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ABSTRACT 

In this paper develop a mathematical framework aimed at analyzing repeat and near repeat effects in crime data. 

Parsing burglary data from Promoter Apartments, Chennai according to different counting methods, in this paper 

determine the probability distribution functions for the time intervals between repeat offenses. This paper compare 

these observed distributions to theoretically derived distributions in which the repeat effects are due exclusively to 

persistent risk heterogeneity. We find that risk heterogeneity alone cannot explain the observed distributions, while a 

form of event belief can. Using this information, we model repeat victimization as a series of random events, the 

likelihood of which changes each time an offense occurs. We are able to estimate typical time scales for repeat 

burglary events in Promoter Apartments by fitting our data to this model. Computer simulations of this model using 

these observed parameters agree with the empirical data. 

 

Key Words: Repeat victimization, Burglary, Event belief.�Crime Hotspot. 
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1. INTRODUCTION:  

 

Repeat victimization has recently emerged as a central focus in criminology. Research has demonstrated that 

individuals who have been victims of personal or property crimes are more likely to be victimized again (Farrell and 

Pease 2001). In the case of residential burglary, which focus on in this paper, repeat victimization is  

 

described in terms of exact-repeat and near-repeat events (Johnson et al. 2007). Exact-repeat events are defined as 

consecutive burglaries occurring at the same location, separated by a time interval of any duration; near-repeat burglary 

events are instead classified as taking place within a set spatial neighbourhood of a focal burglary point. 

 

Repeat burglary victimization may be due to a variety of reasons, including persistent spatial heterogeneity of risk 

and/or event dependence tied to the specific activities of burglars (Tseloni and Pease 2003, 2004; Johnson 2008). When 

considering a complex urban environment, risk heterogeneity implies that some houses (or neighbourhoods) are at 

higher risk than others, and that this difference in risk persists throughout time. Some houses may be at higher risk 

because they are physically soft targets (e.g., easily forced doors or windows) or because the routine activities of 

inhabitants leave them much less secure than other homes. By contrast, event dependence suggests that some aspect of 

the burglar’s previous experience victimizing the house increases their preference to return. For example, a burglar may 

discover an abundance of items that could be targeted in a subsequent burglary, or they may simply prefer to return to a 

location where they know that their entry methods are guaranteed to work again, amongst other possible reasons 

(Farrell et al. 1995). In addition, it has been suggested that this elevated risk may spread to neighbouring homes as well 

(Johnson et al. 1997; Townsley et al. 2003; Sagovsky and Johnson 2007), especially in areas where nearby homes are 

similar in layout and type of inhabitant. Notice, however, that in the case of event dependence, burglary risk is not 

persistent throughout time, but may change as the burglar’s preferences, skills, and exposure to other opportunities 

change (Farrell et al. 1995). 

 

The concept of such biased repeat burglary carries strong implications for the dynamics of crime pattern formation and 

for the development of prevention and resource allocation strategies (Bowers et al. 1998; Farrell and Pease 1993, 

2001). Models based on the event dependence hypothesis show that individual crimes can establish positive feedbacks 

and nucleate into crime hotspots (Eck et al. 2005; Johnson and Bowers 2004; Short et al. 2008). Effective control 

strategies would pinpoint these pivotal sites, using past crimes as indicators of future ones, breaking the feedback loops 

and thus surgically halting the further spread of crime (Farrell et al. 2007). Therefore, simple and accurate methods of 

testing for the presence of event dependent repeat effects are of great importance. 

------------------------------------------------------------------------------------------------------------------------------------------------ 
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Repeat burglary effects are often observed via the distribution of victimization order within a population of homes, 

where the victimization order is here defined as the number of times a home is burgled within some fixed temporal 

window. This distribution is typically inconsistent with a Poisson distribution, which is what would be expected if all 

homes had the same, persistent risk of burglary. In order to see whether event dependence may be responsible for this 

inconsistency, one often focuses on the distribution of time intervals τ s between successive events that occurred at the 

same location, a procedure that has been performed using burglary data from a variety of cities worldwide (Johnson et 

al. 2007). In general, it is observed that the distribution of time intervals between burglary events is a rapidly decaying 

function, with short time intervals much more likely to occur than longer ones. This observation has been taken as 

evidence for the existence of event dependence, and that a house will exhibit an increased risk of being burgled after 

being victimized once. However, there has not yet been a rigorous discussion as to why exactly these decaying time 

interval distributions support this hypothesis. In fact, as we will show in this paper, this observation alone does not 

necessarily support the event dependence hypothesis at all, and the method of counting the time intervals is of critical 

importance when interpreting the distribution of τ . 

 

Throughout the remainder of this paper, we will be performing analyses on a dataset which includes the geographic 

location and day on which each reported residential burglary for the years 2003–2005 occurred in Promoter 

Apartments, Chennai. This paper consider only those burglaries that occurred at single family homes, since we do not 

possess data that is detailed enough to pinpoint specific units within multi-family housing. Here, the term ‘‘single 

family homes’’ refers to stand-alone housing units (i.e., detached houses) with unique physical addresses as opposed to 

‘‘multi-family housing’’, which could be an apartment complex or condominium building where many separate units 

share the same physical address that belongs to the entire structure. In our analyses, we have ignored the influence of 

seasonality (Farrell and Pease 1994), specifically because the climate of Promoter Apartments minimizes such 

variations. However, all of the results and formulas can be modified to include seasonal effects in a straightforward 

manner. The dataset contains 9,042 events, and the distribution of victimization order across the homes is: 7,002 order 

one, 819 order two, 98 order three, 19 order four, 5 order five, and 1 order seven. According to the 2000 Indian census, 

there are between 70,000 and 80,000 occupied single family homes in Promoter Apartments. Using this fact, and the 

house order distribution, this paper find that a simple Poisson distribution does not fit our Promoter Apartments data 

well, indicating that something is indeed causing repeat victimization there. 

 

The goal of this paper is to first describe a model in which this repeat victimization is due solely to risk heterogeneity; 

we refer to this as the random event hypothesis (REH) (see also Nelson 1980). We then show, following from some 

very reasonable assumptions, that the distribution of time intervals τ s for exact-repeats in the REH is that of a sum of 

decaying exponentials, and that we should observe just this when using a affecting-window counting method on our 

data (which will be describe later). Using our burglary data, we illustrate that the observed distribution of τ s is 

completely compatible with that predicted by the REH, with the parameters of the fit interpreted as measures of risk 

heterogeneity. This compatibility, however, is not sufficient to prove the validity of the REH since other possible 

mechanisms of burglary dynamics might be equally compatible with the observed results. In fact, the parameters of the 

fit lead to a predicted distribution of home orders that is wildly different from that observed, indicating that the REH is 

insufficient to explain exact-repeat effects in our data. We then introduce a different method of counting exact repeat 

time intervals that allows us to unequivocally differentiate data sets generated via the REH from those in which 

burglary events are in fact related via event dependence, using only the time interval distribution. Applying this novel 

analysis method to our data set, we find that there is, in fact, event dependence in Promoter Apartments. We present a 

simple mathematical model with a straightforward criminological interpretation that explains the observations under 

both counting methods, and which reproduces both the time interval distributions and the home order distributions well 

in simulation. Finally, we extend some of these results to the measurement of event dependence in the near-repeat 

effect, finding that it too is present in our data. 

 

2. THE RANDOM EVENT HYPOTHESIS: 

 

The simplest assumption to make about burglary events at house i is that they occur entirely at random, defining a 

stochastic process where each burglary event is independent of all others. We will call this model the REH. In addition, 

it is obvious that two burglary events at house i cannot occur simultaneously, as they would then simply be thought of 

as one event. Mathematically, such a phenomenon can be modelled as a Poisson process characterized by a rate 

parameter λ , representing the expected number of burglary events per unit time. The characteristics of Poisson 

processes are long-established (Feller 1968), but we present now a brief summary of the main results which are relevant 

to our analysis. For a Poisson process with rate parameter λ , the probability that one burglary occurs within a time 

interval t to t + λ t is given by 

 

P1
( )tδ ��

tλδ−
tλδ                                                                                                       (1) 

 

The probability that k burglaries occur is given by the general Poisson distribution 
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                                                                                                               (2) 

The probability that no events occur within a time interval tδ , then, is given by 

 

 ( ) eP
t

t
λδ

δ
−

=
0

� ���������������������������������������������������������������������������������������������������������������������������������������������������

�

a monotonically decreasing function of time. 

Consider now the time T1 until the first burglary occurs at house i, as measured from a reference point with t = 0. In 

this case, T1 will be greater than a given time τ  only if there have been no events within the time interval from 0 toτ .  

 

Hence, 

P ( ) ( ) epT
λτ

ττ
−

==� 01 � �����������������������������������������������������������������������������������������������������������������������������������

�

Extending this result, we see that the probability that the first event occurs  between times τ  and tδτ +  is 

 

( ) ( ) ( ) ( )ee
t

tTPTptTp
λδλτ

δττδττ
−−

−=+�−�=+�� 1111                                                                       
(5) 

 

If we divide this result by tδ and take the limit as →tδ 0, we arrive at the standard Poisson process probability density 

function for the time interval τ s between events: 

 

( ) e
t

p
λ

λτ
−

= � � �����������������������������������������������������������������������������������������������������������������������������������
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Therefore, if the REH is correct, the distribution of time intervals between exact-repeat events at a given home with rate 

constant λ  should follow an exponential decay of the type shown in Eq. 6. Note that this distribution, which displays a 

much higher number of events at short time intervals than long, was derived without introducing any notion of 

correlation between burglary events. In fact, this distribution will only hold if the events are statistically independent, a 

notion that is completely contrary to the typical assumptions of the event dependence hypothesis. 

 

We do not, however, expect every home within a city to display the same burglary rate λ , as it is well known that 

crime rates may vary spatially (Ratcliffe and McCullagh 1999) and we have already shown that our Promoters 

Apartments data does not conform to a simple Poisson distribution. We therefore allow our homes to be divided into N 

groups, each of which is characterized by a particular burglary rate λi
that is persistent in time for that group. If the 

fraction of homes exhibiting rate λi

 is defined to be ω i
, then the composite distribution of  waiting times should be 

given by 

( ) e
i

N

i

iiwp
τλ

λτ
−

=

�=
1

� � ����������������������������������������������������������������������������������������������������������������	��

�

which is just a weighted sum of the individual distributions for each group. Equation 7 might also be read as the mean 

waiting time for all houses, since the iω  sum to 1. Equation 7 is therefore a mathematical representation of pure risk 

heterogeneity, in terms of the time intervals between exact-repeat events modelled via a compound Poisson process. 

 

3. THE MOVING-WINDOW METHOD: 

 

In order to test the distribution predicted by the REH, one must first develop a proper counting scheme for the time 

intervals τ s between exact-repeat events. Ideally, one would watch each burgled house within the city of interest until 

it is burgled again, and simply mark the time to repeat. However, this is clearly infeasible, as many homes will not be 

burgled again during a reasonable observation period. In fact, for our Promoter Apartments data set, out of the 7,944 

unique locations burgled, only 942 of them were burgled more than once. If we were to only use the time intervals from 

these relatively few locations, we would likely introduce a bias into our count because we would be systematically 

discarding many time intervals which were at longer timescales and were, therefore, never observed. 

 

To count properly, then, we use a method that we will call here the moving-window method. The basic idea behind this 

method is to first choose a time window of interest, τ max
, and then to observe after each burglary event whether or not 
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another event occurs at that same location within this time window; let us use as an example a τ max
 of 727 days for 

our promoters apartment data set. If an event does indeed occur, the time interval τ  between the initial and secondary 

event is noted. Of course, any event which occurs within the last τ max
 days for which we have data cannot be 

subsequently watched over the full τ max
window, as some of the window would clearly lie outside of the dates for 

which we have data. Therefore, we do not perform our observation following these events. We call this final τ max

period within our data the ‘‘buffer interval’’, which corresponds to the years 2004 and 2005 in our example. The final 

output of the count consists of the number of events No for which an observation was performed (this is equal to the 

total number of events in our dataset minus the number of events that occur within the buffer interval) and a list of time 

intervals observed. Note that the number of time intervals recorded will in general not be N 0
, since not every home 

that is observed will be subject to another burglary within our τ max
τmax window, as discussed above. Finally, we 

make a histogram of the observed τ , dividing the frequency for each histogram bin by N 0
No to arrive at a 

probability distribution that we can directly compare to Eq. 7. It is in this way that the homes burgled only once affect 

our count—they contribute no time intervals, but they do increase N 0
No and thereby influence the probabilities. 

The results of such a moving-window count can be seen in Fig. 1, using our promoters apartments data. Here we have, 

as in our example above, chosen a τ max
 of 727 days, making the buffer interval roughly the years 2004 and 2005. The 

choice of 727 days is arbitrary, but was used because it is evenly divisible by our desired histogram bin width of 14 

days. By adding together the probabilities for each histogram bin, we find that 10.8% of the events in our data set are 

followed by an exact repeat within 727 days. 

 

Along with the observed τ  distribution, we have plotted in Fig. 1 (the solid line) a curve of the type shown in Eq. 7 

with parameters chosen to give the best fit to our data. Using N = 3, we find the best fit to be w1 = 0.915, τ 1
 = 5.32 9 

10-5, w2 = 0.066, τ 2
= 2.45 9 10-3, w3 = 0.019, and τ 3

= 8.41 9 10-2. The choice of N = 3 was made simply because 

this was the smallest value for which a good fit of the curve to our data could be found; both the N = 1 and N = 2 

curves deviate too substantially from our data. For this choice, though, the REH curve fits our data rather well. 

 

 
 

Fig. 1 Probability distribution p(τ ) as measured from our Promoter Apartments, Chennai data set using the moving 

window method (histogram bars). Data has been combined by two week intervals, and the bars represent the total 

probability for each bin. Overall, 10.8% of the events in our data set are followed by an exact repeat within 727 days. 

The white curve represents the best fit of the form given in Eq. 7, with the parameters given in the text 

On the basis of this analysis, one might conclude that there is no event dependence effect in our data, since our 

observations of the distribution of τ s are completely consistent with the REH, with the spatial heterogeneity of risk 

described by the W i
and τ i

used in the fit. 

 

THE FLAT-WINDOW METHOD: 

 

Although the Flat-window counting method is a valid approach, its corresponding null hypothesis curve as derived 

through the REH contains a large number of parameters, making it difficult to compare to observations in a meaningful 

way. In addition, as shown above, even if parameters can be chosen such that the REH curve fits the data very well, 
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further calculations are needed to interpret these results. In order to more easily determine the validity of the REH, we 

develop a counting method for which the null hypothesis curve is completely parameter free and that can by itself 

definitively confirm or deny the REH; we term this the Flat-window method. We first remind the reader that each home 

appearing within our data set can be classified by the number of times it was burgled in total over the D days of data 

available; we refer to this as the order of the house. The probability of any given home with burglary rate τ i
 being 

of order k is given by Eq. 2, replacing tδ with D. Note, however, that Eq. 2 is independent of the particular times at 

which the home was burgled, so long as there were a total of k events. This means, for example, that for order one 

homes, each of the D days is equally likely to be the day on which the one event occurred, assuming that λ i
is 

persistent in time (i.e., seasonality is ignored and there is no event dependence). Similarly, for order two homes, each 

possible pair of days that can be made from our D day interval is equally likely to be the observed pair. 

 

Suppose that we isolate all order two homes from our data set and ask how the time intervals τ  between the two 

events at each of these houses ought to be distributed, assuming validity of the REH. Although all pairs of days are 

equally likely to occur within our trimmed data set, all time intervals are not. For example, with a fixed window of 1 

year (D = 365), there are very many pairs of days that will lead to a s of just 1 day (Jan 1–Jan 2, Jan 2–Jan 3, etc.), 

while there is only one pair that exhibits the maximum time interval of 364 days (Jan 1–Dec 31). More generally, the 

number of pairs that will exhibit a time interval of τ s is given by 

 

( ) ττ −= DN pairs
� � ����������������������������������������������������������������������������������������������������������������
��

one for each day that has at least τ days following it in the time window. We normalize these counts to one, so that the 

probability distribution of time intervals for order two homes is 

�

P2 ( ) =τ ( )
( )1

2

+

−

DD

D τ
                                                                                                       (9) 

 

This particular distribution is specifically for order two houses. However, it can be shown that the probability 

distribution for houses of any order k is given by using similar arguments. 

 

( ) ∏
−

= +

+−

−+
=

2

01

k

l lD

lD

KD

K
Pk

τ
τ                                                                                                                     (10) 

using similar arguments. 

 

There are two important points to make concerning the fixed-window method of counting. First, as seen in the moving-

window method, if the REH is true and houses do not experience any increased risk of burglary after an initial event 

(i.e., there is no event dependence), the distribution of time intervals that we count will still be heavily weighted toward 

the short end of the spectrum, and will disappear at the long end (Fig. 2). Therefore, we must be mindful of this 

combinatorial effect when interpreting the results of a fixed window counting procedure. Second, and more positively, 

we see that the fixed-window method is an excellent way to test the REH, and thus the validity of risk heterogeneity for 

explaining repeat burglaries, because the expected probability distribution given by Eq. 10 has no free parameters. The 

fixed-window method therefore represents a simple and unambiguous way to determine whether or not the REH is in 

fact true, or if event dependence must be invoked. 

 

To illustrate the usefulness of the fixed-window counting method in testing the REH, we present here the results of 

such a count, using our Long Beach data (Fig. 3). To perform this count, we first break up our data into six non-

overlapping 364 day sets (we use D = 364 because it is a multiple of 14). For each set, we isolate the order two homes 
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Fig. 2 Probability distributions ( )τpk  for various values of k, using D = 365 days. Note that they are all biased toward 

shorter time intervals, and that this bias becomes more pronounced as k increases 

 

within that set, then count the time interval between the two burglaries for each of these homes. The resulting six τ  

lists are then combined into one, a histogram is made of this master list, and the histogram bins are each divided by the 

total number of order two homes used in the count to convert to a probability that will add up to 1. When this histogram 

is compared with the null hypothesis curve as derived above in Eq. 9, we see that the disagreement is very substantial, 

with many more events occurring at short time intervals than predicted by the REH, and fewer, therefore, at long time 

intervals. Thus, the REH is disproven in our data without the need for any further analysis, and it is clear that event 

dependence must be responsible for at least some of the repeat victimization effect. 

 

 
 

Fig. 3 Probability distributions ( )τ2p  as measured from our Promoters Apartments, Chennai data set using the fixed 

window method (histogram bars) and as calculated via Eq. 9 using D = 364 days (black line). Note that the measured 

probability is much higher than expected for short time intervals, and that it falls below the expected values at long time 

intervals. This indicates that the REH is not consistent with our data set 

 

NEAR-REPEATS: 

 

A near-repeat event occurs whenever two ‘‘nearby’’ houses are burgled within some period of time. Like exact-repeats, 

we can measure the time interval that lies between each event in a near-repeat pair, but in this case we must also make 

note of the physical separation of the two homes. This procedure allows us to examine separately the time interval 

histogram for near-repeat pairs that lie at varying physical distances from each other. It has been noted in previous 

studies that those near-repeat events that are relatively close in space tend to occur more closely in time as well, like 

exact-repeats, whereas those that are far apart seem to exhibit no temporal correlation. These previous studies use 

Monte Carlo algorithms to find the likelihood of the observed patterns happening if there were no correlation between 

the spatial and temporal distributions (Johnson et al. 2007; Ratcliffe and Rengert 2008), determining that this is highly 

unlikely. In this section, we instead test explicitly for near-repeat event dependence by extending our finite-window 

counting method used above for exact-repeats to the case of near-repeat events in our Promoters Apartments data. 

 

 
 

Fig. 4 Simulation output analyzed via the moving-window method (a) and the fixed-window method (b). The output 

from one run of the simulation is shown as the histogram bars, and the curves correspond to the expected results under 

the REH. As expected, using the simulation parameters that best fit our burglary data leads to simulation results that are 

similar to the graphs constructed from that data (Figs. 2 and 3). From the moving-window method, we see that in this 
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simulation run 11.3% of simulated events were subject to an exact repeat within 724 days, as compared to 10.8% in the 

Promoters Apartments data. 

 

The first step in our derivation is actually a fact that we notice from our data, which is supported by our model. We 

observe, when each year of our dataset is examined separately, that order one homes exhibit approximately equal 

probability of being burgled on all of the 365 days available. This is illustrated in Fig. 5, where we see the flat nature of 

the distribution of order one burglary days. This observation is consistent with the theoretical curve predicted from our 

exact-repeat model (also plotted in Fig. 5) which fits the data well when using our previously estimated parameters. 

The observed pattern arises from the fact that about 91% of homes that are burgled only once in D = 365 days will enter 

into the time window with the lowest burglary rate, 1λ , and still exhibit that rate after the event. These houses should 

all have a completely flat line in this count, because their rates are not changing and so each day is equally likely. The 

remaining 9% of homes consists almost entirely of those that either entered the year with the middle rate, 2λ , and then 

switched to 1λ  or those that did the opposite. These homes explain the slight increases in the theoretical curve near the 

beginning and end of the year. In addition, Fig. 5 shows the lack of seasonality in our dataset. 

To test for the presence of near-repeat event dependence, we first isolate in our data all order one homes. We then 

perform a fixed-window count on these events in a pair-wise fashion, measuring both the temporal separation and 

physical distance between the burglaries comprising each possible pair of events. Note that this is essentially the same 

procedure as was performed for the exact-repeats earlier, except that in that case the 

 

 
 

Fig.5 Fraction of order one events occurring per day in Promoter Apartments, counting each year separately (white 

dots). The curve predicted by our model is also shown (white line). The distribution is essentially flat, with only slight 

increases at the beginning and end of the interval (shown magnified on the right). Most homes that are burgled only 

once will exhibit a constant rate of 1λ , leading to overall flatness. A small number of order one homes will transition 

from 2λ  to 1λ , or vice versa, which happens most often near the beginning and end of the interval; this explains the 

deviations from flatness in these regions. 

 

physical distances were all zero and we used order two homes rather than order one. The fact that order one homes are 

approximately equally likely to be burgled on any day of our fixed interval means that the time intervals for near-repeat 

events should be distributed exactly as in Eq. 10 if no correlation between the two burglaries making up a pair exists 

(i.e., if there is no event dependence). This is because, since each of the homes is equally likely to be burgled on any 

given day, each of the possible pairs of days making up a near repeat event ought to be equally likely as well, which is 

the condition that leads directly to Eq. 10.1 
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Fig. 6 Near-repeat burglary time intervals τ  (histogram bars) as measured via the fixed-window method for homes 

within 100 m of each other (a) and within 3.9 and 4.0 km (b), both shown against the order two REH curve (white line). 

For the closer events, there is a clear deviation from the null hypothesis curve derived through the REH only at the 

shortest of time intervals. This deviation is not nearly as strong as that noted for exact-repeats, nor does it extend as 

long in time. For the further apart events, no particular deviation is noted, indicating that near-repeat event dependence 

does not extend to homes that are 4 km apart in Promoter Apartments. 

 

The results of such a count are presented in Fig. 6, where we show the time interval histograms for the distance bands 

of (0–100] meters and (3.9–4.0] kilometres. For the closer band, we clearly see that the measured number of near-

repeats at the shortest time intervals is greater than that predicted by the null hypothesis, many of those in fact 

occurring at a time separation of zero days. At longer time intervals, though, the null hypothesis curve fits rather well. 

This is unlike the exact-repeat observations, for which the deviation was much greater and was spread over the entire 

curve. For the further distance band, no effect seems to be present at all, as the data and null hypothesis curves are in 

very good agreement. At distance bands between these two extremes, we observe an ever decreasing effect as the 

distance between the homes increases. These results indicate that there is in fact an event dependant near-repeat effect 

for nearby homes (e.g., those separated by less than 100 m) in Long Beach, but that this effect fades as the distance 

between homes increases, eventually disappearing completely for widely separated houses (e.g., 

those separated by distances greater than 3.9 km). 

 

CONCLUSIONS: 

 

The results here reinforce the view that repeat and near-repeat victimization may play a role in the nucleation of crime 

patterns in space and time and, as a consequence, may be an appropriate basis for designing crime prevention strategies. 

However, we also note that there are a number of challenges yet to meet in designing optimized responses to repeat 

crimes. In particular, our results from analyses of exact-repeat burglaries in Promoters Apartments suggests that at any 

given time only about 0.002% of houses exhibit the highest excited state (Eqs. 11 and 12) with an expected time to a 

repeat event of approximately 12 days. This corresponds to only about 1 single family residence from a total of 

approximately 70,000 units. The challenge is to determine which house(s) belong to this very small set, which would 

allow preferential targeting of resources at these locations. 
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