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Classical Isoperimetric Inequality

Isoperimetric Inequality
Let Q be a set in Rn. Denote the boundary of Q by ∂Q. Let |Q|= 1.
Question: How to minimize |∂Q| (the surface area of Q)?

Well-known Answer (Ancient greeks, Jakob Steiner in 1838, Jakob and Johann
Bernoulli, Federer in 1969)
|∂Q| is minimized when Q is a Euclidean ball.

But if we replace the usual Lebesgue volume measure with another
measure, the answer to that question may change!
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Gaussian isoperimetric type inequalities

Gaussian Measure
The Standard Gaussian Measure γ2 on Rn is the probability measure with
density

ϕ2(y) =
(

1√
2π

)n
e−
|y|2

2

The surface area of a convex body Q with respect to continuous measure γ on
Rn is defined to be

γ(∂Q) = liminf
ε→+0

γ((Q+ εBn
2 )\Q)

ε
.

There is a convenient integral expression for γ2(∂Q):

γ2(∂Q) =

(
1√
2π

)n∫
∂Q

e−
|y|2

2 dσ(y),

where dσ(y) stands for Lebesgue surface measure.

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

Gaussian isoperimetric type inequalities

Gaussian Measure
The Standard Gaussian Measure γ2 on Rn is the probability measure with
density

ϕ2(y) =
(

1√
2π

)n
e−
|y|2

2

The surface area of a convex body Q with respect to continuous measure γ on
Rn is defined to be

γ(∂Q) = liminf
ε→+0

γ((Q+ εBn
2 )\Q)

ε
.

There is a convenient integral expression for γ2(∂Q):

γ2(∂Q) =

(
1√
2π

)n∫
∂Q

e−
|y|2

2 dσ(y),

where dσ(y) stands for Lebesgue surface measure.

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

Gaussian isoperimetric type inequalities

Gaussian Measure
The Standard Gaussian Measure γ2 on Rn is the probability measure with
density

ϕ2(y) =
(

1√
2π

)n
e−
|y|2

2

The surface area of a convex body Q with respect to continuous measure γ on
Rn is defined to be

γ(∂Q) = liminf
ε→+0

γ((Q+ εBn
2 )\Q)

ε
.

There is a convenient integral expression for γ2(∂Q):

γ2(∂Q) =

(
1√
2π

)n∫
∂Q

e−
|y|2

2 dσ(y),

where dσ(y) stands for Lebesgue surface measure.

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

Gaussian isoperimetric type inequalities

The Gaussian Isoperimetric inequality (Sudakov/Tsirelson and Borell in 1974)
Among all the sets of a fixed Gaussian volume, half-spaces have the smallest
Gaussian surface area.

How to ask the reverse question?

By Kn we denote the set of all convex bodies in Rn.
Let Q run over Kn. What is the maximal Gaussian surface area of Q?
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Gaussian reverse isoperimetric inequalities

K. Ball in 1993 showed, that for any convex set Q ⊂ Rn,

γ2(∂Q)≤ Cn
1
4 .

F. Nazarov in 2003 showed sharpness of Ball’s result by proving

0.28n
1
4 ≤ max

Q∈Kn
γ2(∂Q)≤ 0.64n

1
4 .

D. Kane in 2010 showed, that for any polynomial level set the Gaussian
surface area is bounded by d√

2
, where d is the degree of the polynomial.

It implied in particular, that for any ellipsoid the Gaussian surface area is
bounded by

√
2 independently of the dimension.

Are there any other interesting measures for which it is natural to ask for
Isoperimetric type inequalities?
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Log concave measures

Definition of log concave measures
A Borel measure µ on Rn is called log concave, if for any compact sets
A, B ⊂ Rn and for any λ ∈ [0,1],

µ(λA+(1−λ)B)≥ µ(A)λ ·µ(B)1−λ.

Log concave functions

We say, that a function f : Rn→ R+ is log concave, if its domain is a convex
set and log(f (x)) is a concave function. In other words, for any λ ∈ [0,1] and
for any x , y ∈ Rn,

f (λx +(1−λ)y)≥ f (x)λ · f (y)1−λ.
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Rotation invariant Log concave measures

Definition
The measure γ on Rn is called rotation invariant, if for any rotation T on Rn

and for any set A⊂ Rn,
γ(TA) = γ(A).

If γ has a density f (x), then f depends on the length of x only.

We fix a convex function ϕ(t) : [0,∞)→ [0,∞]. We consider a probability
measure γ on Rn with density Cne−ϕ(|y |). This measure is both rotation
invariant and log concave.

Question (generalization of Ball-Nazarov Theorems)

Fix a log concave rotation invariant measure γ on Rn with density Cne−ϕ(|y |)
on Rn. Let Q be a convex body in Rn. What are the bounds for maxγ(∂Q)?
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Rotation invariant Log concave measures

First example to try: let p > 0, consider probability measure γp on Rn with
density

ϕp(y) = cn,pe−
|y|p

p .

Theorem (G. L., JMAA 2013)
For any positive p

c(p)n
3
4−

1
p ≤maxγp(∂Q)≤ C(p)n

3
4−

1
p ,

where c(p), C(p) depend on p only.

For p ≥ 1 the measure γp is log concave, but for p < 1 it is not.
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The reverse isoperimetric inequality for Rotation invariant Log concave
measures. The main result.

Theorem (G. L., GAFA seminar notes, 2014)

Fix n ≥ 2. Let γ be log concave rotation invariant measure on Rn. Consider a
random vector X in Rn distributed with respect to γ.

max
Q∈Kn

γ(∂Q) = C
√

n√
E|X | 4

√
Var |X |

,

where E|X | and Var |X | denote the expectation and the variance of X
correspondingly.

The above implies results by Ball and Nazarov: if X is a standard Gaussian
vector, E|X | ≈

√
n and Var |X | ≈ 1.

The above is also applicable for normalized Lebesgue measure restricted
on a unit ball: if X is distributed uniformly in the unit ball, E|X | ≈ 1 and
Var |X | ≈ 1

n2 . The maximum for the surface area is attained on the unit
sphere and is of order n.
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Chapter 4: Gaussian surface area of a polytope with K faces
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Gaussian surface area of a polytope with K faces

Let P = ∩K
i=1{〈x ,θi 〉 ≤ ρi} be a polytope with at most K faces.

Theorem (F. Nazarov)

γ2(∂P)≤ C
√

logK

for some absolute constant C .

What about log-concave rotation invariant case?
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Surface area of a polytope with K faces with respect to LCRIPM: Upper
bound

Theorem (G.L., 2014)

Fix n ≥ 2. Let γ be log concave rotation invariant measure on Rn. Consider a
random vector X in Rn distributed with respect to γ. Fix positive integer

K ∈ [2,exp
(√

cE|X |√
Var |X |

)
]. Let P be a convex polytope in Rn with at most K

facets. Then

γ(∂P)≤ C
√

n
E|X | ·

√
logK · log

√
E|X |

4
√

Var |X | logK
,

where E|X | and Var |X | denote the expectation and the variance of X
correspondingly, and C and c stand for absolute constants.

Corollary

γ(∂P)≤ C
√

n
E|X | ·

√
logK · logn.
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Surface area of a polytope with K faces with respect to LCRIPM: Lower
bound

Theorem (G.L., 2014)

Fix n ≥ 2. Let γ be log concave rotation invariant measure on Rn. Consider a
random vector X in Rn distributed with respect to γ. Fix positive integer

K ∈ [2,exp
(√

cE|X |√
Var |X |

)
]. Then there exists a convex polytope P in Rn with

at most K facets such that

γ(∂P)≥ C ′
√

n
E|X |

√
logK ,

where E|X | and Var |X | denote the expectation and the variance of X
correspondingly, and C and c stand for absolute constants.

• In particular, this Theorem shows that the result of Nazarov for the Gaussian
case is exact.
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On the Gaussian concentration
For a measurable set Q ⊂ Rn we define a function

αQ(h) : R+→ R

by
αQ(h) := 1−γ2(Q+hBn

2 ).

It is well known that for every measurable Q ⊂ Rn such that γ2(Q)≥ 1
2 ,

αQ(h)≤ 1
2e−

h2
2 . (1)

Moreover,
γ2(Q+hBn

2 )≥ γ2(HQ +hBn
2 ), (2)

where HQ is a half space such that γ2(Q) = γ2(HQ).

Theorem (G.L., 2014)

αQ(h)≤ 1−γ2(Q)−
√
πγ2(∂Q)2

8
√

n
·
(
1− e−

√
n√

πγ2(∂Q)
h
)
.
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Classical Brunn-Minkowski inequality

Recall: the Minkowski sum of the sets K and Q in Rn is the set

K +Q = {a+b |a ∈ K ,b ∈ Q}.

The λ−dilate of a set A in Rn is the set

λA := {λa |a ∈ A}.

Brunn-Minkowski inequality
The classical Brunn-Minkowski inequality states that for any measurable sets
A,B ⊂ Rn and for any λ ∈ [0,1],

|λA+(1−λ)B|
1
n ≥ λ|A|

1
n +(1−λ)|B|

1
n ,

where | · | stands for the Lebesgue Measure on Rn.
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The Brunn-Minkowski inequality and “shadow systems” (highlights of the
work done by Colesanti)

The support function of a convex set

Recall, that the support function hQ of a convex set Q ⊂ R2 is the function on
the unit sphere defined by

hQ(θ) =max
x∈Q
〈x ,θ〉.

By homogeneity it extends from the sphere to the whole space. The support
function represents the distance from the origin to the support hyperplane of a
convex set in a given direction:
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The Brunn-Minkowski inequality and “shadow systems” (highlights of the
work done by Colesanti)

The support function “shadow system”

Pick a positive number a. Let h(u) be a strictly convex C2−smooth function
on the circle S1. Consider a function ψ(u) ∈ C2(S1). Let s ∈ [0,a]. Consider a
family of sets Ks in R2, where the support function of each Ks is hs = h+ sψ.

K2(h(u),ψ(u),a) := {Ks}as=0

1 A. Colesanti, From the Brunn-Minkowski inequality to a class of Poincare’
type inequalities, Communications in Contemporary Mathematics, 10 n. 5
(2008), 765-772.
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Highlights of the work done by Colesanti

Each couple of sets can be “embedded” into a support function shadow system

Pick convex sets A and B in R2 with the support functions hA(u) and hB(u).
For s ∈ [0,1], consider the “support function shadow system” {Ks}, where the
support function of Ks is hs = hA + s(hB−hA). This way, K0 = A and K1 = B.

The Brunn-Minkowski inequality for convex sets A,B in R2

|λA+(1−λ)B|
1
2 ≥ λ|A|

1
2 +(1−λ)|B|

1
2
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The Gaussian Brunn-Minkowski inequality

Can we replace the standard Lebesgue measure with other measures?

Recall: the standard Gaussian Measure γ2 on Rn is the measure with density(
1√
2π

)n
e−
|y|2

2 .

Gaussian Brunn-Minkowski inequality
Gardner and Zvavitch conjectured that for the standard Gaussian measure γ2
the inequality analogous to BM holds under some natural assumptions on the
sets A and B in Rn:

γ2(λA+(1−λ)B)
1
n ≥ λγ2(A)

1
n +(1−λ)γ2(B)

1
n .
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The Gaussian Brunn-Minkowski inequality

Gaussian Brunn-Minkowski inequality

γ2(λA+(1−λ)B)
1
n ≥ λγ2(A)

1
n +(1−λ)γ2(B)

1
n (3)

Which assumptions on the sets A and B in Rn must be emposed in order for it
to hold?

The inequality (3) is false in the full generality: one may shift the set A away
from the origin. The farther the shift, the smaller the right hand side of (3)
becomes, while the left hand side stays bounded from below by the fixed
quantity (1−λ)γ2(B)

1
n .

That gives a clue on which assumptions must be reinforced.
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Gaussian Brunn Minkowski inequality: questions

Question 1
Gardner and Zvavitch asked: Does the Gaussian Brunn-Minkowski inequality
hold true for all convex sets A and B containing the origin?

The answer is NO (obtained by Nayar, Tkozh). Their counterexample looks
roughly like this:

Question 2
Gardner, Zvavitch, and Nayar and Tkozh conjectured:The Gaussian
Brunn-Minkowski inequality holds true for all symmetric convex sets A and B.
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The approach

Once again, a support function shadow system

Pick a positive number a. Let h(u) be a strictly convex C2−smooth function
on the circle S1. Consider a function ψ(u) ∈ C2(S1). Let s ∈ [0,a]. Consider a
family of sets Ks in R2, where the support function of each Ks is hs = h+ sψ.

K2(h(u),ψ(u),a) := {Ks}as=0

The Gaussian Brunn-Minkowski inequality for symmetric convex sets would be
implied by the fact that γ2(Ks)′′|s=0 ≤ 0 for all such systems when h and ψ are
even. We need a formula expressing the standard Gaussian measure of a set in
terms of the support function.

Formula for the Gaussian measure via the support function

Let γ2 be the Standard Gaussian measure in R2. Let K be a strictly convex
body in R2 containing the origin with the support function h(u) ∈ C2(S1).
Then

γ2(K) =
1
2π

∫ π

−π

h2 +hḧ
h2 + ḣ2

(
1− e−

h2+ḣ2
2

)
du.
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h2 + ḣ2
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Sketch of the proof of the formula

γ2(K) =
1
2π

∫ π

−π

h2 +hḧ
h2 + ḣ2

(
1− e−

h2+ḣ2
2

)
du.

Proof.

We write
γ2(K) =

1
2π

∫
K

e−
|y|2

2 dy .

We make a change of variables X : ∂K × (0,∞)→ R2, where X(y , t) = yt.
The Jacobian of such change is t|y |cos(y ,ny ), where ny is the normal
vector at y .
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The proof of the formula

γ2(K) =
1
2π

∫
∂K

∫ 1

0
t|y |cos(y ,ny )e−

(t|y|)2
2 dtdσ(y)

In the latter integral we make the change of variables via Gauss map,
passing the integration from ∂K to S1. The Jacobian of the Gauss map is
the curvature function of K , which in the planar case is h+ ḧ, where h is
the support function of K .

γ2(K) =
1
2π

∫ π

−π
h(h+ ḧ)

∫ 1

0
te−

(t|∇h|)2
2 dtdu.

Observation that |∇h|2 = h2 + ḣ2, and integration in t leads to the desired
conclusion

γ2(K) =
1
2π

∫ π

−π

h2 +hḧ
h2 + ḣ2

(
1− e−

h2+ḣ2
2

)
du.�
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The general statement

The formula for any measure in Rn

Let γ be a measure in Rn with density f (x). Let K be a strictly convex body in
Rn containing the origin with the support function h(u) ∈ C2(Sn−1), where
u ∈ Sn−1. Let detQ(h(u)) be the curvature function of K . Denote the gradient
of h by ∇h. Then

γ(K) =

∫
Sn−1

h(u)detQ(h(u))
|∇h(u)|n

∫ |∇h|

0
tn−1f (t · ∇h

|∇h| )dtdu.

This formula might find its use in other questions, such as B-Theorem,
S-Theorem, Isoperimetric inequalities etc.
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The neighborhood of the disc

Once again, a shadow system for h(u) = R
Pick a positive number a. Pick a positive number R. Consider a function
ψ(u) ∈ C2(S1). Let s ∈ [0,a]. Consider a family of sets Ks in R2, where the
support function of each Ks is hs = R + sψ.

K2(R,ψ(u),a) := {Ks}as=0

Gaussian Brunn-Minkovski is true in a neighborhood of any disc

Pick R ∈ (0,∞). Fix ψ ∈ C2(S1). Then there exists an ε= ε(R,ψ) such that
for every K ,L ∈K2(R,ψ,ε) and for every λ ∈ [0,1],

γ
1
2
2 (λK +(1−λ)L)≥ λγ

1
2
2 (K)+(1−λ)γ

1
2
2 (L).

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

The neighborhood of the disc

Once again, a shadow system for h(u) = R
Pick a positive number a. Pick a positive number R. Consider a function
ψ(u) ∈ C2(S1). Let s ∈ [0,a]. Consider a family of sets Ks in R2, where the
support function of each Ks is hs = R + sψ.

K2(R,ψ(u),a) := {Ks}as=0

Gaussian Brunn-Minkovski is true in a neighborhood of any disc

Pick R ∈ (0,∞). Fix ψ ∈ C2(S1). Then there exists an ε= ε(R,ψ) such that
for every K ,L ∈K2(R,ψ,ε) and for every λ ∈ [0,1],

γ
1
2
2 (λK +(1−λ)L)≥ λγ

1
2
2 (K)+(1−λ)γ

1
2
2 (L).

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

The neighborhood of the disc

Once again, a shadow system for h(u) = R
Pick a positive number a. Pick a positive number R. Consider a function
ψ(u) ∈ C2(S1). Let s ∈ [0,a]. Consider a family of sets Ks in R2, where the
support function of each Ks is hs = R + sψ.

K2(R,ψ(u),a) := {Ks}as=0

Gaussian Brunn-Minkovski is true in a neighborhood of any disc

Pick R ∈ (0,∞). Fix ψ ∈ C2(S1). Then there exists an ε= ε(R,ψ) such that
for every K ,L ∈K2(R,ψ,ε) and for every λ ∈ [0,1],

γ
1
2
2 (λK +(1−λ)L)≥ λγ

1
2
2 (K)+(1−λ)γ

1
2
2 (L).

Galyna Livshyts On the geometry of log-concave measures.



Chapters 2 and 3: Maximal Surface Area
Chapter 4: Surface area of polytopes

Chapter 5: On the Gaussian concentration.
Chapter 6: On the Gaussian Brunn-Minkowski inequality

Sketch of the proof

We apply the formula for the Gaussian measure

γ2(K) =
1
2π

∫ π

−π

h2 +hḧ
h2 + ḣ2

(
1− e−

h2+ḣ2
2

)
du

when the support function of the set is h = R + sψ

γ(s) :=
∫ π

−π

(R + sψ)2 +(R + sψ)sψ̈

(R + sψ)2 +(sψ̇)
2 (1− e−

(R+sψ)2+(sψ̇)2
2 )du.

We differentiate it at zero twice. We observe that (
√
γ(s))′′0 ≤ 0

whenever

2(e
R2
2 −1)

∫ [
(1−R2)ψ2− ψ̇2

]
−R2

(∫
ψ

)2
≤ 0.
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Sketch of the proof

We want to prove that

2(e
R2
2 −1)

∫ [
(1−R2)ψ2− ψ̇2

]
−R2

(∫
ψ

)2
≤ 0.

We apply Poincare inequality.
We arrive to an inequality

2(e
R2
2 −1)(1−2R2)−R2 < 0,

for R > 0, which we brutal force.�
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Thanks for your attention!
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