n \geq 2$ be an integer. Let K and L be symmetric convex sets in \mathbb{R}^{n}. Then

$$
|\lambda K+0(1-\lambda) L| \geq|K|^{\lambda}|L|^{1-\lambda}
$$

Stronger than the Brunn-Minkowski inequality by arithmetic-geometric mean inequality.

Log-Brunn-Minkowski conjecture

Geometric average of convex bodies

$$
\lambda K+0(1-\lambda) L:=\left\{x \in \mathbb{R}^{n}:\langle x, u\rangle \leq h_{K}^{\lambda}(u) h_{L}^{1-\lambda}(u) \forall u \in \mathbb{S}^{n-1}\right\} .
$$

Log-Brunn-Minkowski Conjecture (Böröczky, Lutwak, Yang, Zhang, 2011)

Let $n \geq 2$ be an integer. Let K and L be symmetric convex sets in \mathbb{R}^{n}. Then

$$
|\lambda K+0(1-\lambda) L| \geq|K|^{\lambda}|L|^{1-\lambda}
$$

Stronger than the Brunn-Minkowski inequality by arithmetic-geometric mean inequality.

- True for $n=2$ (Stancu; Böröczky, Lutwak, Yang and Zhang)
- True for unconditional sets (i.e. symmetric with respect to every coordinate hyperplane) (Saroglou; Cordero-Erasquin, Fradelizi, Maurey)
- True for complex convex bodies (Rotem)
- True in a neighborhood of a Euclidean ball (Colesanti, L, Marsiglietti; improved in Colesanti, L)
- Works well with the L_{2}-method (Kolesnikov-Milman)

Böröczky, Colesanti, Cordero, Fradelizi, Henk, Huang, Hug, Linke, Lutwak, Marsiglietti, Morey, Oliker, Saraglou, Stancu, Vikram, Xu, Yang, Zhang....

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);
- Cannot possibly hold with smaller power than $\frac{1}{n}$;

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);
- Cannot possibly hold with smaller power than $\frac{1}{n}$;
- Without symmetry: not true (fix K and let L fly away to infinity);
- When sets contain origin: not necessarily true (Tkocz, Nayar);

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);
- Cannot possibly hold with smaller power than $\frac{1}{n}$;
- Without symmetry: not true (fix K and let L fly away to infinity);
- When sets contain origin: not necessarily true (Tkocz, Nayar);
- When γ is Gaussian and $K=t L$: true (Gardner, Zvavitch, building upon Cordero-Erasquin, Fradelizi, Maurey);

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);
- Cannot possibly hold with smaller power than $\frac{1}{n}$;
- Without symmetry: not true (fix K and let L fly away to infinity);
- When sets contain origin: not necessarily true (Tkocz, Nayar);
- When γ is Gaussian and $K=t L$: true (Gardner, Zvavitch, building upon Cordero-Erasquin, Fradelizi, Maurey);
- Does not imply/ does not follow from Ehrhard's inequality;

Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007

Let γ be the Gaussian measure (more generally, even log-concave measure), and K and L be symmetric convex bodies. Then

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

- $\frac{1}{n}$-concavity is stronger than log-concavity (which is 0-concavity);
- Cannot possibly hold with smaller power than $\frac{1}{n}$;
- Without symmetry: not true (fix K and let L fly away to infinity);
- When sets contain origin: not necessarily true (Tkocz, Nayar);
- When γ is Gaussian and $K=t L$: true (Gardner, Zvavitch, building upon Cordero-Erasquin, Fradelizi, Maurey);
- Does not imply/ does not follow from Ehrhard's inequality;
- Follows from Log-Brunn-Minkowski conjecture! Hence true in dimension 2 and for unconditional sets. (L, Marsiglietti, Nayar, Zvavitch).
- Is a bit nicer than Log BM since we are dealing with Minkowski sum.

Theorem about the Gaussian measure

Suppose γ is the Gaussian measure on \mathbb{R}^{n}.
Theorem (Kolesnikov, L 2018+)
For gaussian barycentered convex sets K and L, and for any $\lambda \in[0,1]$, we have

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{2 n}} \geq \lambda \gamma(K)^{\frac{1}{2 n}}+(1-\lambda) \gamma(L)^{\frac{1}{2 n}} .
$$

Theorem general

Theorem (Kolesnikov, L 2018+)

Let γ be a log-concave measure on \mathbb{R}^{n} with density $e^{-V(x)}$, for some even convex function $V: \mathbb{R}^{n} \rightarrow \mathbb{R}$. We shall assume that $k_{1}, k_{2}>0$ are such constants that

$$
\nabla^{2} V \geq k_{1} / d ; \Delta V \leq k_{2} n .
$$

Let $R=\frac{k_{2}}{k_{1}} \geq 1$. For any pair of symmetric convex sets K and L, and for any $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\gamma(\lambda K+(1-\lambda) L)^{\frac{c}{n}} \geq \lambda \gamma(K)^{\frac{c}{n}}+(1-\lambda) \gamma(L)^{\frac{c}{n}}, \tag{12}
\end{equation*}
$$

where

$$
C=C(R)=\frac{2}{(\sqrt{R}+1)^{2}} .
$$

Replace symmetry with something weaker

In fact, we get a bound under a weaker than symmetry assumption:

Theorem (Kolesnikov, L 2018+)

Suppose μ is log-concave. For any pair of convex sets K and L which satisfy

$$
\int_{K} \nabla V d \mu=\int_{L} \nabla V d \mu=0
$$

and for any $\lambda \in[0,1]$, one has

$$
\begin{equation*}
\mu(\lambda K+(1-\lambda) L)^{\frac{c^{\prime}}{n}} \geq \lambda \mu(K)^{\frac{c^{\prime}}{n}}+(1-\lambda) \mu(L)^{\frac{c^{\prime}}{n}} \tag{13}
\end{equation*}
$$

where

$$
c^{\prime}=c^{\prime}(R)=\frac{1}{R+1}>0
$$

Definitions (GAUSSIAN CASE)

Gardner-Zvavitch constant

We shall define the Gardner-Zvavitch constant C_{0} to be the largest number so that for all barycentered convex sets K, L, and for any $\lambda \in[0,1]$

$$
\begin{equation*}
\gamma(\lambda K+(1-\lambda) L)^{\frac{c_{0}}{n}} \geq \lambda \gamma(K)^{\frac{c_{0}}{n}}+(1-\lambda) \gamma(L)^{\frac{c_{0}}{n}} . \tag{14}
\end{equation*}
$$

Definitions (GAUSSIAN CASE)

Gardner-Zvavitch constant

We shall define the Gardner-Zvavitch constant C_{0} to be the largest number so that for all barycentered convex sets K, L, and for any $\lambda \in[0,1]$

$$
\begin{equation*}
\gamma(\lambda K+(1-\lambda) L)^{\frac{c_{0}}{n}} \geq \lambda \gamma(K)^{\frac{c_{0}}{n}}+(1-\lambda) \gamma(L)^{\frac{c_{0}}{n}} . \tag{14}
\end{equation*}
$$

The goal is to estimate C_{0} from below.

Definitions (GAUSSIAN CASE)

Gardner-Zvavitch constant

We shall define the Gardner-Zvavitch constant C_{0} to be the largest number so that for all barycentered convex sets K, L, and for any $\lambda \in[0,1]$

$$
\begin{equation*}
\gamma(\lambda K+(1-\lambda) L)^{\frac{c_{0}}{n}} \geq \lambda \gamma(K)^{\frac{c_{0}}{n}}+(1-\lambda) \gamma(L)^{\frac{c_{0}}{n}} . \tag{14}
\end{equation*}
$$

The goal is to estimate C_{0} from below.

Weighted Laplace operator

$$
\begin{equation*}
L u=\Delta u-\langle\nabla u, x\rangle . \tag{15}
\end{equation*}
$$

Integration by parts:

$$
\int_{\mathbb{R}^{n}} v \cdot L u d \gamma=-\int_{\mathbb{R}^{n}}\langle x, \nabla u\rangle d \gamma
$$

Steps of the proof (GAUSSIAN CASE)

Step 1

Let C_{1} to be the largest number, such that for every $u \in C^{2}(K)$ with $L u=1$ on K,

$$
\frac{1}{\gamma(K)} \int_{K}\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2} d \gamma \geq \frac{C_{1}}{n} .
$$

Then $C_{0} \geq C_{1}$.

Steps of the proof (GAUSSIAN CASE)

Step 1

Let C_{1} to be the largest number, such that for every $u \in C^{2}(K)$ with $L u=1$ on K,

$$
\frac{1}{\gamma(K)} \int_{K}\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2} d \gamma \geq \frac{C_{1}}{n} .
$$

Then $C_{0} \geq C_{1}$.

Step 2

$$
C_{1} \geq \frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} d \gamma
$$

Steps of the proof (GAUSSIAN CASE)

Step 1

Let C_{1} to be the largest number, such that for every $u \in C^{2}(K)$ with $L u=1$ on K,

$$
\frac{1}{\gamma(K)} \int_{K}\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2} d \gamma \geq \frac{C_{1}}{n} .
$$

Then $C_{0} \geq C_{1}$.

Step 2

$$
C_{1} \geq \frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} d \gamma .
$$

Step 3

$$
\frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} d \gamma \geq \frac{1}{2} .
$$

Step 1

Claim

As before, let $F(s)=\gamma\left(K_{s}\right)$, where K_{s} has support function $h+s \psi$;

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0
$$

Step 1

Claim

As before, let $F(s)=\gamma\left(K_{s}\right)$, where K_{s} has support function $h+s \psi$;

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0
$$

Derivatives

Let $f: \partial K \rightarrow \mathbb{R}$ be $f(y)=\psi\left(n_{y}\right)$, where n_{y} is the normal vector. Then $F(0)=\gamma(K)$;

Step 1

Claim

As before, let $F(s)=\gamma\left(K_{s}\right)$, where K_{s} has support function $h+s \psi$;

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0
$$

Derivatives

Let $f: \partial K \rightarrow \mathbb{R}$ be $f(y)=\psi\left(n_{y}\right)$, where n_{y} is the normal vector. Then $F(0)=\gamma(K)$;

$$
F^{\prime}(0)=\int_{\partial K} f(y) d \gamma_{\partial K}(y) ;
$$

Step 1

Claim

As before, let $F(s)=\gamma\left(K_{s}\right)$, where K_{s} has support function $h+\boldsymbol{s} \psi$;

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{n}} \geq \lambda \gamma(K)^{\frac{1}{n}}+(1-\lambda) \gamma(L)^{\frac{1}{n}}
$$

is equivalent to

$$
F(0) F^{\prime \prime}(0)-\frac{n-1}{n} F^{\prime}(0)^{2} \leq 0
$$

Derivatives

Let $f: \partial K \rightarrow \mathbb{R}$ be $f(y)=\psi\left(n_{y}\right)$, where n_{y} is the normal vector. Then $F(0)=\gamma(K)$;

$$
\begin{gathered}
F^{\prime}(0)=\int_{\partial K} f(y) d \gamma_{\partial K}(y) \\
F^{\prime \prime}(0)=\int_{\partial K}\left(H_{x} f^{2}-\left\langle\mathrm{II}^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f\right\rangle\right) d \gamma_{\partial K}(x) .
\end{gathered}
$$

Here II is the second quadratic form of ∂K and

$$
H_{x}=\operatorname{tr} I I-\left\langle x, n_{x}\right\rangle .
$$

Second derivative

$$
F^{\prime \prime}(0)=\int_{\partial K} H_{x} f^{2}-\left\langle\mathrm{II}^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f\right\rangle d \gamma_{\partial K}(x)
$$

Step 1

Second derivative

$$
F^{\prime \prime}(0)=\int_{\partial K} H_{x} f^{2}-\left\langle\mathrm{II}^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f\right\rangle d \gamma_{\partial K}(x)
$$

Integration by parts twice (Kolesnikov-Milman, 2016):
Suppose

$$
\begin{equation*}
f(x)=\left\langle\nabla u(x), n_{x}\right\rangle . \tag{16}
\end{equation*}
$$

Step 1

Second derivative

$$
F^{\prime \prime}(0)=\int_{\partial K} H_{x} f^{2}-\left\langle\mathrm{II}^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f\right\rangle d \gamma_{\partial K}(x)
$$

Integration by parts twice (Kolesnikov-Milman, 2016):

Suppose

$$
\begin{equation*}
f(x)=\left\langle\nabla u(x), n_{x}\right\rangle . \tag{16}
\end{equation*}
$$

Then

$$
\begin{gather*}
\int_{K}(L u)^{2} d \gamma(x)=\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x)+ \tag{17}\\
\int_{\partial K} H_{x} f^{2}-2\left\langle\nabla_{\partial K} u, \nabla_{\partial K} f\right\rangle+\left\langle\operatorname{II} \nabla_{\partial K} u, \nabla_{\partial K} u\right\rangle d \gamma_{\partial K}(x) .
\end{gather*}
$$

Second derivative

$$
F^{\prime \prime}(0)=\int_{\partial K} H_{x} f^{2}-\left\langle\mathrm{II}^{-1} \nabla_{\partial K} f, \nabla_{\partial K} f\right\rangle d \gamma_{\partial K}(x)
$$

Integration by parts twice (Kolesnikov-Milman, 2016):

Suppose

$$
\begin{equation*}
f(x)=\left\langle\nabla u(x), n_{x}\right\rangle . \tag{16}
\end{equation*}
$$

Then

$$
\begin{gather*}
\int_{K}(L u)^{2} d \gamma(x)=\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x)+ \tag{17}\\
\int_{\partial K} H_{x} f^{2}-2\left\langle\nabla_{\partial K} u, \nabla_{\partial K} f\right\rangle+\left\langle I I \nabla_{\partial K} u, \nabla_{\partial K} u\right\rangle d \gamma_{\partial K}(x) .
\end{gather*}
$$

For a positive-definite matrix A,

$$
\begin{equation*}
\langle A x, x\rangle+\left\langle A^{-1} y, y\right\rangle \geq 2\langle x, y\rangle \tag{18}
\end{equation*}
$$

Neumann system

We can solve the Neumann system and find such $u: K \rightarrow \mathbb{R}$ that

$$
\begin{equation*}
f(x)=\left\langle\nabla u(x), n_{x}\right\rangle, \tag{19}
\end{equation*}
$$

Step 1

Neumann system

We can solve the Neumann system and find such $u: K \rightarrow \mathbb{R}$ that

$$
\begin{equation*}
f(x)=\left\langle\nabla u(x), n_{x}\right\rangle, \tag{19}
\end{equation*}
$$

and have additionally that

$$
\begin{equation*}
L u=1, \tag{20}
\end{equation*}
$$

provided that

$$
\int_{\partial K} f d \gamma_{\partial K}=\gamma(K)
$$

Combining all of the above, we note that the conjecture of Gardner and Zvavitch follows from

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \frac{C_{0}}{n} . \tag{21}
\end{equation*}
$$

That finishes the proof of Step 1.

Recall the statement of Step 2:

For all u with $L u=1$ on K,

$$
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \int_{K} \frac{1}{|x|^{2}+n} d \gamma
$$

Step 2

Recall the statement of Step 2:

For all u with $L u=1$ on K,

$$
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \int_{K} \frac{1}{|x|^{2}+n} d \gamma
$$

Proof:

- By Cauchy inequality,

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2} d \gamma(x) \geq \frac{1}{n} \int_{K}|\Delta u|^{2} d \gamma(x) \tag{22}
\end{equation*}
$$

Step 2

Recall the statement of Step 2:

For all u with $L u=1$ on K,

$$
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \int_{K} \frac{1}{|x|^{2}+n} d \gamma
$$

Proof:

- By Cauchy inequality,

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2} d \gamma(x) \geq \frac{1}{n} \int_{K}|\Delta u|^{2} d \gamma(x) \tag{22}
\end{equation*}
$$

- Write $\Delta u=L u+\langle\nabla u, x\rangle=1+\langle\nabla u, x\rangle$;

Step 2

Recall the statement of Step 2:

For all u with $L u=1$ on K,

$$
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \int_{K} \frac{1}{|x|^{2}+n} d \gamma
$$

Proof:

- By Cauchy inequality,

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2} d \gamma(x) \geq \frac{1}{n} \int_{K}|\Delta u|^{2} d \gamma(x) \tag{22}
\end{equation*}
$$

- Write $\Delta u=L u+\langle\nabla u, x\rangle=1+\langle\nabla u, x\rangle$; we get

$$
\int\left\|\nabla^{2} u\right\|_{H S}^{2}+\langle\nabla u, \nabla u\rangle \geq \frac{1}{n} \int 1+\frac{2}{n}\langle\nabla u, \cdot x\rangle+\langle(n \cdot I d+x \otimes x) \nabla u, \nabla u\rangle
$$

Step 2

Recall the statement of Step 2:

For all u with $L u=1$ on K,

$$
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2} d \gamma(x) \geq \int_{K} \frac{1}{|x|^{2}+n} d \gamma
$$

Proof:

- By Cauchy inequality,

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|_{H S}^{2} d \gamma(x) \geq \frac{1}{n} \int_{K}|\Delta u|^{2} d \gamma(x) \tag{22}
\end{equation*}
$$

- Write $\Delta u=L u+\langle\nabla u, x\rangle=1+\langle\nabla u, x\rangle$; we get

$$
\int\left\|\nabla^{2} u\right\|_{H S}^{2}+\langle\nabla u, \nabla u\rangle \geq \frac{1}{n} \int 1+\frac{2}{n}\langle\nabla u, \cdot x\rangle+\langle(n \cdot I d+x \otimes x) \nabla u, \nabla u\rangle
$$

- Using Cauchy inequality we bound it from below by

$$
\frac{1}{n} \int \frac{n}{n+|x|^{2}} \square
$$

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Proof.

- By Prekopa, the function $\alpha(t)=\int_{K} e^{-\frac{|x+t \theta|^{2}}{2}} d x$ is log-concave in t.

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Proof.

- By Prekopa, the function $\alpha(t)=\int_{K} e^{-\frac{|x+t \theta|^{2}}{2}} d x$ is log-concave in t.
- An even log-concave function on \mathbb{R} is concave at zero!

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Proof.

- By Prekopa, the function $\alpha(t)=\int_{K} e^{-\frac{|x+t \theta|^{2}}{2}} d x$ is log-concave in t.
- An even log-concave function on \mathbb{R} is concave at zero!
- $\alpha_{0}^{\prime \prime} \leq 0$ with $\theta=e_{1}, \ldots, e_{n}$ implies (30).

Step 3

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Proof.

- By Prekopa, the function $\alpha(t)=\int_{K} e^{-\frac{|x+t \theta|^{2}}{2}} d x$ is log-concave in t.
- An even log-concave function on \mathbb{R} is concave at zero!
- $\alpha_{0}^{\prime \prime} \leq 0$ with $\theta=e_{1}, \ldots, e_{n}$ implies (30).

Step 3

$$
\frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} d \gamma \geq \frac{1}{2}
$$

Step 3

Lemma

For any barycentered convex body K,

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{23}
\end{equation*}
$$

Proof.

- By Prekopa, the function $\alpha(t)=\int_{K} e^{-\frac{|x+t \theta|^{2}}{2}} d x$ is log-concave in t.
- An even log-concave function on \mathbb{R} is concave at zero!
- $\alpha_{0}^{\prime \prime} \leq 0$ with $\theta=e_{1}, \ldots, e_{n}$ implies (30).

Step 3

$$
\frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} d \gamma \geq \frac{1}{2}
$$

Proof: By Jensen's inequality,

$$
\frac{1}{\gamma(K)} \int_{K} \frac{1}{\frac{|x|^{2}}{n}+1} \geq \frac{1}{\frac{1}{\gamma(K)} \int_{K} \frac{|x|^{2}}{n} d x+1} \geq \frac{1}{2} . \square
$$

Towards sharper bounds?

Question

Given symmetric convex K, does there exist a function $F: K \rightarrow \mathbb{R}$ such that for all $u: K \rightarrow \mathbb{R}$ with $L u=F$ we have

$$
\begin{gather*}
\int_{K}\left(\left\|\nabla^{2} u\right\|_{H S}^{2}+|\nabla u|^{2}\right) d \gamma(x) \geq \tag{24}\\
\int_{K} F^{2} d \gamma(x)-\frac{n-c}{n \gamma(K)}\left(\int_{K} F d \gamma(x)\right)^{2} ?
\end{gather*}
$$

Ideally with $c=1$?

Case of dilates

Specific choice

$$
F=L u=n-|x|^{2}
$$

Case of dilates

Specific choice

$$
\begin{gathered}
F=L u=n-|x|^{2}, \\
u(x)=\frac{x^{2}}{2} .
\end{gathered}
$$

Then

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2} d \gamma \geq \int_{K} F^{2} d \gamma-\frac{n-1}{n \gamma(K)}\left(\int_{K} F d \gamma\right)^{2} \tag{25}
\end{equation*}
$$

Case of dilates

Specific choice

$$
\begin{gathered}
F=L u=n-|x|^{2}, \\
u(x)=\frac{x^{2}}{2} .
\end{gathered}
$$

Then

$$
\begin{equation*}
\int_{K}\left\|\nabla^{2} u\right\|^{2}+|\nabla u|^{2} d \gamma \geq \int_{K} F^{2} d \gamma-\frac{n-1}{n \gamma(K)}\left(\int_{K} F d \gamma\right)^{2} \tag{25}
\end{equation*}
$$

Proof: Note that (25) rewrites:

$$
\begin{align*}
n \gamma(K) & +\int_{K} x^{2} d \gamma \geq n^{2} \gamma(K)-2 n \int_{K} x^{2} d \gamma+\int_{K} x^{4} d \gamma \tag{26}\\
& -\left(n^{2} \gamma(K)-2 n \int_{K} x^{2} d \gamma+\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right) \\
& +\frac{1}{n}\left(n^{2} \gamma(K)-2 n \int_{K} x^{2} d \gamma+\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right) .
\end{align*}
$$

Case of dilates

- Rearranging, we get

$$
\begin{gather*}
{\left[\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma\right]+} \tag{27}\\
{\left[-\int_{K} x^{2} d \gamma+\frac{1}{n \gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right] \leq 0}
\end{gather*}
$$

Case of dilates

- Rearranging, we get

$$
\begin{gather*}
{\left[\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma\right]+} \tag{27}\\
{\left[-\int_{K} x^{2} d \gamma+\frac{1}{n \gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right] \leq 0}
\end{gather*}
$$

- Recall the B-Theorem of Cordero-Erasquin, Fradelizi, Maurey:

$$
\begin{equation*}
\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma \leq 0 \tag{28}
\end{equation*}
$$

Case of dilates

- Rearranging, we get

$$
\begin{gather*}
{\left[\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma\right]+} \tag{27}\\
{\left[-\int_{K} x^{2} d \gamma+\frac{1}{n \gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right] \leq 0}
\end{gather*}
$$

- Recall the B-Theorem of Cordero-Erasquin, Fradelizi, Maurey:

$$
\begin{equation*}
\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma \leq 0 \tag{28}
\end{equation*}
$$

- Recall also the key Lemma from Step 3:

$$
\begin{equation*}
-\gamma(K)+\frac{1}{n} \int_{K} x^{2} d \gamma \leq 0 . \square \tag{29}
\end{equation*}
$$

Case of dilates

- Rearranging, we get

$$
\begin{gather*}
{\left[\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma\right]+} \tag{27}\\
{\left[-\int_{K} x^{2} d \gamma+\frac{1}{n \gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}\right] \leq 0}
\end{gather*}
$$

- Recall the B-Theorem of Cordero-Erasquin, Fradelizi, Maurey:

$$
\begin{equation*}
\int_{K} x^{4} d \gamma-\frac{1}{\gamma(K)}\left(\int_{K} x^{2} d \gamma\right)^{2}-2 \int_{K} x^{2} d \gamma \leq 0 \tag{28}
\end{equation*}
$$

- Recall also the key Lemma from Step 3:

$$
\begin{equation*}
-\gamma(K)+\frac{1}{n} \int_{K} x^{2} d \gamma \leq 0 . \square \tag{29}
\end{equation*}
$$

Corollary

When $K=t L$, the conjecture of Garnder and Zvavitch follows.

A stronger statement in the Gaussian case!

More news in the Gaussian case

For convex sets K and L containing the origin, and for any $\lambda \in[0,1]$, we have

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{2 n}} \geq \lambda \gamma(K)^{\frac{1}{2 n}}+(1-\lambda) \gamma(L)^{\frac{1}{2 n}}
$$

A stronger statement in the Gaussian case!

More news in the Gaussian case

For convex sets K and L containing the origin, and for any $\lambda \in[0,1]$, we have

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{2 n}} \geq \lambda \gamma(K)^{\frac{1}{2 n}}+(1-\lambda) \gamma(L)^{\frac{1}{2 n}}
$$

Fact

For any convex body K containing the origin

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{30}
\end{equation*}
$$

A stronger statement in the Gaussian case!

More news in the Gaussian case

For convex sets K and L containing the origin, and for any $\lambda \in[0,1]$, we have

$$
\gamma(\lambda K+(1-\lambda) L)^{\frac{1}{2 n}} \geq \lambda \gamma(K)^{\frac{1}{2 n}}+(1-\lambda) \gamma(L)^{\frac{1}{2 n}}
$$

Fact

For any convex body K containing the origin

$$
\begin{equation*}
\frac{1}{\gamma(K)} \int_{K}|x|^{2} d \gamma(x) \leq n \tag{30}
\end{equation*}
$$

Indeed, the function $\gamma(t K)$ is increasing, and $\gamma(t K)_{t=0}^{\prime} \geq 0$ implies (30).

Thanks for your attention!

