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The classical isoperimetric inequality

The classical isoperimetric inequality
If K ⊂ Rn with |K |= |Bn

2 | then |∂K |n−1 ≥ |∂Bn
2 |n−1.

Reverse inequality?
And what about a reverse estimate?
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Reverse isoperimetric inequalities: history

There exists a set K with volume 1 and arbitrarily large perimeter:

What if we ask about the maximal perimeter of a convex set in Rn of
volume 1? The answer is still infinity:

Ball’s theorem from 1990s
For any convex set K there exists a linear transformation T such that
|TK |= |S| and |∂(TK)|n−1 ≤ |∂S|n−1, where S is the regular simplex.
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Reverse isoperimetric inequalities: history

E. Markessinis, G. Paouris, Ch. Saroglou in 2012 considered
maxK |TK + Bn

2 |
1
n and showed that it is between n

1
8 and n

1
8 LK ;

R. Chernov, K. Drach, K. Tatarko in 2019+ characterized maximizers of
|∂K |n−1 among λ−concave bodies;

Replacing Lebesgue volume with a measure
Consider a (probability) measure µ on Rn and define a µ-perimeter of a convex
body K as follows:

µ+(∂K) := liminf
ε→0

µ(K + εBn
2 )−µ(K)
ε

.

Question: what is the largest value of µ+(K) when K is a convex body?

The answer does not have to be ∞ now!
Example: if µ is uniform on another convex body L with |L|= 1, then for
any convex K , one has µ+(∂K) = |∂K ∩L|n−1 ≤ |∂L|n−1.
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The main question of the talk

Definition of the maximal perimeter
For a probability measure µ on Rn, consider the parameter

Γ(µ) := sup
K−convex

µ+(∂K).

In other words, if X is a random vector distributed with µ,

Γ(X) := Γ(µ) = sup
K

lim
ε→0

P(X ∈ K + εBn
2 )−P(X ∈ K)
ε

.

Main question
Depending on µ, what is the value of Γ(µ), in terms of the dimension, when
n→∞?
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Gaussian reverse isoperimetric inequalities: history

Consider Gaussian measure γ with density 1√
2πn e−

|x|2
2 .

History

Ball in 1996: Γ(γ)≤ Cn
1
4 ;

Nazarov in 2003: Γ(γ) ∈ [0.28n
1
4 ,0.67n

1
4 ];

Raic in 2018+: numerical improvements;
Bentkus in 2004: applications to the rate of convergence in CLT;
Kane in 2010: γ+(M)≤ d√

2
where M is a degree d polynomial surface.
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The case of log-concave rotation-invariant measures

A measure µ is called log-concave if µ(λK + (1−λ)L)≥ µ(K)λµ(L)1−λ.

Examples of log-concave measures: Gaussian, uniform on a convex set,
Lebesgue, e−||·||...
A measure is rotation-invariant if for any rotation U and any set K one
has µ(K) = µ(UK).

Some results about rotation-invariant log-concave measures
L. 2014: for any log-concave rotation-invariant random vector X ,

C2

√
n

4
√

Var |X |
√

E|X |
≤ Γ(X)≤ C1

√
n

4
√

Var |X |
√

E|X |
.

L. 2013: same holds for X with density Cn,pe−
|x|p

p when p ∈ (0,∞), not
just p ∈ [1,∞).
L. 2015: for convex polytopes P with N sides (for appropriate values of N),

C2

√
n

E|X |
√

logN ≤max
P
γ+(∂P)≤ C1

√
n

E|X |
√

logN logn.
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General results: lower bound

Theorem 1 (L. 2019+)

Let X be a random vector in Rn with an absolutely continuous distribution.
Suppose that

√
Var(|X |)≤ αE|X |, for α ∈ [0,1). Then

Γ(X)≥ C
√

n
4
√

Var(|X |)
√

E|X |
, (1)

where C > 0 depends only on α. Namely, C = C(α)→α→0 0.06, and
C(α)→α→1 0 .
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Isotropic log-concave vectors: history

Isotropic random vectors
A random vector X is called isotropic if EX = 0 and EXi Xj = δij .

For isotropic log-concave random vectors, E|X |2 = n and
E|X |= (1+ o(1))

√
n;

The parameter σ(X) =
√

Var |X | is called the thin shell parameter of X
(there are also alternative formulations!);

The Thin-shell conjecture (Antilla, Ball, Perissinaki; Bobkov, Koldobsky)

For any isotropic log-concave vector X on Rn, σ(X)≤ C .

Klartag 2007: σ < o(1)
√

n
Klartag 2008: σ < n−α

√
n

Fleury 2009: σ < n−β
√

n (improved)
Guedon, Milman 2012: σ < n1/3

Lee, Vempala 2017: σ < n1/4

Klartag 2010: σ < C for unconditional convex bodies
Radke, Vritsiou 2016: σ < C for Schatten classes
Many more results and connections – Ball, Bobkov, Eldan, Giannopolous,
Koldobsky, Paouris, Perissinaki....
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Klartag 2010: σ < C for unconditional convex bodies
Radke, Vritsiou 2016: σ < C for Schatten classes
Many more results and connections – Ball, Bobkov, Eldan, Giannopolous,
Koldobsky, Paouris, Perissinaki....
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General results: lower bound

From Theorem 1 we get Γ(X)≥ Cn
1
4√

σ(X)
.

Corollary 1 of Theorem 1 (follows from Lee-Vempala’s estimate)

For all isotropic log-concave vectors X on Rn,

Γ(X)≥ cn
1
8

Corollary 2 of Theorem 1
If there existed an isotropic log-concave measure µ on Rn such that

Γ(µ)<< cn
1
4 ,

then the Thin-shell conjecture would be false.

In other words, the standard Gaussian is among the minimizers of Γ(X)
(up to a constant multiple), if the thin shell conjecture is true.
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General results: lower bound

Corollary 3

For all isotropic log-concave unconditional vectors X on Rn with density e−V ,
such that 0≤ HessV ≤ Id , one has

C1n
1
4 ≤ Γ(X)≤ C2n

1
4

Indeed, from Cafarelli’s regularity theorem one may see that the perimeter
decreases when a measure from the corollary is transported onto Gaussian;
Thus from the estimates of Ball and Nazarov we conclude Γ(X)≤ cn1/4;
The lower bound follows from Theorem 1 and Klartag’s thin shell estimate
for unconditional log-concave measures;
In the case of product measures one can directly adapt Nazarov’s
argument.

So what about upper bounds?
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General results: upper bounds

Theorem 2 (L. 2019+)

Let X be a random vector on Rn with an absolutely continuous unimodule
density f . Then there exists a linear volume preserving transformation T such
that

Γ(TX)≤ Cn||f ||
1
n∞,

where C > 0 is an absolute constant.

The previous theorem includes all log-concave distributions;
It also generalizes Ball’s theorem.

Theorem 3 (L. 2019+)

Let X be an isotropic log-concave random vector on Rn. Then

Γ(X)≤ Cn2,

where C > 0 is an absolute constant.
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Isotropic log-concave case

Conclusion

Γ(X) ∈ [n1/8,n2]

for isotropic log-concave vectors (up to constant multiples).

Conjecture

Γ(X) ∈ [n1/4,n]

for isotropic log-concave vectors (up to constant multiples).

n is attained e.g. for X uniform on Bn
∞.

n
1
4 is attained e.g. for X being standard Gaussian.

One can show that the upper bound of n holds for:
Uniform distributions on convex sets;
1-symmetric log-concave distributions;
Densities e−||·|| and all measures with homothetic level sets.
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Proof of Theorems 2 and 3

Classical fact

Suppose RBn
2 ⊂ K . Then |∂K |n−1 ≤ n|K |

R .

Proof

Our assumption implies that εBn
2 ⊂ ε

R K .

|∂K |n−1 = lim
ε→0

|K + εBn
2 |− |K |
ε

≤ lim
ε→0

|K + ε
R K |− |K |
ε

=

|K | · lim
ε→0

(1+ ε/R)n−1
ε

= n|K |
R .
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Proof of Theorems 2 and 3

Definition – level sets

Kt := {x ∈ Rn : f (x)≥ t};

Rt – the largest radius of a ball inscribed in Kt .

Lemma
Let µ be a log-concave measure with absolutely continuous density f . Then for
any convex set Q,

µ+(∂Q)≤ n · inf
t∈(0,||f ||∞)

||f ||∞|Kt(f )|+ ||f ||1
Rt(f ) .

Proof
Fix t and a level set Kt with inradius Rt .

µ+(∂Q∩Kt)≤ |∂Q∩Kt |n−1 · ||f ||∞.
|∂Q∩Kt |n−1 ≤ |∂Kt |n−1.

By the Lemma from the previous slide, |∂Kt |n−1 ≤ n|Kt |
Rt

.

Combining everything we get µ+(∂Q∩Kt)≤ n||f ||∞|Kt |
Rt

.
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Proof of Theorems 2 and 3

Proof – continuation

Goal: estimate µ+(∂Q \Kt).

Note that for any a > 0 one has a =
∫∞

0 1{a≥t}(t)dt.
Applying this with with a = f (y), we write:

µ+(∂Q \Kt) =
∫
∂Q\Kt

f (y)dσ(y) =

∫
∂Q\Kt

∫ ∞
0

1Ks dsdσ(y) =
∫ t

0
|∂Q∩Ks |n−1ds,

By convexity: |∂Q∩Ks |n−1 ≤ |∂Ks |n−1.

For any s ∈ [0, t], we have Kt ⊂ Ks , and hence Rs ≥ Rt . Hence
|∂Ks |n−1 ≤ n|Ks |

Rs
≤ n|Ks |

Rt
.

Recall
∫ t

0 |Ks |ds ≤
∫∞

0 |Ks |ds = ||f ||1.

Combining everything, we get µ+(∂Q \Kt)≤ n||f ||1
Rt

.
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∫ t

0
|∂Q∩Ks |n−1ds,

By convexity: |∂Q∩Ks |n−1 ≤ |∂Ks |n−1.

For any s ∈ [0, t], we have Kt ⊂ Ks , and hence Rs ≥ Rt . Hence
|∂Ks |n−1 ≤ n|Ks |

Rs
≤ n|Ks |

Rt
.

Recall
∫ t

0 |Ks |ds ≤
∫∞

0 |Ks |ds = ||f ||1.

Combining everything, we get µ+(∂Q \Kt)≤ n||f ||1
Rt

.
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Proof of Theorems 2 and 3

Conclusion – the Lemma is proved

µ+(∂Q) = µ+(∂Q \Kt) +µ+(∂Q∩Kt)≤ n ||f ||∞|Kt |+ ||f ||1
Rt

.

Proof of Theorem 2: µ+(∂Q)≤ Cn||f ||1/n
∞ in some position.

Select Kt so that ||f ||∞|Kt | ≈ 1 – can do so by continuity;
||f ||1 = 1;
Let T be the volume preserving linear operator which brings Kt into the
position where the ellipsoid of maximal volume in Kt is a ball;

By Ball’s volume ratio estimate we see that Rt ≥ C ||f ||−
1
n∞ .

Conclusion: Theorem 2
There exists a linear volume preserving transformation T such that

Γ(TX)≤ Cn||f ||
1
n∞.
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Proof of Theorem 3

Classical fact

For an isotropic log-concave measure µ and t = e−10n||f ||∞ we have Rt ≥ 0.1.

Proof of Theorem 3

Note that ||f ||∞|Kt | ≤ e10n; this leads to Γ(X)≤ eCn.
By log-concavity, for s = e−10||f ||∞ we have 1

n Kt ⊂ Ks ;
Thus Rs ≥ 0.1

n ;
Also note that ||f ||∞|Kt | ≤ e10;
By the Lemma,

µ+(∂Q)≤ n e10 +1
0.1/n ≤ Cn2.

Conclusion: Theorem 3

For isotropic log-concave X we have Γ(X)≤ Cn2.
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A strange question

Question
Let µ be an isotropic log-concave measure with density f . Does there exist a
level set Kt of µ such that

|Kt | ≤
C1
||f ||∞

,

and C2Bn
2 + y ⊂ Kt , for some absolute constants C1 and C2 and a vector y?

If the answer is affirmative then the upper bound for isotropic log-concave
measures is n.

The answer is affirmative for:
Uniform distributions on convex sets;
1-symmetric log-concave distributions;
Densities e−||·|| and all measures with homothetic level sets.
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Thanks for your attention!
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