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Preliminaries

A convex body in Rn is a convex set with non-empty interior.

They shall be usually denoted K , L.
We shall usually assume that they contain the origin.
A body K is called symmetric if x ∈ K =⇒ −x ∈ K .
A convex body K is called strictly convex if its boundary contains no
interval.
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The support hyperplane of a convex body K , orthogonal to u ∈ Sn−1, is
the hyperplane orthogonal to u which intersects the boundary ∂K but not
the interior of K .

Support function hK : Rn→ R+ of a convex body K is defined

hK (x) = max
y∈K
〈x ,y〉;

If u ∈ Sn−1 then hK (u) is the distance from the origin to the support
hyperplane to K , orthogonal to u.
∇hK (u) is the vector at which the support hyperplane touches ∂K .
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The Gauss map νK : ∂K → Sn−1 corresponds x ∈ ∂K to the set of its
normals nx .

If the set K is C2−smooth (i.e., its support function is C2) and strictly
convex then its Gauss map is 1−1.
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The surface area measure σK of a convex body K is the push-forward of
the Hausdorff (n−1)-dimensional measure on ∂K to the sphere:

σK (Ω) =
∫
ν−1

K (Ω)
dHn−1(x).

If the surface area measure has a density then this density is called
curvature function and is denoted fK (u).

Cone volume measure cK on Sn−1 of a convex body K is defined

cK (Ω) = 1
n

∫
Ω

hK (u)dσK (u).

|K |=
∫
Sn−1 cK (u)du.

If K is strictly convex and C2-smooth then cK has density 1
n hK fK .
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The mixed volume of convex bodies K and L:

V1(K ,L) = 1
n liminf

ε→0

|K + εL|− |K |
ε

The surface area of K :

|∂K |n−1 = nV1(K ,Bn
2 ) =

∫
Sn−1

dσK (u).

Brunn-Minkowski inequality

|λK + (1−λ)L|
1
n ≥ λ|K |

1
n + (1−λ)|L|

1
n ,

Which implies Minkowski’s first inequality

V1(K ,L)≥ |K |
n−1

n |L|
1
n .
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The definition of the weighted surface area measure

Definition
Let K be a convex set and µ be a measure on Rn with density g(x). The
surface area measure σµ,K of a convex body K with respect to µ is defined:

σµ,K (Ω) =
∫
ν−1

K (Ω)
g(x)dHn−1(x).
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Minkowski’s theorem

Minkowski’s existence theorem

Let ϕ be a measure on Sn−1, not supported on any great subsphere and
barycentred at the origin. Then there exists a convex body K so that ϕ= σK ;
moreover, a convex body is determined uniquely (up to a shift) by its surface
area measure.

Question
Is the same true about cone volume measure? I.e., does
hK (u)dσK (u) = hL(u)dσL(u) imply K = L?

Existence: in the symmetric case – yes (Böröczky, Lutwak, Yang, Zhang);
Uniqueness: not true in R2 only for parallelograms with parallel sides
(Stancu; Cage; Böröczky, Lutwak, Yang, Zhang);
A lot is still unknown.

Andrews, Böröczky, Cage, Chou, Colesanti, Cordero, Fradelizi, Gardner, Henk,
Huang, Hug, Linke, Liu, Lutwak, Ludwig, Marsiglietti, Morey, Nayar, Oliker,
Saraglou, Stancu, Tkozsh, Vikram, Xu, Wang, Yang, Zhang, Zhu, Zvavitch...
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Measures with positive concavity and homogeneity

p-concave
Let p ≥ 0. A function g : Rn→ R is called p−concave if gp(x) is concave.

r-homogenuous
Let r ≥ 0. A function g : Rn→ R is called r−homogenuous if for all a > 0,
g(ax) = ar g(x).

If g is positively concave and positively homogenuous then there exists a
p > 0 such that it is p−concave and 1

p -homogenuous.
If g is positively concave and positively homogenuous then it is supported
on a convex cone.
An example of such function g(x) = 〈x ,θ〉p1{〈x ,θ〉>0}, where θ ∈ Rn.

A measure µ with a p−concave density g is 1
n+ 1

p
−concave.

A measure µ with an r−homogenuous density g is n + r−homogenuous.
Emanuel Milman and Liran Rotem studied such measures and their
isoperimetric properties.
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Minkowski’s theorem for measures with positive concavity and homogeneity

Theorem (L. 2016)

Let µ on Rn be a measure and g(x) be its even r −homogenous density for
some r >−n, and the restriction of g to some half space is p− concave for a
p > 0. Let ϕ(u) be an arbitrary even measure on Sn−1, not supported on any
great subsphere, such that supp(ϕ)⊂ int(supp(g))∩Sn−1. Then there exists a
symmetric convex body K in Rn such that

dσK ,µ(u) = dϕ(u).

Moreover, such convex body is determined uniquely up to a set of µ−measure
zero.
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A weaker statement then the Log-Minkowski problem

Proposition

Let K and L be two symmetric, C2smooth, strictly-convex bodies in Rn with
support functions hK and hL and curvature functions fK and fL such that

∂hK (u)
∂e1

fK (u) = ∂hL(u)
∂e1

fL(u)

for every u ∈ Sn−1. Then K = L.

This heavily relies on the results by E. Milman and L. Rotem, to be quoted
later.

Question

Could one get hK (u)fK (u) = hL(u)fL(u) for every u ∈ Sn−1 =⇒

∂hK (u)
∂e1

fK (u) = ∂hL(u)
∂e1

fL(u)

for every u ∈ Sn−1?
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Shephard’s problem: history

Shephard’s problem (1960s)

Let K and L be symmetric convex bodies in Rn. Suppose in every direction θ,
|K |θ⊥|n−1 ≤ |L|θ⊥|n−1. Does it imply that |K |n ≤ |L|n?

Answer (1960s), due to Petty and Schneider
Yes if n = 2, No if n ≥ 3.

Definition.
A convex body L is called a projection body if for some other convex body Q,

hL(u) = |Q|u⊥|.

More specific answer to Shephard’s problem
Yes if and only if L is a projection body.

Ball, Dann, Gardner, Giannopolus, Goodey, Hug, Koldobsky, Ludwig, Petti,
Ryabogin, Schuster, Schneider, Schlumprecht, Zvavitch, Yaskin, Yaskina,
Zhang,....
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Zhang,....
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Projections for measures

Cauchy’s formula (recall)

|K |θ⊥|n−1 = 1
2

∫
Sn−1
|〈u,θ〉|dσK (u),

Definition
Let µ be a measure on Rn with density g continuous on its support, and let K
be a convex body. Consider a unit vector θ ∈ Sn−1. Define the following
function on the cylinder Sn−1× [0,1]:

pµ,K (θ, t) := n
2

∫
Sn−1
|〈θ,u〉|dσµ,tK (u). (1)

Pµ,K (θ) :=
∫ 1

0
pµ,K (θ, t)dt. (2)

Pλ,K (θ) = |K |θ⊥|n−1.
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Shephard’s problem for positively concave and positively homogenous
measures

Theorem (L. 2016)

Fix n ≥ 1, and consider g : Rn→ R+, a function with a positive degree of
concavity and a positive degree of homogeneity. Let µ be the measure on Rn

with density g(x).
1 Let K and L be symmetric strictly convex bodies, and let L additionally be

a projection body. Assume that for every θ ∈ Sn−1 we have

Pµ,K (θ)≤ Pµ,L(θ).

Then µ(K)≤ µ(L).
2 If in addition we assume that the support of g is a half-space, then for

each symmetric convex body L which is not a projection body, there exists
a symmetric convex body K such that for every θ ∈ Sn−1 we have

Pµ,K (θ)≤ Pµ,L(θ),

but µ(K)> µ(L).
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Minkowski’s Theorem and its extension for measures.

Shephard’s problem for measures.
A bit more details.

Tools

Mixed measure
Given sets K and L, and a measure mu on Rn, we define their mixed
µ−measure as follows.

µ1(K ,L) := liminf
ε→0

µ(K + εL)−µ(K)
ε

.

We also introduce the following analogue of mixed volume:

Vµ,1(K ,L) =
∫ 1

0
µ1(tK ,L)dt.
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Minkowski’s Theorem and its extension for measures.

Shephard’s problem for measures.
A bit more details.

Tools

Lemma (E. Milman, L. Rotem)

If µ has a p-concave 1
p -homogenous density, then for q = 1

n+ 1
p
,

µ1(K ,L)≥ 1
qµ(K)1−qµ(L)q.

Moreover, the equality occurs if and only if K and L are convex dilated
translates of each other up to µ-measure zero.

Dual isoperimetric inequality
Let a measure µ be log-concave. Then for every pair of Borel sets K and L
such that µ(K) = µ(L), one has

µ1(K ,L)≥ µ1(K ,K).
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Shephard’s problem for measures.
A bit more details.

Shephard for measures: part of the proof.

Proposition

L – projection body; for every θ ∈ Sn−1, PK ,µ(θ)≤ PL,µ(θ). Then
µ(K)≤ µ(L).

Proof.

µ1(L,L) =
∫
Sn−1

hLdσµ,L =

(by Koldobsky’s Parseval’s identity)

−c
∫
Sn−1

ĥLd σ̂µ,L =

−c
∫
Sn−1

ĥLPµ,L ≥ − c
∫
Sn−1

ĥLPµ,K =
∫
Sn−1

hLdσµ,K = µ1(K ,L)≥

µ1(K ,K), by Milman-Rotem Lemma. By homogeneity, µ(L)≥ µ(K). �
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Minkowski’s Theorem and its extension for measures.

Shephard’s problem for measures.
A bit more details.

Proof of the Proposition.

Proposition

Let K and L be two symmetric, C2, strictly-convex bodies in Rn with support
functions hK and hL and curvature functions fK and fL such that

∂hK (u)
∂e1

fK (u) = ∂hL(u)
∂e1

fL(u)

for every u ∈ Sn−1. Then K = L.

Proof.
Assume that there exist two symmetric convex bodies K and L such that

∂hK (u)
∂e1

fK (u) = ∂hL(u)
∂e1

fL(u).

Let g(x) = x1 ·1x1>0 and µ be a measure with density g . Then

µ1(K ,L) =
∫
Sn−1

hL(u)dσµ,K (u) =
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Minkowski’s Theorem and its extension for measures.

Shephard’s problem for measures.
A bit more details.

Proof of the (very) weak Log-Minkowski

Proof (continued) ∫
Sn−1

hL(u)fK (u)g(∇hK (u))du =

1
2

∫
Sn−1

hL(u)fK (u)∂hK (u)
∂e1

du =

µ1(K ,K) = (n +1)µ(K).

Therefore, by Milman-Rotem Lemma,

(n +1)µ(K) = µ1(K ,L)≥ (n +1)µ(K)1− 1
n+1 µ(L)

1
n+1 , (3)

and hence µ(K)≥ µ(L). Switch K and L and we get µ(K) = µ(L). Hence
equality is achieved in (3), and hence K and L have to coincide up to a dilation
and a shift. As we assume that K and L are symmetric, we get that K = aL for
some a > 0. By homogeneity, a = 1. Which means that K = L. �
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Proof of the (very) weak Log-Minkowski

Proof (continued) ∫
Sn−1

hL(u)fK (u)g(∇hK (u))du =

1
2

∫
Sn−1

hL(u)fK (u)∂hK (u)
∂e1

du =

µ1(K ,K) = (n +1)µ(K).

Therefore, by Milman-Rotem Lemma,

(n +1)µ(K) = µ1(K ,L)≥ (n +1)µ(K)1− 1
n+1 µ(L)

1
n+1 , (3)

and hence µ(K)≥ µ(L). Switch K and L and we get µ(K) = µ(L). Hence
equality is achieved in (3), and hence K and L have to coincide up to a dilation
and a shift. As we assume that K and L are symmetric, we get that K = aL for
some a > 0. By homogeneity, a = 1. Which means that K = L. �
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Thanks for your attention!
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