On the geometry of log-concave measures.

Galyna Livshyts

Kent State University

Kent State University,
May 4, 2015.

Chapters 2 and 3: Maximal Surface Area

Classical Isoperimetric Inequality

Isoperimetric Inequality

Let Q be a set in \mathbb{R}^{n}. Denote the boundary of Q by ∂Q. Let $|Q|=1$. Question: How to minimize $|\partial Q|$ (the surface area of Q)?

Classical Isoperimetric Inequality

Isoperimetric Inequality

Let Q be a set in \mathbb{R}^{n}. Denote the boundary of Q by ∂Q. Let $|Q|=1$. Question: How to minimize $|\partial Q|$ (the surface area of Q)?

Well-known Answer (Ancient greeks, Jakob Steiner in 1838, Jakob and Johann Bernoulli, Federer in 1969)
$|\partial Q|$ is minimized when Q is a Euclidean ball.

Classical Isoperimetric Inequality

Isoperimetric Inequality

Let Q be a set in \mathbb{R}^{n}. Denote the boundary of Q by ∂Q. Let $|Q|=1$. Question: How to minimize $|\partial Q|$ (the surface area of Q)?

Well-known Answer (Ancient greeks, Jakob Steiner in 1838, Jakob and Johann Bernoulli, Federer in 1969)
$|\partial Q|$ is minimized when Q is a Euclidean ball.

But if we replace the usual Lebesgue volume measure with another measure, the answer to that question may change!

Gaussian isoperimetric type inequalities

Gaussian Measure

The Standard Gaussian Measure γ_{2} on \mathbb{R}^{n} is the probability measure with density

$$
\varphi_{2}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{|y|^{2}}{2}}
$$

Gaussian isoperimetric type inequalities

Gaussian Measure

The Standard Gaussian Measure γ_{2} on \mathbb{R}^{n} is the probability measure with density

$$
\varphi_{2}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{|y|^{2}}{2}}
$$

The surface area of a convex body Q with respect to continuous measure γ on \mathbb{R}^{n} is defined to be

$$
\gamma(\partial Q)=\liminf _{\epsilon \rightarrow+0} \frac{\gamma\left(\left(Q+\epsilon B_{2}^{n}\right) \backslash Q\right)}{\epsilon} .
$$

Gaussian isoperimetric type inequalities

Gaussian Measure

The Standard Gaussian Measure γ_{2} on \mathbb{R}^{n} is the probability measure with density

$$
\varphi_{2}(y)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{|y|^{2}}{2}}
$$

The surface area of a convex body Q with respect to continuous measure γ on \mathbb{R}^{n} is defined to be

$$
\gamma(\partial Q)=\liminf _{\epsilon \rightarrow+0} \frac{\gamma\left(\left(Q+\epsilon B_{2}^{n}\right) \backslash Q\right)}{\epsilon} .
$$

There is a convenient integral expression for $\gamma_{2}(\partial Q)$:

$$
\gamma_{2}(\partial Q)=\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} \int_{\partial Q} e^{-\frac{|y|^{2}}{2}} d \sigma(y)
$$

where $d \sigma(y)$ stands for Lebesgue surface measure.

Gaussian isoperimetric type inequalities

The Gaussian Isoperimetric inequality (Sudakov/Tsirelson and Borell in 1974)
Among all the sets of a fixed Gaussian volume, half-spaces have the smallest Gaussian surface area.

Gaussian isoperimetric type inequalities

The Gaussian Isoperimetric inequality (Sudakov/Tsirelson and Borell in 1974)
Among all the sets of a fixed Gaussian volume, half-spaces have the smallest Gaussian surface area.

Gaussian isoperimetric type inequalities

The Gaussian Isoperimetric inequality (Sudakov/Tsirelson and Borell in 1974)
Among all the sets of a fixed Gaussian volume, half-spaces have the smallest Gaussian surface area.

How to ask the reverse question?

Gaussian isoperimetric type inequalities

The Gaussian Isoperimetric inequality (Sudakov/Tsirelson and Borell in 1974)
Among all the sets of a fixed Gaussian volume, half-spaces have the smallest Gaussian surface area.

How to ask the reverse question?

By \mathcal{K}_{n} we denote the set of all convex bodies in \mathbb{R}^{n}.
Let Q run over \mathcal{K}_{n}. What is the maximal Gaussian surface area of Q ?

Gaussian reverse isoperimetric inequalities

- K. Ball in 1993 showed, that for any convex set $Q \subset \mathbb{R}^{n}$,

$$
\gamma_{2}(\partial Q) \leq C^{\frac{1}{4}} .
$$

Gaussian reverse isoperimetric inequalities

- K. Ball in 1993 showed, that for any convex set $Q \subset \mathbb{R}^{n}$,

$$
\gamma_{2}(\partial Q) \leq C n^{\frac{1}{4}} .
$$

- F. Nazarov in 2003 showed sharpness of Ball's result by proving

$$
0.28 n^{\frac{1}{4}} \leq \max _{Q \in \mathcal{K}_{n}} \gamma_{2}(\partial Q) \leq 0.64 n^{\frac{1}{4}}
$$

Gaussian reverse isoperimetric inequalities

- K. Ball in 1993 showed, that for any convex set $Q \subset \mathbb{R}^{n}$,

$$
\gamma_{2}(\partial Q) \leq C n^{\frac{1}{4}} .
$$

- F. Nazarov in 2003 showed sharpness of Ball's result by proving

$$
0.28 n^{\frac{1}{4}} \leq \max _{Q \in \mathcal{K}_{n}} \gamma_{2}(\partial Q) \leq 0.64 n^{\frac{1}{4}}
$$

- D. Kane in 2010 showed, that for any polynomial level set the Gaussian surface area is bounded by $\frac{d}{\sqrt{2}}$, where d is the degree of the polynomial.

Gaussian reverse isoperimetric inequalities

- K. Ball in 1993 showed, that for any convex set $Q \subset \mathbb{R}^{n}$,

$$
\gamma_{2}(\partial Q) \leq C n^{\frac{1}{4}}
$$

- F. Nazarov in 2003 showed sharpness of Ball's result by proving

$$
0.28 n^{\frac{1}{4}} \leq \max _{Q \in \mathcal{K}_{n}} \gamma_{2}(\partial Q) \leq 0.64 n^{\frac{1}{4}}
$$

- D. Kane in 2010 showed, that for any polynomial level set the Gaussian surface area is bounded by $\frac{d}{\sqrt{2}}$, where d is the degree of the polynomial. It implied in particular, that for any ellipsoid the Gaussian surface area is bounded by $\sqrt{2}$ independently of the dimension.

Gaussian reverse isoperimetric inequalities

- K. Ball in 1993 showed, that for any convex set $Q \subset \mathbb{R}^{n}$,

$$
\gamma_{2}(\partial Q) \leq C n^{\frac{1}{4}}
$$

- F. Nazarov in 2003 showed sharpness of Ball's result by proving

$$
0.28 n^{\frac{1}{4}} \leq \max _{Q \in \mathcal{K}_{n}} \gamma_{2}(\partial Q) \leq 0.64 n^{\frac{1}{4}}
$$

- D. Kane in 2010 showed, that for any polynomial level set the Gaussian surface area is bounded by $\frac{d}{\sqrt{2}}$, where d is the degree of the polynomial. It implied in particular, that for any ellipsoid the Gaussian surface area is bounded by $\sqrt{2}$ independently of the dimension.

Are there any other interesting measures for which it is natural to ask for Isoperimetric type inequalities?

Log concave measures

Definition of log concave measures

A Borel measure μ on \mathbb{R}^{n} is called log concave, if for any compact sets $A, B \subset \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \cdot \mu(B)^{1-\lambda}
$$

Log concave measures

Definition of log concave measures

A Borel measure μ on \mathbb{R}^{n} is called log concave, if for any compact sets $A, B \subset \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \cdot \mu(B)^{1-\lambda}
$$

Log concave functions

We say, that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is log concave, if its domain is a convex set and $\log (f(x))$ is a concave function.

Log concave measures

Definition of log concave measures

A Borel measure μ on \mathbb{R}^{n} is called log concave, if for any compact sets $A, B \subset \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$,

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \cdot \mu(B)^{1-\lambda}
$$

Log concave functions

We say, that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$is log concave, if its domain is a convex set and $\log (f(x))$ is a concave function. In other words, for any $\lambda \in[0,1]$ and for any $x, y \in \mathbb{R}^{n}$,

$$
f(\lambda x+(1-\lambda) y) \geq f(x)^{\lambda} \cdot f(y)^{1-\lambda}
$$

Rotation invariant Log concave measures

Rotation invariant Log concave measures

Definition

The measure γ on \mathbb{R}^{n} is called rotation invariant, if for any rotation T on \mathbb{R}^{n} and for any set $A \subset \mathbb{R}^{n}$,

$$
\gamma(T A)=\gamma(A)
$$

Rotation invariant Log concave measures

Definition

The measure γ on \mathbb{R}^{n} is called rotation invariant, if for any rotation T on \mathbb{R}^{n} and for any set $A \subset \mathbb{R}^{n}$,

$$
\gamma(T A)=\gamma(A)
$$

If γ has a density $f(x)$, then f depends on the length of x only.

Rotation invariant Log concave measures

Definition

The measure γ on \mathbb{R}^{n} is called rotation invariant, if for any rotation T on \mathbb{R}^{n} and for any set $A \subset \mathbb{R}^{n}$,

$$
\gamma(T A)=\gamma(A)
$$

If γ has a density $f(x)$, then f depends on the length of x only.

- We fix a convex function $\varphi(t):[0, \infty) \rightarrow[0, \infty]$.

Rotation invariant Log concave measures

Definition

The measure γ on \mathbb{R}^{n} is called rotation invariant, if for any rotation T on \mathbb{R}^{n} and for any set $A \subset \mathbb{R}^{n}$,

$$
\gamma(T A)=\gamma(A)
$$

If γ has a density $f(x)$, then f depends on the length of x only.

- We fix a convex function $\varphi(t):[0, \infty) \rightarrow[0, \infty]$. We consider a probability measure γ on \mathbb{R}^{n} with density $C_{n} e^{-\varphi(|y|)}$. This measure is both rotation invariant and log concave.

Rotation invariant Log concave measures

Definition

The measure γ on \mathbb{R}^{n} is called rotation invariant, if for any rotation T on \mathbb{R}^{n} and for any set $A \subset \mathbb{R}^{n}$,

$$
\gamma(T A)=\gamma(A)
$$

If γ has a density $f(x)$, then f depends on the length of x only.

- We fix a convex function $\varphi(t):[0, \infty) \rightarrow[0, \infty]$. We consider a probability measure γ on \mathbb{R}^{n} with density $C_{n} e^{-\varphi(|y|)}$. This measure is both rotation invariant and log concave.

Question (generalization of Ball-Nazarov Theorems)

Fix a \log concave rotation invariant measure γ on \mathbb{R}^{n} with density $C_{n} e^{-\varphi(|y|)}$ on \mathbb{R}^{n}. Let Q be a convex body in \mathbb{R}^{n}. What are the bounds for $\max \gamma(\partial Q)$?

Rotation invariant Log concave measures

First example to try: let $p>0$, consider probability measure γ_{p} on \mathbb{R}^{n} with density

$$
\varphi_{p}(y)=c_{n, p} e^{-\frac{|y| p}{p}} .
$$

Rotation invariant Log concave measures

First example to try: let $p>0$, consider probability measure γ_{p} on \mathbb{R}^{n} with density

$$
\varphi_{p}(y)=c_{n, p} e^{-\frac{|y|^{p}}{p}}
$$

Theorem (G. L., JMAA 2013)

For any positive p

$$
c(p) n^{\frac{3}{4}-\frac{1}{p}} \leq \max \gamma_{p}(\partial Q) \leq C(p) n^{\frac{3}{4}-\frac{1}{p}},
$$

where $c(p), C(p)$ depend on p only.

Rotation invariant Log concave measures

First example to try: let $p>0$, consider probability measure γ_{p} on \mathbb{R}^{n} with density

$$
\varphi_{p}(y)=c_{n, p} e^{-\frac{|y|^{p}}{p}}
$$

Theorem (G. L., JMAA 2013)

For any positive p

$$
c(p) n^{\frac{3}{4}-\frac{1}{p}} \leq \max \gamma_{p}(\partial Q) \leq C(p) n^{\frac{3}{4}-\frac{1}{p}},
$$

where $c(p), C(p)$ depend on p only.
For $p \geq 1$ the measure γ_{p} is log concave, but for $p<1$ it is not.

The reverse isoperimetric inequality for Rotation invariant Log concave measures. The main result.

Theorem (G. L., GAFA seminar notes, 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

$$
\max _{Q \in \mathcal{K}_{n}} \gamma(\partial Q)=C \frac{\sqrt{n}}{\sqrt{\mathbb{E}|X|} \sqrt[4]{\operatorname{Var}|X|}}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly.

The reverse isoperimetric inequality for Rotation invariant Log concave measures. The main result.

Theorem (G. L., GAFA seminar notes, 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

$$
\max _{Q \in \mathcal{K}_{n}} \gamma(\partial Q)=C \frac{\sqrt{n}}{\sqrt{\mathbb{E}|X|} \sqrt[4]{\operatorname{Var}|X|}}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly.

- The above implies results by Ball and Nazarov: if X is a standard Gaussian vector, $\mathbb{E}|X| \approx \sqrt{n}$ and $\operatorname{Var}|X| \approx 1$.

The reverse isoperimetric inequality for Rotation invariant Log concave measures. The main result.

Theorem (G. L., GAFA seminar notes, 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

$$
\max _{Q \in \mathcal{K}_{n}} \gamma(\partial Q)=C \frac{\sqrt{n}}{\sqrt{\mathbb{E}|X|} \sqrt[4]{\operatorname{Var}|X|}}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly.

- The above implies results by Ball and Nazarov: if X is a standard Gaussian vector, $\mathbb{E}|X| \approx \sqrt{n}$ and $\operatorname{Var}|X| \approx 1$.
- The above is also applicable for normalized Lebesgue measure restricted on a unit ball: if X is distributed uniformly in the unit ball, $\mathbb{E}|X| \approx 1$ and $\operatorname{Var}|X| \approx \frac{1}{n^{2}}$.

The reverse isoperimetric inequality for Rotation invariant Log concave measures. The main result.

Theorem (G. L., GAFA seminar notes, 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

$$
\max _{Q \in \mathcal{K}_{n}} \gamma(\partial Q)=C \frac{\sqrt{n}}{\sqrt{\mathbb{E}|X|} \sqrt[4]{\operatorname{Var}|X|}}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly.

- The above implies results by Ball and Nazarov: if X is a standard Gaussian vector, $\mathbb{E}|X| \approx \sqrt{n}$ and $\operatorname{Var}|X| \approx 1$.
- The above is also applicable for normalized Lebesgue measure restricted on a unit ball: if X is distributed uniformly in the unit ball, $\mathbb{E}|X| \approx 1$ and $\operatorname{Var}|X| \approx \frac{1}{n^{2}}$. The maximum for the surface area is attained on the unit sphere and is of order n.

Chapter 4: Gaussian surface area of a polytope with K faces

Gaussian surface area of a polytope with K faces

Let $P=\cap_{i=1}^{K}\left\{\left\langle x, \theta_{i}\right\rangle \leq \rho_{i}\right\}$ be a polytope with at most K faces.

Gaussian surface area of a polytope with K faces

Let $P=\cap_{i=1}^{K}\left\{\left\langle x, \theta_{i}\right\rangle \leq \rho_{i}\right\}$ be a polytope with at most K faces.

Theorem (F. Nazarov)

$$
\gamma_{2}(\partial P) \leq C \sqrt{\log K}
$$

for some absolute constant C.

Gaussian surface area of a polytope with K faces

Let $P=\cap_{i=1}^{K}\left\{\left\langle x, \theta_{i}\right\rangle \leq \rho_{i}\right\}$ be a polytope with at most K faces.

Theorem (F. Nazarov)

$$
\gamma_{2}(\partial P) \leq C \sqrt{\log K}
$$

for some absolute constant C.
What about log-concave rotation invariant case?

Surface area of a polytope with K faces with respect to LCRIPM: Upper bound

Surface area of a polytope with K faces with respect to LCRIPM: Upper bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

Surface area of a polytope with K faces with respect to LCRIPM: Upper

 bound
Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Let P be a convex polytope in \mathbb{R}^{n} with at most K facets.

Surface area of a polytope with K faces with respect to LCRIPM: Upper

 bound
Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Let P be a convex polytope in \mathbb{R}^{n} with at most K facets. Then

$$
\gamma(\partial P) \leq C \frac{\sqrt{n}}{\mathbb{E}|X|} \cdot \sqrt{\log K} \cdot \log \frac{\sqrt{\mathbb{E}|X|}}{\sqrt[4]{\operatorname{Var}|X|} \log K}
$$

Surface area of a polytope with K faces with respect to LCRIPM: Upper

 bound
Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Let P be a convex polytope in \mathbb{R}^{n} with at most K facets. Then

$$
\gamma(\partial P) \leq C \frac{\sqrt{n}}{\mathbb{E}|X|} \cdot \sqrt{\log K} \cdot \log \frac{\sqrt{\mathbb{E}|X|}}{\sqrt[4]{\operatorname{Var}|X|} \log K}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly, and C and c stand for absolute constants.

Surface area of a polytope with K faces with respect to LCRIPM: Upper bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Let P be a convex polytope in \mathbb{R}^{n} with at most K facets. Then

$$
\gamma(\partial P) \leq C \frac{\sqrt{n}}{\mathbb{E}|X|} \cdot \sqrt{\log K} \cdot \log \frac{\sqrt{\mathbb{E}|X|}}{\sqrt[4]{\operatorname{Var}|X|} \log K}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly, and C and c stand for absolute constants.

Corollary

$$
\gamma(\partial P) \leq C \frac{\sqrt{n}}{\mathbb{E}|X|} \cdot \sqrt{\log K} \cdot \log n
$$

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ.

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Then there exists a convex polytope P in \mathbb{R}^{n} with at most K facets such that

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right.$. Then there exists a convex polytope P in \mathbb{R}^{n} with at most K facets such that

$$
\gamma(\partial P) \geq C^{\prime} \frac{\sqrt{n}}{\mathbb{E}|X|} \sqrt{\log K}
$$

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Then there exists a convex polytope P in \mathbb{R}^{n} with at most K facets such that

$$
\gamma(\partial P) \geq C^{\prime} \frac{\sqrt{n}}{\mathbb{E}|X|} \sqrt{\log K}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly, and C and c stand for absolute constants.

Surface area of a polytope with K faces with respect to LCRIPM: Lower bound

Theorem (G.L., 2014)

Fix $n \geq 2$. Let γ be log concave rotation invariant measure on \mathbb{R}^{n}. Consider a random vector X in \mathbb{R}^{n} distributed with respect to γ. Fix positive integer $K \in\left[2, \exp \left(\sqrt{\frac{c \mathbb{E}|X|}{\sqrt{\operatorname{Var}|X|}}}\right)\right]$. Then there exists a convex polytope P in \mathbb{R}^{n} with at most K facets such that

$$
\gamma(\partial P) \geq C^{\prime} \frac{\sqrt{n}}{\mathbb{E}|X|} \sqrt{\log K}
$$

where $\mathbb{E}|X|$ and $\operatorname{Var}|X|$ denote the expectation and the variance of X correspondingly, and C and c stand for absolute constants.

- In particular, this Theorem shows that the result of Nazarov for the Gaussian case is exact.

Chapter 5: On the Gaussian concentration

On the Gaussian concentration

For a measurable set $Q \subset \mathbb{R}^{n}$ we define a function

$$
\alpha_{Q}(h): \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

by

$$
\alpha_{Q}(h):=1-\gamma_{2}\left(Q+h B_{2}^{n}\right) .
$$

On the Gaussian concentration

For a measurable set $Q \subset \mathbb{R}^{n}$ we define a function

$$
\alpha_{Q}(h): \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

by

$$
\alpha_{Q}(h):=1-\gamma_{2}\left(Q+h B_{2}^{n}\right) .
$$

It is well known that for every measurable $Q \subset \mathbb{R}^{n}$ such that $\gamma_{2}(Q) \geq \frac{1}{2}$,

$$
\begin{equation*}
\alpha_{Q}(h) \leq \frac{1}{2} e^{-\frac{h^{2}}{2}} . \tag{1}
\end{equation*}
$$

On the Gaussian concentration

For a measurable set $Q \subset \mathbb{R}^{n}$ we define a function

$$
\alpha_{Q}(h): \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

by

$$
\alpha_{Q}(h):=1-\gamma_{2}\left(Q+h B_{2}^{n}\right) .
$$

It is well known that for every measurable $Q \subset \mathbb{R}^{n}$ such that $\gamma_{2}(Q) \geq \frac{1}{2}$,

$$
\begin{equation*}
\alpha_{Q}(h) \leq \frac{1}{2} e^{-\frac{h^{2}}{2}} . \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\gamma_{2}\left(Q+h B_{2}^{n}\right) \geq \gamma_{2}\left(H_{Q}+h B_{2}^{n}\right) \tag{2}
\end{equation*}
$$

where H_{Q} is a half space such that $\gamma_{2}(Q)=\gamma_{2}\left(H_{Q}\right)$.

On the Gaussian concentration

For a measurable set $Q \subset \mathbb{R}^{n}$ we define a function

$$
\alpha_{Q}(h): \mathbb{R}^{+} \rightarrow \mathbb{R}
$$

by

$$
\alpha_{Q}(h):=1-\gamma_{2}\left(Q+h B_{2}^{n}\right) .
$$

It is well known that for every measurable $Q \subset \mathbb{R}^{n}$ such that $\gamma_{2}(Q) \geq \frac{1}{2}$,

$$
\begin{equation*}
\alpha_{Q}(h) \leq \frac{1}{2} e^{-\frac{h^{2}}{2}} . \tag{1}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
\gamma_{2}\left(Q+h B_{2}^{n}\right) \geq \gamma_{2}\left(H_{Q}+h B_{2}^{n}\right) \tag{2}
\end{equation*}
$$

where H_{Q} is a half space such that $\gamma_{2}(Q)=\gamma_{2}\left(H_{Q}\right)$.

Theorem (G.L., 2014)

$$
\alpha_{Q}(h) \leq 1-\gamma_{2}(Q)-\frac{\sqrt{\pi} \gamma_{2}(\partial Q)^{2}}{8 \sqrt{n}} \cdot\left(1-e^{-\frac{\sqrt{n}}{\sqrt{\pi} \gamma_{2}(\partial Q)} h}\right) .
$$

Chapter 6: the Gaussian Brunn-Minkowski inequality

Classical Brunn-Minkowski inequality

Classical Brunn-Minkowski inequality

Recall: the Minkowski sum of the sets K and Q in \mathbb{R}^{n} is the set

Classical Brunn-Minkowski inequality

Recall: the Minkowski sum of the sets K and Q in \mathbb{R}^{n} is the set

The λ-dilate of a set A in \mathbb{R}^{n} is the set

$$
\lambda A:=\{\lambda a \mid a \in A\} .
$$

Classical Brunn-Minkowski inequality

Recall: the Minkowski sum of the sets K and Q in \mathbb{R}^{n} is the set

$$
K+Q=\{a+b \mid a \in K, b \in Q\} .
$$

The λ-dilate of a set A in \mathbb{R}^{n} is the set

$$
\lambda A:=\{\lambda a \mid a \in A\} .
$$

Brunn-Minkowski inequality

The classical Brunn-Minkowski inequality states that for any measurable sets $A, B \subset \mathbb{R}^{n}$ and for any $\lambda \in[0,1]$,

$$
|\lambda A+(1-\lambda) B|^{\frac{1}{n}} \geq \lambda|A|^{\frac{1}{n}}+(1-\lambda)|B|^{\frac{1}{n}},
$$

where $|\cdot|$ stands for the Lebesgue Measure on \mathbb{R}^{n}.

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function of a convex set

Recall, that the support function h_{Q} of a convex set $Q \subset \mathbb{R}^{2}$ is the function on the unit sphere defined by

$$
h_{Q}(\theta)=\max _{x \in Q}\langle x, \theta\rangle .
$$

By homogeneity it extends from the sphere to the whole space. The support function represents the distance from the origin to the support hyperplane of a convex set in a given direction:

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function of a convex set

Recall, that the support function h_{Q} of a convex set $Q \subset \mathbb{R}^{2}$ is the function on the unit sphere defined by

$$
h_{Q}(\theta)=\max _{x \in Q}\langle x, \theta\rangle .
$$

By homogeneity it extends from the sphere to the whole space. The support function represents the distance from the origin to the support hyperplane of a convex set in a given direction:

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function "shadow system"

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function "shadow system"

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$.

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function "shadow system"

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function "shadow system"

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The Brunn-Minkowski inequality and "shadow systems" (highlights of the work done by Colesanti)

The support function "shadow system"

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

1 A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincare' type inequalities, Communications in Contemporary Mathematics, 10 n. 5 (2008), 765-772.

Highlights of the work done by Colesanti

Each couple of sets can be "embedded" into a support function shadow system

Highlights of the work done by Colesanti

Each couple of sets can be "embedded" into a support function shadow system
Pick convex sets A and B in \mathbb{R}^{2} with the support functions $h_{A}(u)$ and $h_{B}(u)$. For $s \in[0,1]$, consider the "support function shadow system" $\left\{K_{s}\right\}$, where the support function of K_{s} is $h_{s}=h_{A}+s\left(h_{B}-h_{A}\right)$. This way, $K_{0}=A$ and $K_{1}=B$.

Highlights of the work done by Colesanti

Each couple of sets can be "embedded" into a support function shadow system
Pick convex sets A and B in \mathbb{R}^{2} with the support functions $h_{A}(u)$ and $h_{B}(u)$. For $s \in[0,1]$, consider the "support function shadow system" $\left\{K_{s}\right\}$, where the support function of K_{s} is $h_{s}=h_{A}+s\left(h_{B}-h_{A}\right)$. This way, $K_{0}=A$ and $K_{1}=B$.

The Brunn-Minkowski inequality for convex sets A, B in \mathbb{R}^{2}

$$
|\lambda A+(1-\lambda) B|^{\frac{1}{2}} \geq \lambda|A|^{\frac{1}{2}}+(1-\lambda)|B|^{\frac{1}{2}}
$$

follows from the fact that the function $f(s):=\left|K_{s}\right|^{\frac{1}{2}}$ is concave in s on $[0,1]$.

Highlights of the work done by Colesanti

Each couple of sets can be "embedded" into a support function shadow system
Pick convex sets A and B in \mathbb{R}^{2} with the support functions $h_{A}(u)$ and $h_{B}(u)$. For $s \in[0,1]$, consider the "support function shadow system" $\left\{K_{s}\right\}$, where the support function of K_{s} is $h_{s}=h_{A}+s\left(h_{B}-h_{A}\right)$. This way, $K_{0}=A$ and $K_{1}=B$.

The Brunn-Minkowski inequality for convex sets A, B in \mathbb{R}^{2}

$$
|\lambda A+(1-\lambda) B|^{\frac{1}{2}} \geq \lambda|A|^{\frac{1}{2}}+(1-\lambda)|B|^{\frac{1}{2}}
$$

follows from the fact that the function $f(s):=\left|K_{s}\right|^{\frac{1}{2}}$ is concave in s on $[0,1]$.

Claim

The Brunn-Minkowski inequality holds true for every pair of convex sets in \mathbb{R}^{2} if and only if for every convex smooth function $h(u)$ on \mathbb{S}^{1} and for every smooth function $\psi(u)$ on \mathbb{S}^{1},

$$
f^{\prime \prime}(0)=\left.\left(\left|K_{s}\right|^{\frac{1}{2}}\right)^{\prime \prime}\right|_{s=0} \leq 0
$$

The Gaussian Brunn-Minkowski inequality

Can we replace the standard Lebesgue measure with other measures?

The Gaussian Brunn-Minkowski inequality

Can we replace the standard Lebesgue measure with other measures?

Recall: the standard Gaussian Measure γ_{2} on \mathbb{R}^{n} is the measure with density

$$
\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{|y|^{2}}{2}}
$$

The Gaussian Brunn-Minkowski inequality

Can we replace the standard Lebesgue measure with other measures?

Recall: the standard Gaussian Measure γ_{2} on \mathbb{R}^{n} is the measure with density

$$
\left(\frac{1}{\sqrt{2 \pi}}\right)^{n} e^{-\frac{|y|^{2}}{2}}
$$

Gaussian Brunn-Minkowski inequality

Gardner and Zvavitch conjectured that for the standard Gaussian measure γ_{2} the inequality analogous to BM holds under some natural assumptions on the sets A and B in \mathbb{R}^{n} :

$$
\gamma_{2}(\lambda A+(1-\lambda) B)^{\frac{1}{n}} \geq \lambda \gamma_{2}(A)^{\frac{1}{n}}+(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}}
$$

The Gaussian Brunn-Minkowski inequality

Gaussian Brunn-Minkowski inequality

$$
\begin{equation*}
\gamma_{2}(\lambda A+(1-\lambda) B)^{\frac{1}{n}} \geq \lambda \gamma_{2}(A)^{\frac{1}{n}}+(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}} \tag{3}
\end{equation*}
$$

Which assumptions on the sets A and B in \mathbb{R}^{n} must be emposed in order for it to hold?

The Gaussian Brunn-Minkowski inequality

Gaussian Brunn-Minkowski inequality

$$
\begin{equation*}
\gamma_{2}(\lambda A+(1-\lambda) B)^{\frac{1}{n}} \geq \lambda \gamma_{2}(A)^{\frac{1}{n}}+(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}} \tag{3}
\end{equation*}
$$

Which assumptions on the sets A and B in \mathbb{R}^{n} must be emposed in order for it to hold?

The inequality (3) is false in the full generality: one may shift the set A away from the origin. The farther the shift, the smaller the right hand side of (3) becomes, while the left hand side stays bounded from below by the fixed quantity $(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}}$.

The Gaussian Brunn-Minkowski inequality

Gaussian Brunn-Minkowski inequality

$$
\begin{equation*}
\gamma_{2}(\lambda A+(1-\lambda) B)^{\frac{1}{n}} \geq \lambda \gamma_{2}(A)^{\frac{1}{n}}+(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}} \tag{3}
\end{equation*}
$$

Which assumptions on the sets A and B in \mathbb{R}^{n} must be emposed in order for it to hold?

The inequality (3) is false in the full generality: one may shift the set A away from the origin. The farther the shift, the smaller the right hand side of (3) becomes, while the left hand side stays bounded from below by the fixed quantity $(1-\lambda) \gamma_{2}(B)^{\frac{1}{n}}$.

That gives a clue on which assumptions must be reinforced.

Gaussian Brunn Minkowski inequality: questions

Question 1

Gardner and Zvavitch asked: Does the Gaussian Brunn-Minkowski inequality hold true for all convex sets A and B containing the origin?

Gaussian Brunn Minkowski inequality: questions

Question 1

Gardner and Zvavitch asked: Does the Gaussian Brunn-Minkowski inequality hold true for all convex sets A and B containing the origin?

The answer is NO (obtained by Nayar, Tkozh).

Gaussian Brunn Minkowski inequality: questions

Question 1

Gardner and Zvavitch asked: Does the Gaussian Brunn-Minkowski inequality hold true for all convex sets A and B containing the origin?

The answer is NO (obtained by Nayar, Tkozh). Their counterexample looks roughly like this:

Gaussian Brunn Minkowski inequality: questions

Question 1

Gardner and Zvavitch asked: Does the Gaussian Brunn-Minkowski inequality hold true for all convex sets A and B containing the origin?

The answer is NO (obtained by Nayar, Tkozh). Their counterexample looks roughly like this:

Question 2

Gardner, Zvavitch, and Nayar and Tkozh conjectured:The Gaussian Brunn-Minkowski inequality holds true for all symmetric convex sets A and B.

The approach

Once again, a support function shadow system

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The approach

Once again, a support function shadow system

Pick a positive number a. Let $h(u)$ be a strictly convex $C^{2}-$ smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The Gaussian Brunn-Minkowski inequality for symmetric convex sets would be implied by the fact that $\left.\gamma_{2}\left(K_{s}\right)^{\prime \prime}\right|_{s=0} \leq 0$ for all such systems when h and ψ are even.

The approach

Once again, a support function shadow system

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The Gaussian Brunn-Minkowski inequality for symmetric convex sets would be implied by the fact that $\left.\gamma_{2}\left(K_{s}\right)^{\prime \prime}\right|_{s=0} \leq 0$ for all such systems when h and ψ are even. We need a formula expressing the standard Gaussian measure of a set in terms of the support function.

The approach

Once again, a support function shadow system

Pick a positive number a. Let $h(u)$ be a strictly convex C^{2}-smooth function on the circle \mathbb{S}^{1}. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=h+s \psi$.

$$
\mathbf{K}_{2}(h(u), \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The Gaussian Brunn-Minkowski inequality for symmetric convex sets would be implied by the fact that $\left.\gamma_{2}\left(K_{s}\right)^{\prime \prime}\right|_{s=0} \leq 0$ for all such systems when h and ψ are even. We need a formula expressing the standard Gaussian measure of a set in terms of the support function.

Formula for the Gaussian measure via the support function

Let γ_{2} be the Standard Gaussian measure in \mathbb{R}^{2}. Let K be a strictly convex body in \mathbb{R}^{2} containing the origin with the support function $h(u) \in C^{2}\left(\mathbb{S}^{1}\right)$.
Then

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{म}^{2}}{2}}\right) d u
$$

Sketch of the proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{h}^{2}}{2}}\right) d u .
$$

Proof.

Sketch of the proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{h}^{2}}{2}}\right) d u .
$$

Proof.

- We write

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{K} e^{-\frac{|y|^{2}}{2}} d y
$$

Sketch of the proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{h}^{2}}{2}}\right) d u .
$$

Proof.

- We write

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{K} e^{-\frac{|y|^{2}}{2}} d y
$$

- We make a change of variables $X: \partial K \times(0, \infty) \rightarrow \mathbb{R}^{2}$, where $X(y, t)=y t$. The Jacobian of such change is $t|y| \cos \left(y, n_{y}\right)$, where n_{y} is the normal vector at y.

Sketch of the proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{h}^{2}}{2}}\right) d u .
$$

Proof.

- We write

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{K} e^{-\frac{|y|^{2}}{2}} d y
$$

- We make a change of variables $X: \partial K \times(0, \infty) \rightarrow \mathbb{R}^{2}$, where $X(y, t)=y t$. The Jacobian of such change is $t|y| \cos \left(y, n_{y}\right)$, where n_{y} is the normal vector at y.

The proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{\partial K} \int_{0}^{1} t|y| \cos \left(y, n_{y}\right) e^{-\frac{(t|y|)^{2}}{2}} d t d \sigma(y)
$$

The proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{\partial K} \int_{0}^{1} t|y| \cos \left(y, n_{y}\right) e^{-\frac{(t|y|)^{2}}{2}} d t d \sigma(y)
$$

- In the latter integral we make the change of variables via Gauss map, passing the integration from ∂K to \mathbb{S}^{1}. The Jacobian of the Gauss map is the curvature function of K, which in the planar case is $h+\ddot{h}$, where h is the support function of K.

The proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{\partial K} \int_{0}^{1} t|y| \cos \left(y, n_{y}\right) e^{-\frac{(t|y|)^{2}}{2}} d t d \sigma(y)
$$

- In the latter integral we make the change of variables via Gauss map, passing the integration from ∂K to \mathbb{S}^{1}. The Jacobian of the Gauss map is the curvature function of K, which in the planar case is $h+\ddot{h}$, where h is the support function of K.

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(h+\ddot{h}) \int_{0}^{1} t e^{-\frac{(t|\nabla h|)^{2}}{2}} d t d u
$$

The proof of the formula

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{\partial K} \int_{0}^{1} t|y| \cos \left(y, n_{y}\right) e^{-\frac{(t|y|)^{2}}{2}} d t d \sigma(y)
$$

- In the latter integral we make the change of variables via Gauss map, passing the integration from ∂K to \mathbb{S}^{1}. The Jacobian of the Gauss map is the curvature function of K, which in the planar case is $h+\ddot{h}$, where h is the support function of K.

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} h(h+\ddot{h}) \int_{0}^{1} t e^{-\frac{(t|\nabla h|)^{2}}{2}} d t d u
$$

- Observation that $|\nabla h|^{2}=h^{2}+\dot{h}^{2}$, and integration in t leads to the desired conclusion

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{म}^{2}}{2}}\right) d u . \square
$$

The general statement

The formula for any measure in \mathbb{R}^{n}

Let γ be a measure in \mathbb{R}^{n} with density $f(x)$. Let K be a strictly convex body in \mathbb{R}^{n} containing the origin with the support function $h(u) \in C^{2}\left(\mathbb{S}^{n-1}\right)$, where $u \in \mathbb{S}^{n-1}$. Let det $Q(h(u))$ be the curvature function of K. Denote the gradient of h by ∇h. Then

$$
\gamma(K)=\int_{\mathbb{S}^{n-1}} \frac{h(u) \operatorname{det} Q(h(u))}{|\nabla h(u)|^{n}} \int_{0}^{|\nabla h|} t^{n-1} f\left(t \cdot \frac{\nabla h}{|\nabla h|}\right) d t d u
$$

The general statement

The formula for any measure in \mathbb{R}^{n}

Let γ be a measure in \mathbb{R}^{n} with density $f(x)$. Let K be a strictly convex body in \mathbb{R}^{n} containing the origin with the support function $h(u) \in C^{2}\left(\mathbb{S}^{n-1}\right)$, where $u \in \mathbb{S}^{n-1}$. Let $\operatorname{det} Q(h(u))$ be the curvature function of K. Denote the gradient of h by ∇h. Then

$$
\gamma(K)=\int_{\mathbb{S}^{n-1}} \frac{h(u) \operatorname{det} Q(h(u))}{|\nabla h(u)|^{n}} \int_{0}^{|\nabla h|} t^{n-1} f\left(t \cdot \frac{\nabla h}{|\nabla h|}\right) d t d u .
$$

This formula might find its use in other questions, such as B-Theorem, S-Theorem, Isoperimetric inequalities etc.

The neighborhood of the disc

Once again, a shadow system for $h(u)=R$

Pick a positive number a. Pick a positive number R. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=R+s \psi$.

$$
\mathbf{K}_{2}(R, \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The neighborhood of the disc

Once again, a shadow system for $h(u)=R$

Pick a positive number a. Pick a positive number R. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=R+s \psi$.

$$
\mathbf{K}_{2}(R, \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

The neighborhood of the disc

Once again, a shadow system for $h(u)=R$

Pick a positive number a. Pick a positive number R. Consider a function $\psi(u) \in C^{2}\left(\mathbb{S}^{1}\right)$. Let $s \in[0, a]$. Consider a family of sets K_{s} in \mathbb{R}^{2}, where the support function of each K_{s} is $h_{s}=R+s \psi$.

$$
\mathbf{K}_{2}(R, \psi(u), a):=\left\{K_{s}\right\}_{s=0}^{a}
$$

Gaussian Brunn-Minkovski is true in a neighborhood of any disc

Pick $R \in(0, \infty)$. Fix $\psi \in C^{2}\left(\mathbb{S}^{1}\right)$. Then there exists an $\epsilon=\epsilon(R, \psi)$ such that for every $K, L \in \mathbf{K}_{2}(R, \psi, \epsilon)$ and for every $\lambda \in[0,1]$,

$$
\gamma_{2}^{\frac{1}{2}}(\lambda K+(1-\lambda) L) \geq \lambda \gamma_{2}^{\frac{1}{2}}(K)+(1-\lambda) \gamma_{2}^{\frac{1}{2}}(L)
$$

Sketch of the proof

Sketch of the proof

- We apply the formula for the Gaussian measure

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{\dot{h}}^{2}}{2}}\right) d u
$$

when the support function of the set is $h=R+s \psi$

$$
\gamma(s):=\int_{-\pi}^{\pi} \frac{(R+s \psi)^{2}+(R+s \psi) s \ddot{\psi}}{(R+s \psi)^{2}+(s \dot{\psi})^{2}}\left(1-e^{-\frac{(R+s \psi)^{2}+(s \dot{\psi})^{2}}{2}}\right) d u .
$$

Sketch of the proof

- We apply the formula for the Gaussian measure

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{\dot{h}}^{2}}{2}}\right) d u
$$

when the support function of the set is $h=R+s \psi$

$$
\gamma(s):=\int_{-\pi}^{\pi} \frac{(R+s \psi)^{2}+(R+s \psi) s \ddot{\psi}}{(R+s \psi)^{2}+(s \dot{\psi})^{2}}\left(1-e^{-\frac{(R+s \psi)^{2}+(s \dot{\psi})^{2}}{2}}\right) d u .
$$

- We differentiate it at zero twice.

Sketch of the proof

- We apply the formula for the Gaussian measure

$$
\gamma_{2}(K)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{h^{2}+h \ddot{h}}{h^{2}+\dot{h}^{2}}\left(1-e^{-\frac{h^{2}+\dot{म}^{2}}{2}}\right) d u
$$

when the support function of the set is $h=R+s \psi$

$$
\gamma(s):=\int_{-\pi}^{\pi} \frac{(R+s \psi)^{2}+(R+s \psi) s \ddot{\psi}}{(R+s \psi)^{2}+(s \dot{\psi})^{2}}\left(1-e^{-\frac{(R+s \psi)^{2}+(s \dot{\psi})^{2}}{2}}\right) d u .
$$

- We differentiate it at zero twice. We observe that $(\sqrt{\gamma(s)})_{0}^{\prime \prime} \leq 0$ whenever

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

Sketch of the proof

We want to prove that

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

Sketch of the proof

We want to prove that

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

- We apply Poincare inequality.

Sketch of the proof

We want to prove that

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

- We apply Poincare inequality.
- We arrive to an inequality

$$
2\left(e^{\frac{R^{2}}{2}}-1\right)\left(1-2 R^{2}\right)-R^{2}<0,
$$

for $R>0$

Sketch of the proof

We want to prove that

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

- We apply Poincare inequality.
- We arrive to an inequality

$$
2\left(e^{\frac{R^{2}}{2}}-1\right)\left(1-2 R^{2}\right)-R^{2}<0,
$$

for $R>0$

Sketch of the proof

We want to prove that

$$
2\left(e^{\frac{R^{2}}{2}}-1\right) \int\left[\left(1-R^{2}\right) \psi^{2}-\dot{\psi}^{2}\right]-R^{2}\left(\int \psi\right)^{2} \leq 0
$$

- We apply Poincare inequality.
- We arrive to an inequality

$$
2\left(e^{\frac{R^{2}}{2}}-1\right)\left(1-2 R^{2}\right)-R^{2}<0
$$

for $R>0$, which we brutal force. \square

Thanks for your attention!

