Estimating maximal perimeters of convex sets with respect to probability measures

Galyna V. Livshyts

Georgia Institute of Technology

CMS meeting, Regina, Canada June, 2019.

◆□> ◆□> ◆目> ◆目> ◆日> ● ●

The classical isoperimetric inequality

The classical isoperimetric inequality

The classical isoperimetric inequality

If $K \subset \mathbb{R}^n$ with $|K| = |B_2^n|$ then $|\partial K|_{n-1} \ge |\partial B_2^n|_{n-1}$.

The classical isoperimetric inequality

The classical isoperimetric inequality

If $K \subset \mathbb{R}^n$ with $|K| = |B_2^n|$ then $|\partial K|_{n-1} \ge |\partial B_2^n|_{n-1}$.

Reverse inequality?

And what about a reverse estimate?

Maximal perimeters of convex sets with respect to probability measures

• There exists a set K with volume 1 and arbitrarily large perimeter:

• There exists a set K with volume 1 and arbitrarily large perimeter:

• What if we ask about the maximal perimeter of a **convex** set in \mathbb{R}^n of volume 1?

• There exists a set K with volume 1 and arbitrarily large perimeter:

• What if we ask about the maximal perimeter of a **convex** set in \mathbb{R}^n of volume 1? The answer is still infinity:

• There exists a set K with volume 1 and arbitrarily large perimeter:

• What if we ask about the maximal perimeter of a **convex** set in \mathbb{R}^n of volume 1? The answer is still infinity:

Ball's theorem from 1990s

For any convex set K there exists a linear transformation T such that |TK| = |S| and $|\partial(TK)|_{n-1} \le |\partial S|_{n-1}$, where S is the regular simplex.

 E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂ |¹/_n and showed that it is between n^{1/8} and n^{1/8} L_K;

- E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂|¹/_n and showed that it is between n^{1/8} and n^{1/8}L_K;
- R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of $|\partial K|_{n-1}$ among λ -concave bodies;

- E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂|¹/_n and showed that it is between n^{1/8} and n^{1/8}L_K;
- R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of $|\partial K|_{n-1}$ among λ -concave bodies;

Consider a (probability) measure μ on \mathbb{R}^n and define a μ -perimeter of a convex body K as follows:

$$\mu^+(\partial K) := \liminf_{\epsilon \to 0} \frac{\mu(K + \epsilon B_2^n) - \mu(K)}{\epsilon}$$

- E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂|¹/_n and showed that it is between n^{1/8} and n^{1/8}L_K;
- R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of $|\partial K|_{n-1}$ among λ -concave bodies;

Consider a (probability) measure μ on \mathbb{R}^n and define a μ -perimeter of a convex body K as follows:

$$\mu^+(\partial K) := \liminf_{\epsilon \to 0} \frac{\mu(K + \epsilon B_2^n) - \mu(K)}{\epsilon}.$$

Question: what is the largest value of $\mu^+(K)$ when K is a convex body?

- E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂|¹/_n and showed that it is between n^{1/8} and n^{1/8}L_K;
- R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of $|\partial K|_{n-1}$ among λ -concave bodies;

Consider a (probability) measure μ on \mathbb{R}^n and define a μ -perimeter of a convex body K as follows:

$$\mu^+(\partial K) := \liminf_{\epsilon \to 0} \frac{\mu(K + \epsilon B_2^n) - \mu(K)}{\epsilon}.$$

Question: what is the largest value of $\mu^+(K)$ when K is a convex body?

• The answer does not have to be ∞ now!

- E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered max_K | TK + Bⁿ₂|¹/_n and showed that it is between n^{1/8} and n^{1/8}L_K;
- R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of $|\partial K|_{n-1}$ among λ -concave bodies;

Consider a (probability) measure μ on \mathbb{R}^n and define a μ -perimeter of a convex body K as follows:

$$\mu^+(\partial K) := \liminf_{\epsilon \to 0} \frac{\mu(K + \epsilon B_2^n) - \mu(K)}{\epsilon}.$$

Question: what is the largest value of $\mu^+(K)$ when K is a convex body?

- The answer does not have to be ∞ now!
- Example: if μ is uniform on another convex body L with |L| = 1, then for any convex K, one has μ⁺(∂K) = |∂K ∩ L|_{n-1} ≤ |∂L|_{n-1}.

Definition of the maximal perimeter

For a probability measure μ on \mathbb{R}^n , consider the parameter

$$\Gamma(\mu) := \sup_{K - convex} \mu^+(\partial K).$$

Definition of the maximal perimeter

For a probability measure μ on \mathbb{R}^n , consider the parameter

$$\Gamma(\mu) := \sup_{K - convex} \mu^+(\partial K).$$

In other words, if X is a random vector distributed with μ ,

$$\Gamma(X) := \Gamma(\mu) = \sup_{K} \lim_{\epsilon \to 0} \frac{P(X \in K + \epsilon B_2^n) - P(X \in K)}{\epsilon}$$

Definition of the maximal perimeter

For a probability measure μ on \mathbb{R}^n , consider the parameter

$$\Gamma(\mu) := \sup_{K - convex} \mu^+(\partial K).$$

In other words, if X is a random vector distributed with μ ,

$$\Gamma(X) := \Gamma(\mu) = \sup_{K} \lim_{\epsilon \to 0} \frac{P(X \in K + \epsilon B_2^n) - P(X \in K)}{\epsilon}$$

Main question

Depending on $\mu,$ what is the value of $\Gamma(\mu),$ in terms of the dimension, when $n\to\infty?$

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^{\prime\prime}}}e^{-\frac{|x|^{2}}{2}}.$

Galyna V. Livshyts Maximal perimeters of convex sets with respect to probability measures

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^n}}e^{-\frac{|x|^2}{2}}$.

History

• Ball in 1996: $\Gamma(\gamma) \leq Cn^{\frac{1}{4}}$;

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^{"}}}e^{-\frac{|x|^2}{2}}$.

- Ball in 1996: $\Gamma(\gamma) \le Cn^{\frac{1}{4}}$;
- Nazarov in 2003: $\Gamma(\gamma) \in [0.28n^{\frac{1}{4}}, 0.67n^{\frac{1}{4}}];$

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^n}}e^{-\frac{|\mathbf{x}|^2}{2}}$.

- Ball in 1996: $\Gamma(\gamma) \leq Cn^{\frac{1}{4}}$;
- Nazarov in 2003: $\Gamma(\gamma) \in [0.28n^{\frac{1}{4}}, 0.67n^{\frac{1}{4}}];$
- Raic in 2018+: numerical improvements;

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^n}}e^{-\frac{|\mathbf{x}|^2}{2}}$.

- Ball in 1996: $\Gamma(\gamma) \leq Cn^{\frac{1}{4}}$;
- Nazarov in 2003: $\Gamma(\gamma) \in [0.28n^{\frac{1}{4}}, 0.67n^{\frac{1}{4}}];$
- Raic in 2018+: numerical improvements;
- Bentkus in 2004: applications to the rate of convergence in CLT;

Consider Gaussian measure γ with density $\frac{1}{\sqrt{2\pi^n}}e^{-\frac{|\mathbf{x}|^2}{2}}$.

- Ball in 1996: $\Gamma(\gamma) \leq Cn^{\frac{1}{4}}$;
- Nazarov in 2003: $\Gamma(\gamma) \in [0.28n^{\frac{1}{4}}, 0.67n^{\frac{1}{4}}];$
- Raic in 2018+: numerical improvements;
- Bentkus in 2004: applications to the rate of convergence in CLT;
- Kane in 2010: $\gamma^+(M) \leq \frac{d}{\sqrt{2}}$ where M is a degree d polynomial surface.

• A measure μ is called log-concave if $\mu(\lambda K + (1 - \lambda)L) \ge \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.

- A measure μ is called log-concave if $\mu(\lambda K + (1 \lambda)L) \ge \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.
- \bullet Examples of log-concave measures: Gaussian, uniform on a convex set, Lebesgue, $e^{-||\cdot||}\dots$

- A measure μ is called log-concave if $\mu(\lambda K + (1 \lambda)L) \ge \mu(K)^{\lambda} \mu(L)^{1-\lambda}$.
- \bullet Examples of log-concave measures: Gaussian, uniform on a convex set, Lebesgue, $e^{-||\cdot||}\dots$
- A measure is rotation-invariant if for any rotation U and any set K one has $\mu(K) = \mu(UK)$.

- A measure μ is called log-concave if μ(λK + (1 − λ)L) ≥ μ(K)^λμ(L)^{1−λ}.
- \bullet Examples of log-concave measures: Gaussian, uniform on a convex set, Lebesgue, $e^{-||\cdot||}...$
- A measure is rotation-invariant if for any rotation U and any set K one has $\mu(K) = \mu(UK)$.

Some results about rotation-invariant log-concave measures

• L. 2014: for any log-concave rotation-invariant random vector X,

$$C_2 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}} \leq \Gamma(X) \leq C_1 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}}$$

- A measure μ is called log-concave if μ(λK + (1 − λ)L) ≥ μ(K)^λμ(L)^{1−λ}.
- \bullet Examples of log-concave measures: Gaussian, uniform on a convex set, Lebesgue, $e^{-||\cdot||}...$
- A measure is rotation-invariant if for any rotation U and any set K one has $\mu(K) = \mu(UK)$.

Some results about rotation-invariant log-concave measures

• L. 2014: for any log-concave rotation-invariant random vector X,

$$C_2 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}} \leq \Gamma(X) \leq C_1 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}}.$$

• L. 2013: same holds for X with density $C_{n,p}e^{-\frac{|x|^{p}}{p}}$ when $p \in (0,\infty)$, not just $p \in [1,\infty)$.

- A measure μ is called log-concave if μ(λK + (1 − λ)L) ≥ μ(K)^λμ(L)^{1−λ}.
- \bullet Examples of log-concave measures: Gaussian, uniform on a convex set, Lebesgue, $e^{-||\cdot||}...$
- A measure is rotation-invariant if for any rotation U and any set K one has $\mu(K) = \mu(UK)$.

Some results about rotation-invariant log-concave measures

• L. 2014: for any log-concave rotation-invariant random vector X,

$$C_2 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}} \leq \Gamma(X) \leq C_1 \frac{\sqrt{n}}{\sqrt[4]{Var|X|}\sqrt{\mathbb{E}|X|}}.$$

- L. 2013: same holds for X with density $C_{n,p}e^{-\frac{|x|^p}{p}}$ when $p \in (0,\infty)$, not just $p \in [1,\infty)$.
- L. 2015: for convex polytopes P with N sides (for appropriate values of N),

$$C_2 \frac{\sqrt{n}}{\mathbb{E}|X|} \sqrt{\log N} \leq \max_P \gamma^+ (\partial P) \leq C_1 \frac{\sqrt{n}}{\mathbb{E}|X|} \sqrt{\log N} \log n.$$

Theorem 1 (L. 2019+)

Let X be a random vector in \mathbb{R}^n with an absolutely continuous distribution. Suppose that $\sqrt{Var(|X|)} \le \alpha \mathbb{E}|X|$, for $\alpha \in [0, 1)$. Then

$$\Gamma(X) \ge C \frac{\sqrt{n}}{\sqrt[4]{Var(|X|)}\sqrt{\mathbb{E}|X|}},\tag{1}$$

where C > 0 depends only on α . Namely, $C = C(\alpha) \rightarrow_{\alpha \to 0} 0.06$, and $C(\alpha) \rightarrow_{\alpha \to 1} 0$.

A random vector X is called isotropic if $\mathbb{E}X = 0$ and $\mathbb{E}X_i X_j = \delta_{ij}$.

A random vector X is called isotropic if $\mathbb{E}X = 0$ and $\mathbb{E}X_i X_j = \delta_{ij}$.

• For isotropic log-concave random vectors, $\mathbb{E}|X|^2 = n$ and $\mathbb{E}|X| = (1 + o(1))\sqrt{n}$;

A random vector X is called isotropic if $\mathbb{E}X = 0$ and $\mathbb{E}X_i X_j = \delta_{ij}$.

- For isotropic log-concave random vectors, $\mathbb{E}|X|^2 = n$ and $\mathbb{E}|X| = (1 + o(1))\sqrt{n}$;
- The parameter $\sigma(X) = \sqrt{Var|X|}$ is called the thin shell parameter of X (there are also alternative formulations!);

A random vector X is called isotropic if $\mathbb{E}X = 0$ and $\mathbb{E}X_i X_j = \delta_{ij}$.

- For isotropic log-concave random vectors, $\mathbb{E}|X|^2 = n$ and $\mathbb{E}|X| = (1 + o(1))\sqrt{n}$;
- The parameter $\sigma(X) = \sqrt{Var|X|}$ is called the thin shell parameter of X (there are also alternative formulations!);

The Thin-shell conjecture (Antilla, Ball, Perissinaki; Bobkov, Koldobsky)

For any isotropic log-concave vector X on \mathbb{R}^n , $\sigma(X) \leq C$.

A random vector X is called isotropic if $\mathbb{E}X = 0$ and $\mathbb{E}X_i X_j = \delta_{ij}$.

• For isotropic log-concave random vectors, $\mathbb{E}|X|^2 = n$ and $\mathbb{E}|X| = (1 + o(1))\sqrt{n}$;

• The parameter $\sigma(X) = \sqrt{Var|X|}$ is called the thin shell parameter of X (there are also alternative formulations!);

The Thin-shell conjecture (Antilla, Ball, Perissinaki; Bobkov, Koldobsky)

For any isotropic log-concave vector X on \mathbb{R}^n , $\sigma(X) \leq C$.

- Klartag 2007: $\sigma < o(1)\sqrt{n}$
- Klartag 2008: $\sigma < n^{-\alpha}\sqrt{n}$
- Fleury 2009: $\sigma < n^{-\beta}\sqrt{n}$ (improved)
- Guedon, Milman 2012: $\sigma < n^{1/3}$
- Lee, Vempala 2017: $\sigma < n^{1/4}$
- Klartag 2010: $\sigma < C$ for unconditional convex bodies
- Radke, Vritsiou 2016: $\sigma < C$ for Schatten classes
- Many more results and connections Ball, Bobkov, Eldan, Giannopolous, Koldobsky, Paouris, Perissinaki....

• From Theorem 1 we get
$$\Gamma(X) \geq \frac{Cn^{\frac{1}{4}}}{\sqrt{\sigma(X)}}$$
.
• From Theorem 1 we get
$$\Gamma(X) \geq rac{Cn^{rac{1}{4}}}{\sqrt{\sigma(X)}}.$$

Corollary 1 of Theorem 1 (follows from Lee-Vempala's estimate)

For all isotropic log-concave vectors X on \mathbb{R}^n ,

 $\Gamma(X) \ge cn^{\frac{1}{8}}$

• From Theorem 1 we get
$$\Gamma(X) \geq rac{Cn^{rac{1}{4}}}{\sqrt{\sigma(X)}}.$$

Corollary 1 of Theorem 1 (follows from Lee-Vempala's estimate)

For all isotropic log-concave vectors X on \mathbb{R}^n ,

 $\Gamma(X) \ge cn^{\frac{1}{8}}$

Corollary 2 of Theorem 1

If there existed an isotropic log-concave measure μ on \mathbb{R}^n such that

$$\Gamma(\mu) << cn^{\frac{1}{4}},$$

then the Thin-shell conjecture would be false.

• From Theorem 1 we get
$$\Gamma(X) \geq rac{Cn^{rac{1}{4}}}{\sqrt{\sigma(X)}}.$$

Corollary 1 of Theorem 1 (follows from Lee-Vempala's estimate)

For all isotropic log-concave vectors X on \mathbb{R}^n ,

 $\Gamma(X) \ge cn^{\frac{1}{8}}$

Corollary 2 of Theorem 1

If there existed an isotropic log-concave measure μ on \mathbb{R}^n such that

$$\Gamma(\mu) << cn^{\frac{1}{4}},$$

then the Thin-shell conjecture would be false.

 In other words, the standard Gaussian is among the minimizers of Γ(X) (up to a constant multiple), if the thin shell conjecture is true.

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

For all isotropic log-concave unconditional vectors X on \mathbb{R}^n with density e^{-V} , such that $0 \leq HessV \leq Id$, one has

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

 Indeed, from Cafarelli's regularity theorem one may see that the perimeter decreases when a measure from the corollary is transported onto Gaussian;

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

- Indeed, from Cafarelli's regularity theorem one may see that the perimeter decreases when a measure from the corollary is transported onto Gaussian;
- Thus from the estimates of Ball and Nazarov we conclude $\Gamma(X) \leq cn^{1/4}$;

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

- Indeed, from Cafarelli's regularity theorem one may see that the perimeter decreases when a measure from the corollary is transported onto Gaussian;
- Thus from the estimates of Ball and Nazarov we conclude $\Gamma(X) \leq cn^{1/4}$;
- The lower bound follows from Theorem 1 and Klartag's thin shell estimate for unconditional log-concave measures;

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

- Indeed, from Cafarelli's regularity theorem one may see that the perimeter decreases when a measure from the corollary is transported onto Gaussian;
- Thus from the estimates of Ball and Nazarov we conclude $\Gamma(X) \leq cn^{1/4}$;
- The lower bound follows from Theorem 1 and Klartag's thin shell estimate for unconditional log-concave measures;
- In the case of product measures one can directly adapt Nazarov's argument.

For all isotropic log-concave unconditional vectors X on \mathbb{R}^n with density e^{-V} , such that $0 \leq HessV \leq Id$, one has

$$C_1 n^{\frac{1}{4}} \leq \Gamma(X) \leq C_2 n^{\frac{1}{4}}$$

- Indeed, from Cafarelli's regularity theorem one may see that the perimeter decreases when a measure from the corollary is transported onto Gaussian;
- Thus from the estimates of Ball and Nazarov we conclude $\Gamma(X) \leq cn^{1/4}$;
- The lower bound follows from Theorem 1 and Klartag's thin shell estimate for unconditional log-concave measures;
- In the case of product measures one can directly adapt Nazarov's argument.

So what about upper bounds?

Theorem 2 (L. 2019+)

Let X be a random vector on \mathbb{R}^n with an absolutely continuous unimodule density f. Then there exists a linear volume preserving transformation T such that

$$\Gamma(TX) \leq Cn ||f||_{\infty}^{\frac{1}{n}},$$

where C > 0 is an absolute constant.

- The previous theorem includes all log-concave distributions;
- It also generalizes Ball's theorem.

Theorem 2 (L. 2019+)

Let X be a random vector on \mathbb{R}^n with an absolutely continuous unimodule density f. Then there exists a linear volume preserving transformation T such that

$$\Gamma(TX) \leq Cn ||f||_{\infty}^{\frac{1}{n}},$$

where C > 0 is an absolute constant.

- The previous theorem includes all log-concave distributions;
- It also generalizes Ball's theorem.

Theorem 3 (L. 2019+)

Let X be an isotropic log-concave random vector on \mathbb{R}^n . Then

$$\Gamma(X) \leq Cn^2$$
,

where C > 0 is an absolute constant.

Conclusion

$$\Gamma(X) \in [n^{1/8}, n^2]$$

for isotropic log-concave vectors (up to constant multiples).

Conclusion

$$\Gamma(X) \in [n^{1/8}, n^2]$$

for isotropic log-concave vectors (up to constant multiples).

Conjecture

$$\Gamma(X) \in [n^{1/4}, n]$$

for isotropic log-concave vectors (up to constant multiples).

- *n* is attained e.g. for X uniform on B_{∞}^{n} .
- $n^{\frac{1}{4}}$ is attained e.g. for X being standard Gaussian.

Conclusion

$$\Gamma(X) \in [n^{1/8}, n^2]$$

for isotropic log-concave vectors (up to constant multiples).

Conjecture

$$\Gamma(X) \in [n^{1/4}, n]$$

for isotropic log-concave vectors (up to constant multiples).

- *n* is attained e.g. for X uniform on B_{∞}^{n} .
- $n^{\frac{1}{4}}$ is attained e.g. for X being standard Gaussian.

One can show that the upper bound of n holds for:

- Uniform distributions on convex sets;
- 1-symmetric log-concave distributions;
- Densities $e^{-||\cdot||}$ and all measures with homothetic level sets.

Suppose
$$RB_2^n \subset K$$
. Then $|\partial K|_{n-1} \leq \frac{n|K|}{R}$.

Proof

-

Suppose
$$RB_2^n \subset K$$
. Then $|\partial K|_{n-1} \leq \frac{n|K|}{R}$.

Proof

• Our assumption implies that $\epsilon B_2^n \subset \frac{\epsilon}{R} K$.

글 🖒 🖌 글

Suppose
$$RB_2^n \subset K$$
. Then $|\partial K|_{n-1} \leq \frac{n|K|}{R}$.

Proof

• Our assumption implies that
$$\epsilon B_2^n \subset \frac{\epsilon}{R} K$$
.

$$|\partial K|_{n-1} = \lim_{\epsilon \to 0} \frac{|K + \epsilon B_2^n| - |K|}{\epsilon} \le \lim_{\epsilon \to 0} \frac{|K + \frac{\epsilon}{\epsilon} K| - |K|}{\epsilon} =$$

(日)

프 🕨 🖉

Suppose
$$RB_2^n \subset K$$
. Then $|\partial K|_{n-1} \leq \frac{n|K|}{R}$.

Proof

• Our assumption implies that
$$\epsilon B_2^n \subset \frac{\epsilon}{R} K$$
.

$$|\partial K|_{n-1} = \lim_{\epsilon \to 0} \frac{|K + \epsilon B_2^n| - |K|}{\epsilon} \le \lim_{\epsilon \to 0} \frac{|K + \frac{\epsilon}{R}K| - |K|}{\epsilon} = |K| \cdot \lim_{\epsilon \to 0} \frac{(1 + \epsilon/R)^n - 1}{\epsilon} = \frac{n|K|}{R}.$$

(日)

프 🕨 🖉

Definition – level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Definition – level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$\mu^+(\partial Q) \leq n \cdot \inf_{t \in (0,||f||_{\infty})} \frac{||f||_{\infty}|\mathcal{K}_t(f)| + ||f||_1}{R_t(f)}.$$

Definition - level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$u^+(\partial Q) \leq n \cdot \inf_{t \in (0, ||f||_{\infty})} \frac{||f||_{\infty} |K_t(f)| + ||f||_1}{R_t(f)}.$$

Proof

• Fix t and a level set K_t with inradius R_t .

Definition – level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$u^+(\partial Q) \leq n \cdot \inf_{t \in (0, ||f||_{\infty})} \frac{||f||_{\infty} |K_t(f)| + ||f||_1}{R_t(f)}.$$

Proof

- Fix t and a level set K_t with inradius R_t .
- $\mu^+(\partial Q \cap K_t) \leq |\partial Q \cap K_t|_{n-1} \cdot ||f||_{\infty}$.

Definition - level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$u^+(\partial Q) \leq n \cdot \inf_{t \in (0, ||f||_{\infty})} \frac{||f||_{\infty} |K_t(f)| + ||f||_1}{R_t(f)}.$$

Proof

- Fix t and a level set K_t with inradius R_t .
- $\mu^+(\partial Q \cap K_t) \leq |\partial Q \cap K_t|_{n-1} \cdot ||f||_{\infty}$.
- $|\partial Q \cap K_t|_{n-1} \leq |\partial K_t|_{n-1}$.

Definition - level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$u^+(\partial Q) \leq n \cdot \inf_{t \in (0, ||f||_{\infty})} \frac{||f||_{\infty} |K_t(f)| + ||f||_1}{R_t(f)}$$

Proof

- Fix t and a level set K_t with inradius R_t .
- $\mu^+(\partial Q \cap K_t) \leq |\partial Q \cap K_t|_{n-1} \cdot ||f||_{\infty}$.
- $|\partial Q \cap K_t|_{n-1} \leq |\partial K_t|_{n-1}$.
- By the Lemma from the previous slide, $|\partial K_t|_{n-1} \leq \frac{n|K_t|}{R_t}$.

Definition – level sets

$$K_t := \{x \in \mathbb{R}^n : f(x) \ge t\};$$

 R_t – the largest radius of a ball inscribed in K_t .

Lemma

Let μ be a log-concave measure with absolutely continuous density f. Then for any convex set Q,

$$u^+(\partial Q) \leq n \cdot \inf_{t \in (0, ||f||_{\infty})} \frac{||f||_{\infty} |K_t(f)| + ||f||_1}{R_t(f)}$$

Proof

- Fix t and a level set K_t with inradius R_t .
- $\mu^+(\partial Q \cap K_t) \leq |\partial Q \cap K_t|_{n-1} \cdot ||f||_{\infty}$.
- $|\partial Q \cap K_t|_{n-1} \leq |\partial K_t|_{n-1}$.
- By the Lemma from the previous slide, $|\partial K_t|_{n-1} \leq \frac{n|K_t|}{R_t}$.

• Combining everything we get $\mu^+(\partial Q \cap K_t) \leq \frac{n||f||_{\infty}|K_t|}{R_t}$.

Proof – continuation

• Goal: estimate $\mu^+(\partial Q \setminus K_t)$.

ъ

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty 1_{\{a \ge t\}}(t) dt$.

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty \mathbb{1}_{\{a \ge t\}}(t) dt$.
- Applying this with with a = f(y), we write:

$$\mu^+(\partial Q \setminus K_t) = \int_{\partial Q \setminus K_t} f(y) d\sigma(y) =$$

$$\int_{\partial Q\setminus K_t}\int_0^\infty \mathbf{1}_{K_s}dsd\sigma(y)=\int_0^t|\partial Q\cap K_s|_{n-1}ds,$$

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty \mathbb{1}_{\{a \ge t\}}(t) dt$.
- Applying this with with a = f(y), we write:

$$\mu^+(\partial Q \setminus K_t) = \int_{\partial Q \setminus K_t} f(y) d\sigma(y) =$$

$$\int_{\partial Q\setminus K_t}\int_0^\infty 1_{K_s}dsd\sigma(y)=\int_0^t|\partial Q\cap K_s|_{n-1}ds,$$

• By convexity: $|\partial Q \cap K_s|_{n-1} \le |\partial K_s|_{n-1}$.

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty \mathbb{1}_{\{a \ge t\}}(t) dt$.
- Applying this with with a = f(y), we write:

$$\mu^+(\partial Q \setminus K_t) = \int_{\partial Q \setminus K_t} f(y) d\sigma(y) =$$

$$\int_{\partial Q\setminus K_t}\int_0^\infty 1_{K_s}dsd\sigma(y)=\int_0^t|\partial Q\cap K_s|_{n-1}ds,$$

- By convexity: $|\partial Q \cap K_s|_{n-1} \le |\partial K_s|_{n-1}$.
- For any $s \in [0, t]$, we have $K_t \subset K_s$, and hence $R_s \ge R_t$. Hence $|\partial K_s|_{n-1} \le \frac{n|K_s|}{R_s} \le \frac{n|K_s|}{R_t}$.

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty \mathbb{1}_{\{a \ge t\}}(t) dt$.
- Applying this with with a = f(y), we write:

$$\mu^+(\partial Q \setminus K_t) = \int_{\partial Q \setminus K_t} f(y) d\sigma(y) =$$

$$\int_{\partial Q\setminus K_t}\int_0^\infty 1_{K_s}dsd\sigma(y)=\int_0^t|\partial Q\cap K_s|_{n-1}ds,$$

- By convexity: $|\partial Q \cap K_s|_{n-1} \le |\partial K_s|_{n-1}$.
- For any $s \in [0, t]$, we have $K_t \subset K_s$, and hence $R_s \ge R_t$. Hence $|\partial K_s|_{n-1} \le \frac{n|K_s|}{R_s} \le \frac{n|K_s|}{R_t}$.

• Recall
$$\int_0^t |K_s| ds \leq \int_0^\infty |K_s| ds = ||f||_1$$
.

Proof – continuation

- Goal: estimate $\mu^+(\partial Q \setminus K_t)$.
- Note that for any a > 0 one has $a = \int_0^\infty \mathbb{1}_{\{a \ge t\}}(t) dt$.
- Applying this with with a = f(y), we write:

$$\mu^+(\partial Q \setminus K_t) = \int_{\partial Q \setminus K_t} f(y) d\sigma(y) =$$

$$\int_{\partial Q\setminus K_t}\int_0^\infty 1_{K_s}dsd\sigma(y)=\int_0^t|\partial Q\cap K_s|_{n-1}ds,$$

- By convexity: $|\partial Q \cap K_s|_{n-1} \le |\partial K_s|_{n-1}$.
- For any $s \in [0, t]$, we have $K_t \subset K_s$, and hence $R_s \ge R_t$. Hence $|\partial K_s|_{n-1} \le \frac{n|K_s|}{R_s} \le \frac{n|K_s|}{R_t}$.

• Recall
$$\int_0^t |K_s| ds \leq \int_0^\infty |K_s| ds = ||f||_1.$$

• Combining everything, we get $\mu^+(\partial Q \setminus K_t) \leq \frac{n||f||_1}{R_t}$.

Conclusion – the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn ||f||_{\infty}^{1/n}$ in some position.

Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn||f||_{\infty}^{1/n}$ in some position.

• Select K_t so that $||f||_{\infty}|K_t| \approx 1$ – can do so by continuity;

Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn||f||_{\infty}^{1/n}$ in some position.

• Select K_t so that $||f||_{\infty}|K_t| \approx 1$ – can do so by continuity;

•
$$||f||_1 = 1;$$
Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn||f||_{\infty}^{1/n}$ in some position.

- Select K_t so that $||f||_{\infty}|K_t| \approx 1$ can do so by continuity;
- $||f||_1 = 1;$
- Let *T* be the volume preserving linear operator which brings *K*_t into the position where the ellipsoid of maximal volume in *K*_t is a ball;

Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn ||f||_{\infty}^{1/n}$ in some position.

- Select K_t so that $||f||_{\infty}|K_t| \approx 1$ can do so by continuity;
- $||f||_1 = 1;$
- Let *T* be the volume preserving linear operator which brings *K*_t into the position where the ellipsoid of maximal volume in *K*_t is a ball;
- By Ball's volume ratio estimate we see that $R_t \ge C ||f||_{\infty}^{-\frac{1}{n}}$.

Conclusion - the Lemma is proved

$$\mu^+(\partial Q) = \mu^+(\partial Q \setminus K_t) + \mu^+(\partial Q \cap K_t) \le n \frac{||f||_{\infty}|K_t| + ||f||_1}{R_t}$$

Proof of Theorem 2: $\mu^+(\partial Q) \leq Cn ||f||_{\infty}^{1/n}$ in some position.

- Select K_t so that $||f||_{\infty}|K_t| \approx 1$ can do so by continuity;
- $||f||_1 = 1;$
- Let *T* be the volume preserving linear operator which brings *K*_t into the position where the ellipsoid of maximal volume in *K*_t is a ball;
- By Ball's volume ratio estimate we see that $R_t \ge C ||f||_{\infty}^{-\frac{1}{n}}$.

Conclusion: Theorem 2

There exists a linear volume preserving transformation T such that

$$\Gamma(TX) \leq Cn ||f||_{\infty}^{\frac{1}{n}}.$$

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

Proof of Theorem 3

• Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

- Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.
- By log-concavity, for $s = e^{-10} ||f||_{\infty}$ we have $\frac{1}{n} K_t \subset K_s$;

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

- Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.
- By log-concavity, for $s = e^{-10} ||f||_{\infty}$ we have $\frac{1}{n} K_t \subset K_s$;
- Thus $R_s \geq \frac{0.1}{n}$;

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

- Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.
- By log-concavity, for $s = e^{-10} ||f||_{\infty}$ we have $\frac{1}{n} K_t \subset K_s$;
- Thus $R_s \geq \frac{0.1}{n}$;
- Also note that $||f||_{\infty}|K_t| \leq e^{10}$;

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

- Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.
- By log-concavity, for $s=e^{-10}||f||_\infty$ we have $rac{1}{n}K_t\subset K_s;$
- Thus $R_s \geq \frac{0.1}{n}$;
- Also note that $||f||_{\infty}|K_t| \leq e^{10}$;
- By the Lemma,

$$\mu^+(\partial Q) \leq n \frac{e^{10}+1}{0.1/n} \leq Cn^2.$$

For an isotropic log-concave measure μ and $t = e^{-10n} ||f||_{\infty}$ we have $R_t \ge 0.1$.

Proof of Theorem 3

- Note that $||f||_{\infty}|K_t| \leq e^{10n}$; this leads to $\Gamma(X) \leq e^{Cn}$.
- By log-concavity, for $s = e^{-10} ||f||_{\infty}$ we have $\frac{1}{n} K_t \subset K_s$;
- Thus $R_s \geq \frac{0.1}{n}$;
- Also note that $||f||_{\infty}|K_t| \leq e^{10}$;
- By the Lemma,

$$\mu^+(\partial Q) \leq n \frac{e^{10}+1}{0.1/n} \leq Cn^2.$$

Conclusion: Theorem 3

For isotropic log-concave X we have $\Gamma(X) \leq Cn^2$.

Question

Let μ be an isotropic log-concave measure with density f. Does there exist a level set K_t of μ such that

$$|K_t| \leq \frac{C_1}{||f||_{\infty}},$$

and $C_2B_2^n + y \subset K_t$, for some absolute constants C_1 and C_2 and a vector y?

Question

Let μ be an isotropic log-concave measure with density f. Does there exist a level set K_t of μ such that

$$|K_t| \leq \frac{C_1}{||f||_{\infty}},$$

and $C_2B_2^n + y \subset K_t$, for some absolute constants C_1 and C_2 and a vector y?

If the answer is affirmative then the upper bound for isotropic log-concave measures is n.

Question

Let μ be an isotropic log-concave measure with density f. Does there exist a level set K_t of μ such that

$$|K_t| \leq \frac{C_1}{||f||_{\infty}},$$

and $C_2B_2^n + y \subset K_t$, for some absolute constants C_1 and C_2 and a vector y?

If the answer is affirmative then the upper bound for isotropic log-concave measures is n.

The answer is affirmative for:

- Uniform distributions on convex sets;
- 1-symmetric log-concave distributions;
- Densities $e^{-||\cdot||}$ and all measures with homothetic level sets.

Thanks for your attention!

