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Problems Set 1
Due February 9, 2006

Part I :

1. Read carefully Nielsen-Chang, Section 2.1 .

2. Treat as many exercises in Section 2.1 as possible.

3. Turn in exercises (to be graded) # 2.17, 2.18, 2.20, 2.21, 2.26, 2.27, 2.33, 2.34, 2.35, 2.39
See Nielsen-Chang Section 2.1 .

Exercises :
– 2.17- Show that a normal matrix is Hermitian if and only if it has real eigenvalues.

By definition, a matrix is normal if it commutes with its adjoint. By the spectral theorem a
matrix is normal if and only if admits an orthonormal base of eigenvectors. In such a base
this matrix is diagonal and the diagonal elements are its eigenvalues. The adjoint of the
matrix is given, in any orthonormal base, by transposing and (complex) conjugating its
matrix elements. In particular in the base of eigenvectors the adjoint is obtained simply by
(complex) conjugating the diagonal elements. It is selfadjoint if and only if these elements
are real. But since the diagonal elements in this base are the eigenvalues the result is
proved.

– 2.18- Show that the eigenvalues of a unitary matrix have modulus one, that is, can be
written in the form eıθ for some real θ.
A matrix U is unitary if UU † = U †U = I. In particular it is normal. Using an orthonor-
mal basis of eigenvectors it becomes diagonal and the unitary relation implies that each
eigenvalue z satisfies zz = 1. This proves the result.

– 2.20- Suppose A′ and A” are matrix representations of a linear operator A on a vector
space V with respect to two different orthonormal basis |vi〉 and |wi〉. Then the elements
of A′ and A” are A′

ij = 〈vi|A|vj〉 and A”ij = 〈wi|A|wj〉. Characterize the relationship
between A′, A”.
Let S be the matrix with elements Sij = 〈vi|wj〉. Then, since the two basis |vi〉 and |wi〉
are orthonormal, S is unitary. For indeed SS† has matrix elements

(
SS†

)
ij

=
∑

k SikSjk =∑
k〈vi|wk〉〈wk|vj〉 = 〈vi|vj〉 = δij = (I)ij (here the completness relation

∑
k |wk〉〈wk| = I

has been used). Then, using again the completeness relation twice,∑
k,l

SikA”klSjl =
∑
kl

〈vi|wk〉〈wk|A|wl〉〈wl|vj〉 = 〈vi|A|vj〉 = A′
ij

In other words SA”S† = A′ and, since S is unitary, A” = S†AS.
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– 2.21- Repeat the proof of the spectral decomposition in Box 2.2 for the case where M is
Hermitian, simplifying th proof whenever possible.
We want to show that any Hermitian operator M on a Hilbert space V is diagonal with
respect to some orthonormal basis of V with real eigenvalues. Conversely any operator
diagonalizable in some orhtonormal basis with real eigenvalues is Hermitian. While the
converse is obvious, let us prove the direct statement by recursion on the dimension d of V .
For d = 1 the statement is obvious. Let then d > 1. Given an eigenvalue λ of M , let P be
the orthogonal projection onto the subspace of V of eigenvectors of M for the eigenvalue
λ (recall that any orthogonal po[rojection is characterized by P 2 = P = P †). Let then Q
be the orthogonal projection on the orthogonal complement of P so that PQ = QP = 0
and P + Q = I (and also, Q = Q† = Q2). Thus M = (P + Q)M(P + Q) = PMP +
PMQ+QMP +QMQ. By construction, any vector |ψ〉 in PV satisfies M |ψ〉 = λ|ψ〉, so
that MP = λP . Thus PMP = λP , because P 2 = P . Since M is selfadjoint it follows that
λP = (PMP )† = PMP = λP implying λ = λ is real and PM = (MP )† = (λP )† = λP =
λP = MP . Hence P commutes to M so that QMP = QPM = 0 and PMQ = MPQ = 0.
Thus M = λP +QMQ. Clearly QMQ is selfadjoint and operates on the space QV which
as dimension smaller than d. By the recursion hypothesis QMQ can be diagonalized in an
orthonormal basis with real eigenvalues and, from the previous decomposition, so can be
M .

– 2.26- Let |ψ〉 = (|0〉 + |1〉)/
√

2. Write out |ψ〉⊗2 and |ψ〉⊗3 explicitely, both in terms of
tensor products of |0〉’s and |1〉’s, using the Kronecker product.
Since the tensor product is multilinear (or distributive with respect to addition) it follows
that

|ψ〉⊗2 =
|0〉 ⊗ |0〉+ |0〉 ⊗ |1〉+ |1〉 ⊗ |0〉+ |1〉 ⊗ |1〉

2
=
|00〉+ |01〉+ |10〉+ |11〉

2
Similarly

|ψ〉⊗3 =
|000〉+ |001〉+ |010〉+ |011〉+ |100〉+ |101〉+ |110〉+ |111〉

23/2

More generally, if x = x12n−1 + x22n−2 + · · ·+ xn−12 + xn

|ψ〉⊗n =
1

2n/2

∑
x1,···,xn∈{0,1}

|x1〉 ⊗ · · · ⊗ |xn〉 =
1

2n/2

∑
x1,···,xn∈{0,1}

|x1 · · ·xn〉 =
1

2n/2

2n−1∑
x=0

|x〉

– 2.27- Calculate the matrix representation of the tensor products of the Pauli operators (a)
X and Z ; (b) I and X ; (c) X and I. Is the tensor product commutative ?

Recall that I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
and Z =

[
1 0
0 −1

]
. On the other hand, with

two binary digits x1, x2 is associated the integer x = 2x1 + x2. Hence the digital basis
can be relabelled as |00〉 = |0〉 , |01〉 = |1〉 , |10〉 = |2〉 , |11〉 = |3〉. On the other hand,
(A⊗B)xy;x′y′ = Axx′Byy′ by definition of the Kronecker product. Thus using the labelling
by integers this gives
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X ⊗ Z =


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 , I ⊗X =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , X ⊗ I =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 .

In particular I ⊗X 6= X ⊗ I meaning the tensor product is not commutative.
– 2.33- The Hadamard operator on one qubit maybe written as

H =
1√
2

[(|0〉+ |1〉) 〈0|+ (|0〉 − |1〉) 〈1|] .

Show explicitly that the Hadamard transform on n-qubits, H⊗n, may be written as

H⊗n =
1√
2n

∑
x,y

(−1)xẏ|x〉〈y| .

Write out an explicit representation for H⊗2.

For indeed the expression of H given above is equivalent to H = 1/
√

2
[

1 1
1 −1

]
. In

particular this gives

H =
1√
2

[|0〉〈0|+ |1〉〈0|+ |0〉〈1| − |1〉〈1|] =
1√
2

∑
x,y∈{0,1}

(−1)xy|x〉〈y| .

Since the tensor product is multilinear it follows that

H⊗n =
1√
2n

∑
xi,yj∈{0,1}

(−1)x1y1+···xnyn |x1〉〈y1| ⊗ · · · ⊗ |xn〉〈yn| .

By definition, if x = (x1, · · · , xn) ∈ {0, 1}n and y = (y1, · · · , yn) ∈ {0, 1}n, then xẏ = x1y1+
· · ·xnyn. Moreover |x1〉〈y1|⊗· · ·⊗|xn〉〈yn| = (|x1〉 ⊗ · · · ⊗ |xn〉) (〈y1| ⊗ · · · ⊗ 〈yn|) = |x〉〈y|.
This gives the first result. Using the labelling by integers instead of binary digit we get
then

H⊗2 =
1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 ,

– 2.34- Find the square root and the logarithm of the matrix
[

4 3
3 4

]
.

This matrix can be written as A = 4 + 3X = H(4 + 3Z)H−1 (recall that H = H† = H−1

is unitary). Since 4 + 3Z is diagonal it is easy to get

4 + 3Z =
[

7 0
0 1

]
, ⇒ (4 + 3Z)1/2 =

[ √
7 0

0 1

]
=

(
√

7 + 1) + (
√

7− 1)Z
2

.

In much the same way
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ln (4 + 3Z) =
[

ln 7 0
0 0

]
= ln 7

(1 + Z)
2

.

Applying the Hadamard matrix back this gives

A1/2 = (4 + 3X)1/2 =
1
2

{
(
√

7 + 1) + (
√

7− 1)X
}

lnA = ln (4 + 3X) = ln 7
(1 +X)

2

– 2.35- Let ~v be any real three-dimensional unit vector and θ a real number. Prove that

exp (ı~v · ~σ) = cos (θ)I + ı sin (θ)~v · ~σ ,

where ~v ·~σ = v1σ1+v2σ2+v3σ3 = v1X+v2Y +v3Z. This exercise is generalized in Problem
2.1 on page 117.
The commutation rules for Pauli’s operators are XY + Y X = 0 = Y Z +ZY = ZX +XZ
and X2 = Y 2 = Z2 = I. It follows that, if A = ~v · ~σ, A2 = v2

1 + v2
2 + v2

3 = 1 because ~v is a
unit vector. Thus

exp (ıθA) = I + ıθA− θ2

2!
I − ı

θ3

3!
A+ · · ·+ (−1)n θ2n

(2n)!
I + ı(−1)n θ2n+1

(2n+ 1)!
A+ · · ·

= (1 + · · ·+ (−1)n θ2n

(2n)!
+ · · ·)I + ı(θ + · · ·+ (−1)n θ2n+1

(2n+ 1)!
+ · · ·)A

= cos (θ)I + ı sin (θ)A ,

proving the result.
– 2.39- The set LV of linear operators on a Hilbert space V is obviously a (complex) vector

space - the sum of two linear operators is a linear operator, zA is a linear operator if A
is a linear operator and z a complex number, and there is a zero element 0. An important
additional result is that the vector space LV can be given a natural inner product structure
turning it into a Hilbert space.

1. Show that the function (·, ·) on LV × LV defined by

(A,B) = tr (A†B)

is an inner product function. This inner product is known as the Hilbert-Schmidt or
trace inner product.

2. If V has d dimensions show that LV has dimension d2.

3. Find an orthonormal basis of Hermitian matrices for the Hilbert space LV .

1.- Clearly, since the trace is linear, (·, ·) is linear on the right and antilinear on the left.
Moreover, (A,B) = tr

(
(A†B)†

)
= tr (B†A) = (B,A). Also, if A = (aij)d

i,j=1 is the matrix
of A is some orthonormal basis, then (A,A) = tr (A†A) =

∑d
i,j=1 |aij |2 > 0 unless A = 0.

2.- Since an operator acting on V admits d2 matrix elements in any orthonormal basis
of V , it follows that dimLV = d2. Actually let {|vi〉 ; 1 ≤ i ≤ d} be an orthonormal
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basis of V . Then the operators Eij = |vi〉〈vj | define an orthonormal basis of LV because
(i) any operator A can be written as A =

∑
ij aij |vi〉〈vj |, showing that the Eij ’s are

generating, (ii) (Eij , Ei′j′) = tr (E†
ijEi′j′) = tr (|vj〉〈vi|vi′〉〈vj′ |) = 〈vi|vi′〉〈vj |vj′〉 = δii′δjj′

so that the family is orthonormal and thus, linearly independent. Therefore this family is
an orthonormal basis of LV . Since it contains d2 element so is the dimension of LV .
3.- The previous orthonormal basis is not made of Hermitian matrices unless for i = j. Ho-
wever, E†

ij = Eji. Thus, setting, for i < j, Rij = (Eij +Eji)/
√

2 and Sij = (Eij −Eji)/ı
√

2
gives self adjoint elements such that (Rij , Rkl) = (Rij , Skl) = (Sij , Rkl) = (Sij , Skl) = 0 if
one of the indices i, j differs from one of k, l. Similarly (Rij , Ekk) = 0 = (Sij , Ekk) for i < j
and all k’s. Moreover (Rij , Sij) = 0 while (Rij , Rij) = 1 = (Sij , Sij) as can be checked
immediately. Hence {Eii , Rij , Sij ; 1 ≤ i < j ≤ d} defines an orthonormal basis of LV

made of d2 selfadjoint operators.

Part II :

1. Read carefully Nielsen-Chang, Section 4.2 & 4.3 .

2. Treat as many exercises in Section 4.3 as possible.

3. Turn in exercises (to be graded) # 4.21, 4.23, 4.24, 4.25, 4.35 .

Exercises :
– 4.21- Verify that Fig 4.8 implements the C2(U) operation.

To verify this claim, because each quantum circuit represents a unitary operator on the
qubit-space, it is sufficient to check that the result on both sides are identical when applied
to any basis vector of the computer basis. So let |ψ0〉 = |x〉 ⊗ |y〈⊗|z〈 be the input vector
(where the labeling x, y, z goes from the rop to the bottom lines). After the first gate
V the input becomes |ψ1〉 = |x〉 ⊗ |y〉 ⊗ V y|z〉. After the cnot-gate it becomes |ψ2〉 =
|x〉 ⊗ |x ⊕ y〉 ⊗ V y|z〉. After the V †-gate it gives |ψ3〉 = |x〉 ⊗ |x ⊕ y〉 ⊗ (V †)x⊕yV y|z〉.
After the next cnot-gate, it gives |ψ4〉 = |x〉 ⊗ |y〉 ⊗ (V †)x⊕yV y|z〉 so that the output
is |ψ5〉 = |x〉 ⊗ |y〉 ⊗ V x(V †)x⊕yV y|z〉. If x = y = 0 then V x(V †)x⊕yV y = I and nothing
happens. For x 6= y then either x = 0, y = 1 or x = 1, y = 0, so that in both cases x⊕y = 1
and V x(V †)x⊕yV y becomes either V †V = I or V V † = I, so that nothing happens as well.
For x = y = 1, then x⊕ y = 0 so that V x(V †)x⊕yV y = V 2 = U . Hence only if x = y = 1
is this gate acting and it acts as U on the third line of the circuit, namely this is exactly
how the C2(U) gate acts.

– 4.23- Construct a C1(U)-gate for U = Rx(θ) and U = Ry(θ), using only cnot and single
qubit gates. Can you reduce the number of single qubit gates needed in the construction
from three to two ?
The circuit designed in the next Figure below gives an output |x〉 ⊗CXxBXxA|y〉 for an
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input |x, y〉. Thus finding matrices A,B,C such that CBA = I and CXBXA = U solves
the problem. For U = Ry(θ) = eıθY a solution is given by A = I,B = C−1 and C = eıθ/2Y ,
simply because XYX = −Y . In this latter case, two one-qubit gates are sufficient. For
U = Rx(θ), a possible solution is A = eıθ/2ZH, B = e−ıθ/2Z and C = H.
In the case of U = Rx(θ), reducing the number of one-qubit gates from three to two
would mean to find a unitary matrix B such that BXB−1X = Rx(θ). Writing B as
B = eıα~v·~σ = cos (α) + ı sin (α)~σ · ~v with ~v = (a, b, c) a real three-dimensional unit vector,
gives BXB−1X = cos2 α+ sin2 α(a2 − b2 − c2) + ı2a(cY − bZ) + ı sin(2α)(bY + cZ). Such
a matrix cannot commute to X unless if a multiple of the identity. Hence it cannot equal
Rx(θ) for θ 6= 0 mod 2π. So three one-qubit gates at least are necessary.

– 4.24- Check that Figure 4.9 implements the Toffoli gate.
The right hand side in Figure 4.9 can be seen as a product of 13 unitary operators, so that
if |ψj〉 denotes the state in the 3-qubit space after the operator #j, with input for j = 0,
the output will be |ψ13〉. As usual, it is sufficient to assume that the input is |ψ0〉 = |xyz〉
where x, y, z are the binary digit labeling the upper, middle and lower line of the quantum
circuit respectively. This gives

|ψ1〉 =
1√
2

(|xy0〉+ (−1)z|xy1〉)

|ψ2〉 =
1√
2

(|xyy〉+ (−1)z|xyy〉)

|ψ3〉 =
1√
2

(
e−ıyπ/4|xyy〉+ (−1)ze−ı(1−y)π/4|xyy〉

)
|ψ4〉 =

1√
2

(
e−ıyπ/4|xy(x⊕ y)〉+ (−1)ze−ı(1−y)π/4|xy(x⊕ y)〉

)
|ψ5〉 =

1√
2

(
eı{(x⊕y)−y}π/4|xy(x⊕ y)〉+ (−1)zeı{(x⊕(1−y))−1+y}π/4|xy(x⊕ y)〉

)
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|ψ6〉 =
1√
2

(
eı{(x⊕y)−y}π/4|xyx〉+ (−1)zeı{(x⊕(1−y))−1+y}π/4|xyx)〉

)
|ψ7〉 =

1√
2

(
eı{(x⊕y)−x−y}π/4|xyx〉+ (−1)zeı{(x⊕(1−y))−2+x+y}π/4|xyx)〉

)
|ψ8〉 =

1√
2

(
eı{(x⊕y)−x−y}π/4|xy0〉+ (−1)zeı{(x⊕(1−y))−2+x+y}π/4|xy1)〉

)
|ψ9〉 =

1√
2

(
eı{(x⊕y)−x−2y}π/4|xy0〉+ (−1)zeı{(x⊕(1−y))−1+x}π/4|xy1)〉

)
|ψ10〉 =

1
2

(
eı{(x⊕y)−x−2y}π/4 + (−1)zeı{(x⊕(1−y))−1+x}π/4

)
|x(x⊕ y)0〉

+
1
2

(
eı{(x⊕y)−x−2y}π/4 − (−1)zeı{(x⊕(1−y))−1+x}π/4

)
|x(x⊕ y)1)〉

To simplify the expression for |ψ11〉, it is worth remarking that x⊕ (1− y)− x⊕ y can be
computed as follows : (i) if y = 0 then it gives 1− 2x, (ii) if y = 1 it gives 2x− 1. So that
x⊕ (1− y)− x⊕ y = (−1)y(1− 2x) = (−1)x+y. Hence :

|ψ11〉 =
1
2

(
e−ı{x+2y}π/4 + (−1)zeı{(−1)x+y−1+x}π/4

)
|x(x⊕ y)0〉

+
1
2

(
e−ı{x+2y}π/4 − (−1)zeı{(−1)x+y−1+x}π/4

)
|x(x⊕ y)1)〉

|ψ12〉 =
1
2

(
e−ı{x+2y}π/4 + (−1)zeı{(−1)x+y−1+x}π/4

)
|xy0〉

+
1
2

(
e−ı{x+2y}π/4 − (−1)zeı{(−1)x+y−1+x}π/4

)
|xy1)〉

The last gates multiplies the state by e(x+2y)π/4 thus the first term, in the phase factor
of each basis vector, becomes 1, while the phase in the second one becomes ((1− 2x)(1−
2y) + x+ 2y − 1 + x)π/4 = xyπ (since 1− 2x = (−1)x). Thus

|ψ13〉 =
1
2

(
1 + (−1)z+xy

)
|xy0〉+

1
2

(
1− (−1)z+xy

)
|xy1)〉

Then if (x, y) 6= (1, 1) it follows that xy = 0 so that the right hand side is nothing but
|xyz〉. If x = y = 1, then the right hand side is |xyz〉. Hence the circuit acts as the Toffoli
gate.

– 4.25- Recall that the Fredkin (controlled-swap) gate performs the transform (where “·”
means 0) 

1 · · · · · · ·
· 1 · · · · · ·
· · 1 · · · · ·
· · · 1 · · · ·
· · · · 1 · · ·
· · · · · · 1 ·
· · · · · 1 · ·
· · · · · · · 1


.
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1. Give a quantum circuit which used three Toffoli gates to construct the Fredkin gate
(Hint : think of the swap-gate construction-you can control each gate, one at a time).

2. Show that the first and the last Toffoli gates can be replaced by cnot-gates.

3. Now replace the middle Toffoli gate by the circuit in Figure 4.8 to obtain a Fredkin
gate construction using only six two-qubits gates.

4. Can you come up with an even simpler construction, with only five two-qubit gates ?

1.- The circuit “Constructing the Fredkin gate” gives the solution. For indeed if |ψ0〉 =
|xyz〉 is the input, then after the first Toffoli gate it gives

|ψ1〉 = |x(xz ⊕ y)z〉

|ψ2〉 = |x(xz ⊕ y)(xz ⊕ xy ⊕ z〉 = |x(xz ⊕ y)(xy ⊕ xz)〉

|ψ3〉 = |x(xy ⊕ xz)(xy ⊕ xz)〉

In particular if x = 0 then |ψ3〉 = |0yz〉 whereas if x = 1 then |ψ3〉 = |1yz〉, which is what
the Fredkin gate is doing.
2.- The circuit 2 for the Fredkin gate, indeed gives also the Fredkin gate by replacing the
left and right Toffoli gates by two cnot gates each. Again, if |ψ0〉 = |xyz〉 is the input, it
gives

|ψ1〉 = |x(y ⊕ z)z〉

|ψ2〉 = |x(y ⊕ z)(xy ⊕ xz ⊕ z)〉 = |x(y ⊕ z)(xy ⊕ xz)〉

|ψ3〉 = |x(xy ⊕ xz)(xy ⊕ xz)〉

namely the same result as in the previous question.
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3.- Thanks to Figure 4.8, with V = eı(X−1)π/4, then U = V 2 = X giving a Toffoli gate.
This produce a circuit with 5+2 = 7 two-qubit gates. However the first two gates (a cnot
and a C1(V )) combine to give one two-qubit gate, leading to a circuit with 6 two-qubit
gates.
4.- It does not seems possible to decrease the number of two-qubit gates.

– 4.35- (Measurement commutes with controls A consequence of the principle of de-
ferred measurement is that measurements commute with quantum gates when the qubit
being measured is a control qubit, that is :

(Recall that double lines represent classical bits in this diagram). Prove the first equality.
The rightmost circuit is simply a convenient notation to depict the use of a measurement
result to classically control a quantum gate.
Looking at the Figure Measurement commutes with control the left hand side give |x〉 ⊗
Ux|y〉. If a measurement is applied to the qubit |x〉 and gives the outcome m ∈ {0, 1} then
the second qubit is given by Um|y〉. But this is exactly what the right hand side is giving.


