Bounding marginal densities of product measures．

（based on the joint work with Grigoris Paouris and Peter Pivovarov）

Galyna Livshyts

Georgia Institute of Technology

MFO，
December， 2015.

Marginal density

Marginal density

If f is a probability density on \mathbb{R}^{n} and E is a subspace, the marginal density of f on E is defined by

$$
\pi_{E}(f)(x)=\int_{E^{\perp}+x} f(y) d y \quad(x \in E)
$$

Marginal density

Marginal density

If f is a probability density on \mathbb{R}^{n} and E is a subspace, the marginal density of f on E is defined by

$$
\pi_{E}(f)(x)=\int_{E^{\perp}+x} f(y) d y \quad(x \in E)
$$

Example: consider $K \subset \mathbb{R}^{n}$ such that $|K|=1$. Let $f=1_{K}$. Then

$$
\pi_{E}(f)(x)=\int_{E^{\perp}+x} 1_{K}(y) d y=\left|K \cap E^{\perp}+x\right| \quad(x \in E)
$$

Marginal density

Marginal density

If f is a probability density on \mathbb{R}^{n} and E is a subspace, the marginal density of f on E is defined by

$$
\pi_{E}(f)(x)=\int_{E^{\perp}+x} f(y) d y \quad(x \in E)
$$

Example: consider $K \subset \mathbb{R}^{n}$ such that $|K|=1$. Let $f=1_{K}$. Then

$$
\pi_{E}(f)(x)=\int_{E^{\perp}+x} 1_{K}(y) d y=\left|K \cap E^{\perp}+x\right| \quad(x \in E)
$$

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f.

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f. Let E be a subspace.

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f. Let E be a subspace. Then $P_{E} X$ (the projection of X onto E) is distributed with the marginal density $\pi_{E}(f)(x)$.

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f. Let E be a subspace. Then $P_{E} X$ (the projection of X onto E) is distributed with the marginal density $\pi_{E}(f)(x)$.

Small ball inequality
For each $z \in E$,

$$
P\left(\left|P_{E} X-z\right| \leq \epsilon \sqrt{k}\right) \leq\left\|\pi_{E}(f)(x)\right\|_{\infty}(\sqrt{2 e \pi \epsilon})^{k}
$$

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f. Let E be a subspace. Then $P_{E} X$ (the projection of X onto E) is distributed with the marginal density $\pi_{E}(f)(x)$.

Small ball inequality

For each $z \in E$,

$$
P\left(\left|P_{E} X-z\right| \leq \epsilon \sqrt{k}\right) \leq\left\|\pi_{E}(f)(x)\right\|_{\infty}(\sqrt{2 e \pi \epsilon})^{k} .
$$

Hence it is of interest to bound $\left\|\pi_{E}(f)(x)\right\|_{\infty}$ from above and the bound should ideally look like C^{k}.

Projecting random vectors

Let X be a random vector on \mathbb{R}^{n} distributed with the density f. Let E be a subspace. Then $P_{E} X$ (the projection of X onto E) is distributed with the marginal density $\pi_{E}(f)(x)$.

Small ball inequality

For each $z \in E$,

$$
P\left(\left|P_{E} X-z\right| \leq \epsilon \sqrt{k}\right) \leq\left\|\pi_{E}(f)(x)\right\|_{\infty}(\sqrt{2 e \pi \epsilon})^{k}
$$

Hence it is of interest to bound $\left\|\pi_{E}(f)(x)\right\|_{\infty}$ from above and the bound should ideally look like C^{k}. A number of related studies were conducted by: Ball, Barthe, Bobkov, Brzezinski, Chistyakov, Dann, Gluskin, Koldobsky, König, Paouris, Pivovarov, Rogozin, Rudelson, Vershynin,...

Consider a unit (in volume) cube $Q \subset \mathbb{R}^{n}$.

Consider a unit (in volume) cube $Q \subset \mathbb{R}^{n}$. What is its largest section?

Consider a unit (in volume) cube $Q \subset \mathbb{R}^{n}$. What is its largest section?

Theorem 1 (Keith Ball)

For every dimension n and for every unit vector $u \in \mathbb{R}^{n}$,

$$
\left|Q \cap u^{\perp}\right| \leq \sqrt{2} .
$$

Consider a unit (in volume) cube $Q \subset \mathbb{R}^{n}$. What is its largest section?

Theorem 1 (Keith Ball)

For every dimension n and for every unit vector $u \in \mathbb{R}^{n}$,

$$
\left|Q \cap u^{\perp}\right| \leq \sqrt{2} .
$$

This estimate is sharp!

Ball's Theorems about unit cube

What about subspaces of other dimensions?

What about subspaces of other dimensions?

Theorem 2 (Keith Ball)

Fix $k \in[1, n]$. For every subspace H of codimension k,

$$
|Q \cap H| \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right) .
$$

What about subspaces of other dimensions?

Theorem 2 (Keith Ball)

Fix $k \in[1, n]$. For every subspace H of codimension k,

$$
|Q \cap H| \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right) .
$$

- The estimate $2^{k / 2}$ is sharp for $k \leq \frac{n}{2}$.

What about subspaces of other dimensions?

Theorem 2 (Keith Ball)

Fix $k \in[1, n]$. For every subspace H of codimension k,

$$
|Q \cap H| \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right) .
$$

- The estimate $2^{k / 2}$ is sharp for $k \leq \frac{n}{2}$.
- The estimate $\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}} \leq \sqrt{e}^{k}$ is sharp for the case $n-k \mid k$.

Theorem (M. Rudelson, R. Vershynin)

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$.

Theorem (M. Rudelson, R. Vershynin)

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$. Let E be a k-codimensional subspace in \mathbb{R}^{n}.

Theorem (M. Rudelson, R. Vershynin)

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$. Let E be a k-codimensional subspace in \mathbb{R}^{n}.
Then

$$
\left\|\pi_{E}(f)(x)\right\|_{\infty} \leq C^{k}
$$

where C is an absolute constant.

Theorem (M. Rudelson, R. Vershynin)

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$. Let E be a k-codimensional subspace in \mathbb{R}^{n}.
Then

$$
\left\|\pi_{E}(f)(x)\right\|_{\infty} \leq C^{k}
$$

where C is an absolute constant.

Theorem (M. Rudelson, R. Vershynin)

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$. Let E be a k-codimensional subspace in \mathbb{R}^{n}.
Then

$$
\left\|\pi_{E}(f)(x)\right\|_{\infty} \leq C^{k}
$$

where C is an absolute constant.

Can $C=\sqrt{2}$ like in the case of the unit cube?

Theorem (L, Paouris, Pivovarov)

Consider a product probability density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}.

Theorem (L, Paouris, Pivovarov)

Consider a product probability density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Let $1 \leq k<n$. Pick a k-codimensional subspace E.

Theorem (L, Paouris, Pivovarov)

Consider a product probability density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Let $1 \leq k<n$. Pick a k-codimensional subspace E.
Then there exists a collection of numbers $\left\{\gamma_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \gamma_{i}=k$

Theorem (L, Paouris, Pivovarov)

Consider a product probability density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Let $1 \leq k<n$. Pick a k-codimensional subspace E.
Then there exists a collection of numbers $\left\{\gamma_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \gamma_{i}=k$ such that

$$
\left\|\pi_{E}(f)\right\|_{\infty} \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right) \prod_{i=1}^{n}\left\|f_{i}\right\|_{\infty}^{\gamma_{i}}
$$

Theorem (L, Paouris, Pivovarov)

Consider a product probability density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Let $1 \leq k<n$. Pick a k-codimensional subspace E.
Then there exists a collection of numbers $\left\{\gamma_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \gamma_{i}=k$ such that

$$
\left\|\pi_{E}(f)\right\|_{\infty} \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right) \prod_{i=1}^{n}\left\|f_{i}\right\|_{\infty}^{\gamma_{i}}
$$

Corollary

Consider a product density $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ on \mathbb{R}^{n}. Assume that $\left\|f_{i}\right\|_{\infty} \leq 1$. Let E be a k-codimensional subspace in \mathbb{R}^{n}.
Then

$$
\left\|\pi_{E}(f)(x)\right\|_{\infty} \leq \min \left(\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}}, 2^{k / 2}\right)
$$

Tools for the proof

Identity for the marginal

Tools for the proof

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$.

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$. Then there exist vectors w_{1}, \ldots, w_{n} in $\mathbb{R}^{n-k}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-k}\right\}$ such that $I_{n-k}=\sum_{i=1}^{n} w_{i} \otimes w_{i}$

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$. Then there exist vectors w_{1}, \ldots, w_{n} in $\mathbb{R}^{n-k}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-k}\right\}$ such that $I_{n-k}=\sum_{i=1}^{n} w_{i} \otimes w_{i}$ and for any integrable function $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ with $f_{i}: \mathbb{R} \rightarrow[0, \infty)$,

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$. Then there exist vectors w_{1}, \ldots, w_{n} in $\mathbb{R}^{n-k}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-k}\right\}$ such that $I_{n-k}=\sum_{i=1}^{n} w_{i} \otimes w_{i}$ and for any integrable function $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ with $f_{i}: \mathbb{R} \rightarrow[0, \infty)$,

$$
\pi_{E}(f)(0)=\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y
$$

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$. Then there exist vectors w_{1}, \ldots, w_{n} in $\mathbb{R}^{n-k}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-k}\right\}$ such that $I_{n-k}=\sum_{i=1}^{n} w_{i} \otimes w_{i}$ and for any integrable function $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ with $f_{i}: \mathbb{R} \rightarrow[0, \infty)$,

$$
\pi_{E}(f)(0)=\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y .
$$

- Using the identity above along with the rearrangement inequality of Rogers and Brascamp-Lieb-Luttinger, we get that it is enough to assume that each of the f_{i} is symmetric-decreasing.

Identity for the marginal

Let $1 \leq k<n$ and $E \in G_{n, k}$. Then there exist vectors w_{1}, \ldots, w_{n} in $\mathbb{R}^{n-k}=\operatorname{span}\left\{e_{1}, \ldots, e_{n-k}\right\}$ such that $I_{n-k}=\sum_{i=1}^{n} w_{i} \otimes w_{i}$ and for any integrable function $f(x)=\prod_{i=1}^{n} f_{i}\left(x_{i}\right)$ with $f_{i}: \mathbb{R} \rightarrow[0, \infty)$,

$$
\pi_{E}(f)(0)=\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y
$$

- Using the identity above along with the rearrangement inequality of Rogers and Brascamp-Lieb-Luttinger, we get that it is enough to assume that each of the f_{i} is symmetric-decreasing.
- Idea of the proof: Layers of product measures with symmetric decreasing components are coordinate boxes. We shall estimate sections of coordinate boxes using Ball's techniques for the cube and the layer-cake formula.

Ball-like propositions

Proposition 1
Let $1 \leq k<n$ and $H \in G_{n, n-k}$.

Ball-like propositions

Proposition 1

Let $1 \leq k<n$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$

Proposition 1

Let $1 \leq k<n$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box
$B=\prod_{i=1}^{n}\left[-z_{i} / 2, z_{i} / 2\right]$ satisfies

Proposition 1

Let $1 \leq k<n$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{i=1}^{n}\left[-z_{i} / 2, z_{i} / 2\right]$ satisfies

$$
|B \cap H| \leq\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}} \prod_{i=1}^{n} z_{i}^{\beta_{i}}
$$

Proposition 1

Let $1 \leq k<n$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{i}\right\}_{i=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box
$B=\prod_{i=1}^{n}\left[-z_{i} / 2, z_{i} / 2\right]$ satisfies

$$
|B \cap H| \leq\left(\frac{n}{n-k}\right)^{\frac{n-k}{2}} \prod_{i=1}^{n} z_{i}^{\beta_{i}}
$$

Proposition 2

Let $1 \leq k \leq n / 2$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{j}\right\}_{j=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{j=1}^{n}\left[-z_{j} / 2, z_{j} / 2\right]$ satisfies

$$
|B \cap H| \leq 2^{k / 2} \prod_{j=1}^{n} z_{j}^{\beta_{j}}
$$

Proof of the Theorem

Proof of the Theorem

Denote $c_{i}=\left\|f_{i}\right\|_{\infty}$.

Proof of the Theorem

Denote $c_{i}=\left\|f_{i}\right\|_{\infty}$.

$$
\pi_{E}(f)(0)=\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y
$$

Denote $c_{i}=\left\|f_{i}\right\|_{\infty}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & =\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y \\
& \leq \int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}^{*}\left(\left\langle y, w_{i}\right\rangle\right) d y
\end{aligned}
$$

Denote $c_{i}=\left\|f_{i}\right\|_{\infty}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & =\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y \\
& \leq \int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}^{*}\left(\left\langle y, w_{i}\right\rangle\right) d y \\
& =\int_{0}^{c_{1}} \cdots \int_{0}^{c_{n}} \int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} 1_{\left.\left\{f_{i}^{*}\right\rangle t_{i}\right\}}\left(\left\langle x, w_{i}\right\rangle\right) d x d t_{1} \ldots d t_{n}
\end{aligned}
$$

Denote $c_{i}=\left\|f_{i}\right\|_{\infty}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & =\int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}\left(\left\langle y, w_{i}\right\rangle\right) d y \\
& \leq \int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} f_{i}^{*}\left(\left\langle y, w_{i}\right\rangle\right) d y \\
& =\int_{0}^{c_{1}} \cdots \int_{0}^{c_{n}} \int_{\mathbb{R}^{n-k}} \prod_{i=1}^{n} 1_{\left.\left\{f_{i}^{* *}\right\rangle t_{i}\right\}}\left(\left\langle x, w_{i}\right\rangle\right) d x d t_{1} \ldots d t_{n} \\
& =\int_{0}^{c_{1}} \cdots \int_{0}^{c_{n}}\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| d t_{1} \ldots d t_{n} .
\end{aligned}
$$

Proof of the Theorem

From the Proposition 2 we get:

$$
\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| \leq \sqrt{2}^{k} \cdot \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}}
$$

From the Proposition 2 we get:

$$
\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| \leq \sqrt{2}^{k} \cdot \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}}
$$

Write $d t=d t_{1} \ldots d t_{n}$.

$$
\pi_{E}(f)(0) \leq \sqrt{2}^{k} \int_{C} \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}} d t
$$

From the Proposition 2 we get:

$$
\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| \leq \sqrt{2}^{k} \cdot \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}}
$$

Write $d t=d t_{1} \ldots d t_{n}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & \leq \sqrt{2}^{k} \int_{C} \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}} d t \\
& \leq \sqrt{2}^{k} \prod_{i=1}^{n} c_{i}^{1-\beta_{i}} \cdot \prod_{i=1}^{n}\left\|f_{i}^{*}\right\|_{L^{1}(\mathbb{R})}^{\beta_{i}}
\end{aligned}
$$

From the Proposition 2 we get:

$$
\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| \leq \sqrt{2}^{k} \cdot \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}}
$$

Write $d t=d t_{1} \ldots d t_{n}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & \leq \sqrt{2}^{k} \int_{C} \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}} d t \\
& \leq \sqrt{2}^{k} \prod_{i=1}^{n} c_{i}^{1-\beta_{i}} \cdot \prod_{i=1}^{n}\left\|f_{i}^{*}\right\|_{L^{1}(\mathbb{R})}^{\beta_{i}} \\
& \leq \sqrt{2}^{k} \prod_{i=1}^{n} c_{i}^{1-\beta_{i}}
\end{aligned}
$$

From the Proposition 2 we get:

$$
\left|B\left(t_{1}, \ldots, t_{n}\right) \cap E^{\perp}\right| \leq \sqrt{2}^{k} \cdot \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}}
$$

Write $d t=d t_{1} \ldots d t_{n}$.

$$
\begin{aligned}
\pi_{E}(f)(0) & \leq \sqrt{2}^{k} \int_{C} \prod_{i=1}^{n}\left|\left\{f_{i}^{*}>t_{i}\right\}\right|^{\beta_{i}} d t \\
& \leq \sqrt{2}^{k} \prod_{i=1}^{n} c_{i}^{1-\beta_{i}} \cdot \prod_{i=1}^{n}\left\|f_{i}^{*}\right\|_{L^{1}(\mathbb{R})}^{\beta_{i}} \\
& \leq \sqrt{2}^{k} \prod_{i=1}^{n} c_{i}^{1-\beta_{i}}=\sqrt{2}^{k} \prod_{i=1}^{n}\left\|f_{i}\right\|_{\infty}^{\gamma_{i}} \square
\end{aligned}
$$

Proposition 2

Let $1 \leq k \leq n / 2$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{j}\right\}_{j=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{j=1}^{n}\left[-z_{j} / 2, z_{j} / 2\right]$ satisfies

$$
|B \cap H| \leq 2^{k / 2} \prod_{j=1}^{n} z_{j}^{\beta_{j}}
$$

Proposition 2

Let $1 \leq k \leq n / 2$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{j}\right\}_{j=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{j=1}^{n}\left[-z_{j} / 2, z_{j} / 2\right]$ satisfies

$$
|B \cap H| \leq 2^{k / 2} \prod_{j=1}^{n} z_{j}^{\beta_{j}}
$$

Proof. We shall assume that $|B|=1$ and rescale later.

Proposition 2

Let $1 \leq k \leq n / 2$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{j}\right\}_{j=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{j=1}^{n}\left[-z_{j} / 2, z_{j} / 2\right]$ satisfies

$$
|B \cap H| \leq 2^{k / 2} \prod_{j=1}^{n} z_{j}^{\beta_{j}}
$$

Proof. We shall assume that $|B|=1$ and rescale later. The proof splits into two cases:

- CASE 1: for all unit vectors $b \in H^{\perp}$, the coordinates $b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$.

Proposition 2

Let $1 \leq k \leq n / 2$ and $H \in G_{n, n-k}$. Then there exists $\left\{\beta_{j}\right\}_{j=1}^{n} \subset[0,1]$ with $\sum_{i=1}^{n} \beta_{i}=n-k$ such that for any $z_{1}, \ldots, z_{n} \in \mathbb{R}^{+}$, the box $B=\prod_{j=1}^{n}\left[-z_{j} / 2, z_{j} / 2\right]$ satisfies

$$
|B \cap H| \leq 2^{k / 2} \prod_{j=1}^{n} z_{j}^{\beta_{j}}
$$

Proof. We shall assume that $|B|=1$ and rescale later. The proof splits into two cases:

- CASE 1: for all unit vectors $b \in H^{\perp}$, the coordinates $b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$.
- CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that $b_{i} \geq \frac{1}{\sqrt{2}}$.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Notation and set up
Fix the notation:

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.
- X is a random vector uniform on B.

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.
- X is a random vector uniform on B.
- Y is a random vector uniform on the unit cube Q.

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.
- X is a random vector uniform on B.
- Y is a random vector uniform on the unit cube Q.
- $\widetilde{P} X$ is a random vector on H^{\perp} with density $\pi_{H}\left(1_{B}\right)$ and characteristic function $\Phi: H^{\perp} \rightarrow \mathbb{R}$.

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.
- X is a random vector uniform on B.
- Y is a random vector uniform on the unit cube Q.
- $\widetilde{P} X$ is a random vector on H^{\perp} with density $\pi_{H}\left(1_{B}\right)$ and characteristic function $\Phi: H^{\perp} \rightarrow \mathbb{R}$.
Note that

$$
\text { (i) } \sum_{i=1}^{n} a_{i}^{2} u_{i} \otimes u_{i}=I_{H^{\perp}}, \quad \text { (ii) } \sum_{i=1}^{n} a_{i}^{2}=k
$$

Notation and set up

Fix the notation:

- $\widetilde{P}=P_{H^{\perp}}$ - orthogonal projection onto H^{\perp}.
- $u_{i}=\frac{\widetilde{P} e_{i}}{\left\|\widetilde{P} e_{i}\right\|}$.
- $a_{i}=\left\|\widetilde{P} e_{i}\right\|$.
- X is a random vector uniform on B.
- Y is a random vector uniform on the unit cube Q.
- $\widetilde{P} X$ is a random vector on H^{\perp} with density $\pi_{H}\left(1_{B}\right)$ and characteristic function $\Phi: H^{\perp} \rightarrow \mathbb{R}$.

Note that

$$
\text { (i) } \sum_{i=1}^{n} a_{i}^{2} u_{i} \otimes u_{i}=I_{H^{\perp}}, \quad \text { (ii) } \sum_{i=1}^{n} a_{i}^{2}=k
$$

Note: $a_{i} \leq \frac{1}{\sqrt{2}}$.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

Estimating the characteristic function of $\widetilde{P} X$:

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

Estimating the characteristic function of $\widetilde{P} X$:

$$
\Phi(w)=\mathbb{E} \exp (i\langle w, \widetilde{P} X\rangle)
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

Estimating the characteristic function of $\widetilde{P} X$:

$$
\begin{aligned}
\Phi(w) & =\mathbb{E} \exp (i\langle w, \widetilde{P} X\rangle) \\
& =\mathbb{E} \exp \left(i \sum_{j=1}^{n} X_{j} a_{j}\left\langle w, u_{j}\right\rangle\right)
\end{aligned}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

Estimating the characteristic function of $\widetilde{P} X$:

$$
\begin{aligned}
\Phi(w) & =\mathbb{E} \exp (i\langle w, \widetilde{P} X\rangle) \\
& =\mathbb{E} \exp \left(i \sum_{j=1}^{n} X_{j} a_{j}\left\langle w, u_{j}\right\rangle\right) \\
& =\mathbb{E} \exp \left(i \sum_{j=1}^{n} Y_{j} z_{j} a_{j}\left\langle w, u_{j}\right\rangle\right)
\end{aligned}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Using inversion

By Fourier inversion formula,

$$
|B \cap H|=\pi_{H^{\perp}}\left(1_{B}\right)(0)=\frac{1}{(2 \pi)^{k}} \int_{H^{\perp}} \Phi(w) d w .
$$

Estimating the characteristic function of $\widetilde{P} X$:

$$
\begin{aligned}
\Phi(w) & =\mathbb{E} \exp (i\langle w, \widetilde{P} X\rangle) \\
& =\mathbb{E} \exp \left(i \sum_{j=1}^{n} X_{j} a_{j}\left\langle w, u_{j}\right\rangle\right) \\
& =\mathbb{E} \exp \left(i \sum_{j=1}^{n} Y_{j} z_{j} a_{j}\left\langle w, u_{j}\right\rangle\right) \\
& =\prod_{j=1}^{n} \frac{2 \sin \frac{1}{2} z_{j} a_{j}\left\langle w, u_{j}\right\rangle}{z_{j} a_{j}\left\langle w, u_{j}\right\rangle}
\end{aligned}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Upshot

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \int_{H^{+}} \prod_{j=1}^{n} \Phi_{j}\left(\left\langle w, u_{j}\right\rangle\right) d w
$$

where $\Phi_{j}: \mathbb{R} \rightarrow[0, \infty)$ is defined by $\Phi_{j}(t)=\left|\frac{\sin z_{j} a_{j} t}{z_{j} a_{j} t}\right|$.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

Upshot

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \int_{H^{+}} \prod_{j=1}^{n} \Phi_{j}\left(\left\langle w, u_{j}\right\rangle\right) d w,
$$

where $\Phi_{j}: \mathbb{R} \rightarrow[0, \infty)$ is defined by $\Phi_{j}(t)=\left|\frac{\sin z_{j} a_{j} t}{z_{j} j_{j} t}\right|$.

Theorem 1 (Ball)

Let u_{1}, \ldots, u_{n} be unit vectors in $\mathbb{R}^{k}, k \leq n$, and $c_{1}, \ldots, c_{n}>0$ satisfying $\sum_{1}^{n} c_{i} u_{i} \otimes u_{i}=I_{k}$. Then for integrable functions $f_{1}, \ldots, f_{n}: \mathbb{R} \rightarrow[0, \infty)$,

$$
\int_{\mathbb{R}^{k}} \prod_{i=1}^{n} f_{i}\left(\left\langle u_{i}, x\right\rangle\right)^{c_{i}} d x \leq \prod_{i=1}^{n}\left(\int_{\mathbb{R}} f_{i}\right)^{c_{i}}
$$

There is equality if the $f_{i}^{\prime} s$ are identical Gaussian densities.

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

The above Theorem of Ball is used with $c_{j}=\frac{1}{a_{j}^{2}}$:

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}} \Phi_{j}(t)^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

The above Theorem of Ball is used with $c_{j}=\frac{1}{a_{j}^{2}}$:

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}} \Phi_{j}(t)^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}=\prod_{j=1}^{n}\left(\frac{1}{\pi} \int_{\mathbb{R}}\left|\frac{\sin z_{j} a_{j} t}{z_{j} a_{j} t}\right|^{\frac{1}{\alpha_{j}^{2}}} d t\right)^{a_{j}^{2}}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

The above Theorem of Ball is used with $c_{j}=\frac{1}{a_{j}^{2}}$:

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}} \Phi_{j}(t)^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}=\prod_{j=1}^{n}\left(\frac{1}{\pi} \int_{\mathbb{R}}\left|\frac{\sin z_{j} a_{j} t}{z_{j} a_{j} t}\right|^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}
$$

Theorem 2 (Ball)
For every $p \geq 2$,

$$
\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin t}{t}\right|^{p} d t \leq \sqrt{\frac{2}{p}}
$$

CASE 1: for all unit $b \in H^{\perp}, b_{i} \leq \frac{1}{\sqrt{2}}$ for each $i=1, \ldots, n$

The above Theorem of Ball is used with $c_{j}=\frac{1}{a_{j}^{2}}$:

$$
|B \cap H| \leq \frac{1}{\pi^{k}} \prod_{j=1}^{n}\left(\int_{\mathbb{R}} \Phi_{j}(t)^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}=\prod_{j=1}^{n}\left(\frac{1}{\pi} \int_{\mathbb{R}}\left|\frac{\sin z_{j} a_{j} t}{z_{j} a_{j} t}\right|^{\frac{1}{a_{j}^{2}}} d t\right)^{a_{j}^{2}}
$$

Theorem 2 (Ball)

For every $p \geq 2$,

$$
\frac{1}{\pi} \int_{-\infty}^{\infty}\left|\frac{\sin t}{t}\right|^{p} d t \leq \sqrt{\frac{2}{p}}
$$

- Application of the above Theorem with $p=\frac{1}{2_{j}^{2}}$ and rescaling finish the proof in the case 1.

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that $b_{i} \geq \frac{1}{\sqrt{2}}$

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that $b_{i} \geq \frac{1}{\sqrt{2}}$

- Assume that the proposition is true for all dimensions at most $n-1$ and for all k.

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that b_{i}

- Assume that the proposition is true for all dimensions at most $n-1$ and for all k.
- Note that

$$
|B \cap H| \leq \frac{1}{b_{i}}|\widetilde{B} \cap \widetilde{H}|
$$

where \widetilde{B} is an $(n-1)$ dimensional box with sides $\left\{z_{j}\right\}_{j \neq i}$ and $\widetilde{H}=P_{i} H$ is a $(k-1)$-codimensional subspace in \mathbb{R}^{n-1}.

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that $b_{i} \geq$

- Assume that the proposition is true for all dimensions at most $n-1$ and for all k.
- Note that

$$
|B \cap H| \leq \frac{1}{b_{i}}|\widetilde{B} \cap \widetilde{H}|
$$

where \widetilde{B} is an $(n-1)$ dimensional box with sides $\left\{z_{j}\right\}_{j \neq i}$ and $\widetilde{H}=P_{i} H$ is a $(k-1)$-codimensional subspace in \mathbb{R}^{n-1}.

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that b_{i}

- If $k=1$, then

$$
|\widetilde{B} \cap \widetilde{H}|=|\widetilde{B}|=\prod_{j \neq i} z_{j},
$$

and thus

$$
|B \cap H| \leq \sqrt{2} \prod_{j \neq i} z_{j},
$$

hence the proposition holds with $\beta_{j}=1$ for $j \neq i$.

CASE 2: there exists a unit vector $b \in H^{\perp}$ and $i \in[1, n]$ such that b_{i}

- If $k=1$, then

$$
|\widetilde{B} \cap \widetilde{H}|=|\widetilde{B}|=\prod_{j \neq i} z_{j},
$$

and thus

$$
|B \cap H| \leq \sqrt{2} \prod_{j \neq i} z_{j},
$$

hence the proposition holds with $\beta_{j}=1$ for $j \neq i$.

- If $k \geq 2$, we use induction.

Thanks for your attention!

