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Preliminaries.

Brunn-Minkowski inequality

Recall: Minkowski’s sum of arbitrary sets K and L in Rn

K + L = {x + y : x ∈ K , y ∈ L}.

Brunn-Minkowski inequality:

|λK + (1−λ)L| ≥ |K |λ|L|1−λ. (1)

Equivalently, the (apriori stronger) additive form:

|λK + (1−λ)L|
1
n ≥ λ|K |

1
n + (1−λ)|L|

1
n . (2)

Brunn-Minkowski inequality constitutes a fundamental concavity property
of Lebesgue measure in Rn.
Impies Young’s convolution inequality;
Is a fundamental tool in convexity (duality&volumes, sections of convex
bodies, projections of convex bodies, upper estimates on difference bodies,
center of mass, coverings);
Is a fundamental tool for obtaining concentration properties in probability;
Is a fundamental tool in PDE thanks to its equality cases
characterizations...
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Preliminaries.

Relations of Brunn-Minkowski inequality to the isoperimetric inequality

Isoperimetric inequality
For any K such that |K |= |Bn

2 | we have |∂K |n−1 ≥ |∂Bn
2 |n−1.

Brunn-Minkowski → Isoperimetric inequality

|∂K |n−1 = lim
ε→0

|K + εBn
2 |− |K |
ε

≥ lim
ε→0

(
|K |

1
n + ε|Bn

2 |
1
n

)n
−|K |

ε
= n|K |

n−1
n |Bn

2 |
1
n ,

and hence
|∂K |n−1

|K |
n−1

n
≥ |∂Bn

2 |n−1

|Bn
2 |

n−1
n

.
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Preliminaries.

More generally: log-concavity

Log-concave functions
A function is called log-concave if its logarithm is concave, i.e.
f (λx + (1−λ)y)≥ f (x)λf (y)1−λ.

Log-concave measures

A measure µ is called log-concave if µ(λK + (1−λ)L)≥ µ(K)λµ(L)1−λ.

Borell’s theorem (which implies Brunn-Minkowski)
A measure with log-concave density is log-concave.

Gaussian measure γ with density 1√
2πn e−

|x|2
2 ;

Lebesgue measure;
Poisson density...
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Preliminaries.

Preliminaries

A convex body in Rn is a convex set with non-empty interior.

They shall be usually denoted K , L.
We shall usually assume that they contain the origin.
A body K is called symmetric if x ∈ K =⇒ −x ∈ K .
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Preliminaries.

Preliminaries

Support function hK : Rn→ R+ of a convex body K is defined

hK (x) = max
y∈K
〈x ,y〉;

If u ∈ Sn−1 then hK (u) is the distance from the origin to the support
hyperplane to K , orthogonal to u.

hK+L = hK + hL, hλK = λhK .
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Preliminaries.

Brunn-Minkowski inequality is equivalent to its local form

Claim
Fix a convex body K with support function h, and pick an arbitrary function
ψ : Sn−1→ R. Consider a family of convex bodies Ks with support functions
hs = h + sψ. Set F (s) = |Ks |. Then

|λK + (1−λ)L|
1
n ≥ λ|K |

1
n + (1−λ)|L|

1
n

is equivalent to
F (0)F ′′(0)− n−1

n F ′(0)2 ≤ 0.

Analogously, log-concavity of F at s = 0 is equivalent to the multiplicative
form of Brunn-Minkowski inequality.
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Preliminaries.

Brunn-Minkowski inequality in R2 for convex sets: relations to Poincare
inequality

In the case n = 2,

|K |= 1
2

∫ π

−π
hK (hK + ḧK ) = 1

2

∫ π

−π
h2

K − ˙hK
2

(3)

Hence,

F (s) = |Ks |=
1
2

∫ π

−π
(h + sψ)2− (ḣ + sψ̇)2,

and 1
2 -concavity of F

F (0)F ′′(0)− 1
2F ′(0)2 ≤ 0

writes as (∫
h2− ḣ2

)
·
(∫

ψ2− ψ̇2
)
−
(∫

hψ− ḣψ̇
)2
≤ 0.
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Preliminaries.

Brunn-Minkowski inequality in R2 for convex sets

(∫
h2− ḣ2

)
·
(∫

ψ2− ψ̇2
)
−
(∫

hψ− ḣψ̇
)2
≤ 0. (4)

Note: if h = 1 (corresponds to perturbing the unit ball), (10) becomes the
Poincare inequality: ∫

ψ2−
(∫

ψ

)2
≤
∫
ψ̇2. (5)

It is true since ∑
k 6=0

ψ̂(k)2 ≤
∑
k 6=0

k2ψ̂(k)2. (6)

Moreover, if ψ is π-periodic, then ψ̂(1) = ψ̂(−1) = 0, and we get∑
|k|≥2

ψ̂(k)2 ≤ 1
4
∑
|k|≥2

k2ψ̂(k)2, (7)

and hence ∫
ψ2−

(∫
ψ

)2
≤ 1

4

∫
ψ̇2. (8)
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)
·
(∫

ψ2− ψ̇2
)
−
(∫

hψ− ḣψ̇
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Preliminaries.

Brunn-Minkowski inequality in R2 for convex sets
Conclusion: Poincare inequality improves when symmetry is assumed:∫

ψ2−
(∫

ψ

)2
≤ 1

4

∫
ψ̇2. (9)

How about Brunn-Minkowski?

(∫
h2− ḣ2

)
·
(∫

ψ2− ψ̇2
)
−
(∫

hψ− ḣψ̇
)2
≤ 0. (10)ĥ(0)2−

∑
k 6=0

(k2−1)ĥ(k)2

ψ̂(0)2−
∑
k 6=0

(k2−1)ψ̂(k)2

 (11)

≤

ĥ(0)ψ̂(0)−
∑
k 6=0

(k2−1)ĥ(k)ψ̂(k)

2

.

(11) can be verified directly! BUT: killing k = 1 does not help:(

Question
How does Brunn-Minkowski inequality improve under the symmetry and
convexity assumptions?
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∑
k 6=0

(k2−1)ĥ(k)2
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(k2−1)ĥ(k)ψ̂(k)

2

.

(11) can be verified directly! BUT: killing k = 1 does not help:(

Question
How does Brunn-Minkowski inequality improve under the symmetry and
convexity assumptions?

Galyna V. Livshyts On the dimensional Brunn-Minkowski conjecture: the role of symmetry



Preliminaries.

Log-Brunn-Minkowski conjecture

Geometric average of convex bodies

λK +0 (1−λ)L := {x ∈ Rn : 〈x ,u〉 ≤ hλK (u)h1−λ
L (u) ∀u ∈ Sn−1}.

Log-Brunn-Minkowski Conjecture (Böröczky, Lutwak, Yang, Zhang, 2011)

Let n ≥ 2 be an integer. Let K and L be symmetric convex sets in Rn. Then

|λK +0 (1−λ)L| ≥ |K |λ|L|1−λ.

Stronger than the Brunn-Minkowski inequality by arithmetic-geometric mean
inequality.

True for n = 2 (Stancu; Böröczky, Lutwak, Yang and Zhang)
True for unconditional sets (i.e. symmetric with respect to every
coordinate hyperplane) (Saroglou; Cordero-Erasquin, Fradelizi, Maurey)
True for complex convex bodies (Rotem)
True in a neighborhood of a Euclidean ball (Colesanti, L, Marsiglietti;
improved in Colesanti, L)
Works well with the L2-method (Kolesnikov-Milman)

Böröczky, Colesanti, Cordero, Fradelizi, Henk, Huang, Hug, Linke, Lutwak,
Marsiglietti, Morey, Oliker, Saraglou, Stancu, Vikram, Xu, Yang, Zhang...
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coordinate hyperplane) (Saroglou; Cordero-Erasquin, Fradelizi, Maurey)
True for complex convex bodies (Rotem)
True in a neighborhood of a Euclidean ball (Colesanti, L, Marsiglietti;
improved in Colesanti, L)
Works well with the L2-method (Kolesnikov-Milman)
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Gardner-Zvavitch conjecture

Gardner-Zvavitch conjecture, 2007
Let γ be the Gaussian measure (more generally, even log-concave measure),
and K and L be symmetric convex bodies. Then

γ(λK + (1−λ)L)
1
n ≥ λγ(K)

1
n + (1−λ)γ(L)

1
n

1
n -concavity is stronger than log-concavity (which is 0-concavity);
Cannot possibly hold with smaller power than 1

n ;
Without symmetry: not true (fix K and let L fly away to infinity);
When sets contain origin: not necessarily true (Tkocz, Nayar);
When γ is Gaussian and K = tL: true (Gardner, Zvavitch, building upon
Cordero-Erasquin, Fradelizi, Maurey);
Does not imply/ does not follow from Ehrhard’s inequality;
Follows from Log-Brunn-Minkowski conjecture! Hence true in dimension 2
and for unconditional sets. (L, Marsiglietti, Nayar, Zvavitch).
Is a bit nicer than Log BM since we are dealing with Minkowski sum.
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Theorem about the Gaussian measure

Suppose γ is the Gaussian measure on Rn.

Theorem (Kolesnikov, L 2018+)
For gaussian barycentered convex sets K and L, and for any λ ∈ [0,1], we have

γ(λK + (1−λ)L)
1

2n ≥ λγ(K)
1

2n + (1−λ)γ(L)
1

2n .
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Theorem general

Theorem (Kolesnikov, L 2018+)

Let γ be a log-concave measure on Rn with density e−V (x), for some even
convex function V : Rn→ R. We shall assume that k1,k2 > 0 are such
constants that

∇2V ≥ k1Id ; ∆V ≤ k2n.

Let R = k2
k1
≥ 1. For any pair of symmetric convex sets K and L, and for any

λ ∈ [0,1], one has

γ(λK + (1−λ)L)
C
n ≥ λγ(K)

C
n + (1−λ)γ(L)

C
n , (12)

where
C = C(R) = 2

(
√

R +1)2
.
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Replace symmetry with something weaker

In fact, we get a bound under a weaker than symmetry assumption:

Theorem (Kolesnikov, L 2018+)
Suppose µ is log-concave. For any pair of convex sets K and L which satisfy∫

K
∇Vdµ=

∫
L
∇Vdµ= 0,

and for any λ ∈ [0,1], one has

µ(λK + (1−λ)L)
c′
n ≥ λµ(K)

c′
n + (1−λ)µ(L)

c′
n , (13)

where
c ′ = c ′(R) = 1

R +1 > 0.
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Definitions (GAUSSIAN CASE)

Gardner-Zvavitch constant
We shall define the Gardner-Zvavitch constant C0 to be the largest number so
that for all barycentered convex sets K , L, and for any λ ∈ [0,1]

γ(λK + (1−λ)L)
C0
n ≥ λγ(K)

C0
n + (1−λ)γ(L)

C0
n . (14)

The goal is to estimate C0 from below.

Weighted Laplace operator

Lu = ∆u−〈∇u,x〉. (15)

Integration by parts: ∫
Rn

v ·Ludγ =−
∫
Rn
〈x ,∇u〉dγ.
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Steps of the proof (GAUSSIAN CASE)

Step 1

Let C1 to be the largest number, such that for every u ∈ C2(K) with Lu = 1 on
K ,

1
γ(K)

∫
K
||∇2u||2 + |∇u|2dγ ≥ C1

n .

Then C0 ≥ C1.

Step 2

C1 ≥
1

γ(K)

∫
K

1
|x |2

n +1
dγ.

Step 3

1
γ(K)

∫
K

1
|x |2

n +1
dγ ≥ 1

2 .
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Step 1

Claim
As before, let F (s) = γ(Ks), where Ks has support function h + sψ;

γ(λK + (1−λ)L)
1
n ≥ λγ(K)

1
n + (1−λ)γ(L)

1
n

is equivalent to
F (0)F ′′(0)− n−1

n F ′(0)2 ≤ 0.

Derivatives
Let f : ∂K → R be f (y) = ψ(ny ), where ny is the normal vector. Then
F (0) = γ(K);

F ′(0) =
∫
∂K

f (y)dγ∂K (y);

F ′′(0) =
∫
∂K

(
Hx f 2−〈II−1∇∂K f ,∇∂K f 〉

)
dγ∂K (x).

Here II is the second quadratic form of ∂K and

Hx = trII−〈x ,nx 〉.
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Step 1

Second derivative

F ′′(0) =
∫
∂K

Hx f 2−〈II−1∇∂K f ,∇∂K f 〉dγ∂K (x).

Integration by parts twice (Kolesnikov-Milman, 2016):
Suppose

f (x) = 〈∇u(x),nx 〉. (16)

Then ∫
K

(Lu)2dγ(x) =
∫

K
||∇2u||2HS + |∇u|2dγ(x)+ (17)∫

∂K
Hx f 2−2〈∇∂K u,∇∂K f 〉+ 〈II∇∂K u,∇∂K u〉dγ∂K (x).

For a positive-definite matrix A,

〈Ax ,x〉+ 〈A−1y ,y〉 ≥ 2〈x ,y〉. (18)
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Step 1

Neumann system
We can solve the Neumann system and find such u : K → R that

f (x) = 〈∇u(x),nx 〉, (19)

and have additionally that
Lu = 1, (20)

provided that ∫
∂K

fdγ∂K = γ(K).

Combining all of the above, we note that the conjecture of Gardner and
Zvavitch follows from

1
γ(K)

∫
K
||∇2u||2HS + |∇u|2dγ(x)≥ C0

n . (21)

That finishes the proof of Step 1.
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Step 2

Recall the statement of Step 2:
For all u with Lu = 1 on K ,∫

K
||∇2u||2HS + |∇u|2dγ(x)≥

∫
K

1
|x |2 + n

dγ.

Proof:
By Cauchy inequality,∫

K
||∇2u||2HSdγ(x)≥ 1

n

∫
K
|∆u|2dγ(x). (22)

Write ∆u = Lu + 〈∇u,x〉= 1+ 〈∇u,x〉; we get∫
||∇2u||2HS + 〈∇u,∇u〉 ≥ 1

n

∫
1+ 2

n 〈∇u, ·x〉+ 〈(n · Id + x ⊗ x)∇u,∇u〉;

Using Cauchy inequality we bound it from below by

1
n

∫
n

n + |x |2
�.
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n 〈∇u, ·x〉+ 〈(n · Id + x ⊗ x)∇u,∇u〉;

Using Cauchy inequality we bound it from below by

1
n

∫
n

n + |x |2
�.
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Step 3

Lemma
For any barycentered convex body K ,

1
γ(K)

∫
K
|x |2dγ(x)≤ n. (23)

Proof.
By Prekopa, the function α(t) =

∫
K e−

|x+tθ|2
2 dx is log-concave in t.

An even log-concave function on R is concave at zero!
α′′0 ≤ 0 with θ = e1, ...,en implies (30). �

Step 3

1
γ(K)

∫
K

1
|x |2

n +1
dγ ≥ 1

2 .

Proof: By Jensen’s inequality,
1

γ(K)

∫
K

1
|x |2

n +1
≥ 1

1
γ(K)

∫
K
|x |2

n dx +1
≥ 1

2 .�
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Towards sharper bounds?

Question
Given symmetric convex K , does there exist a function F : K → R such that for
all u : K → R with Lu = F we have∫

K
(||∇2u||2HS + |∇u|2)dγ(x)≥ (24)

∫
K

F 2dγ(x)− n− c
nγ(K)

(∫
K

Fdγ(x)
)2

?

Ideally with c = 1?
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Case of dilates

Specific choice

F = Lu = n−|x |2,

u(x) = x2

2 .

Then ∫
K
||∇2u||2 + |∇u|2dγ ≥

∫
K

F 2dγ− n−1
nγ(K)

(∫
K

Fdγ
)2

. (25)

Proof: Note that (25) rewrites:

nγ(K) +
∫

K
x2dγ ≥ n2γ(K)−2n

∫
K

x2dγ+
∫

K
x4dγ (26)

−
(

n2γ(K)−2n
∫

K
x2dγ+ 1

γ(K)
(∫

K
x2dγ

)2
)

+ 1
n

(
n2γ(K)−2n

∫
K

x2dγ+ 1
γ(K)

(∫
K

x2dγ
)2
)
.
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Case of dilates

Rearranging, we get[∫
K

x4dγ− 1
γ(K)

(∫
K

x2dγ
)2−2

∫
K

x2dγ
]

+ (27)[
−
∫

K
x2dγ+ 1

nγ(K)
(∫

K
x2dγ

)2
]
≤ 0.

Recall the B-Theorem of Cordero-Erasquin, Fradelizi, Maurey:∫
K

x4dγ− 1
γ(K)

(∫
K

x2dγ
)2−2

∫
K

x2dγ ≤ 0; (28)

Recall also the key Lemma from Step 3:

−γ(K) + 1
n

∫
K

x2dγ ≤ 0.� (29)

Corollary
When K = tL, the conjecture of Garnder and Zvavitch follows.
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A stronger statement in the Gaussian case!

More news in the Gaussian case
For convex sets K and L containing the origin, and for any λ ∈ [0,1], we have

γ(λK + (1−λ)L)
1

2n ≥ λγ(K)
1

2n + (1−λ)γ(L)
1

2n .

Fact
For any convex body K containing the origin

1
γ(K)

∫
K
|x |2dγ(x)≤ n. (30)

Indeed, the function γ(tK) is increasing, and γ(tK)′t=0 ≥ 0 implies (30).
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Thanks for your attention!
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