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The growth of icicles is considered as a free-boundary problem. A synthesis of atmospheric heat

transfer, geometrical considerations, and thin-film fluid dynamics leads to a nonlinear ordinary

differential equation for the shape of a uniformly advancing icicle, the solution to which defines a

parameter-free shape which compares very favorably with that of natural icicles. Away from the tip,

the solution has a power-law form identical to that recently found for the growth of stalactites by

precipitation of calcium carbonate. This analysis thereby explains why stalactites and icicles are so

similar in form despite the vastly different physics and chemistry of their formation. In addition, a

curious link is noted between the shape so calculated and that found through consideration of only

the thin coating water layer. © 2006 American Institute of Physics. �DOI: 10.1063/1.2335152�

The formation of patterns in snow and ice has been a

source of fascination since antiquity. As early as 1611, Jo-

hannes Kepler
1

sought a physical explanation for the beauti-

ful forms of snowflakes. While attention has been lavished

upon snowflakes ever since,
2

their wintry cousins, icicles,

have remained largely ignored. The basic mechanisms of

icicle growth are well known,
3–5

but there are few math-

ematical analyses describing their long, slender forms, most

notably those of Makkonen
3

and of Szilder and Lozowski.
4

Icicle surfaces are typically covered with ripples a few cen-

timeters in wavelength, but only recently
6–8

has theoretical

work begun to address the underlying dynamic instability

that produces them. On a more basic level, the growth of

dripping icicles has not been studied from the perspective of

a true free-boundary approach.

As one can see in Fig. 1, icicles and stalactites—the

iconic structures found in limestone caves
9
—can bear a strik-

ing resemblance, particularly insofar as they evince a slightly

convex carrot-like form that is distinct from a cone. Of

course visual similarity does not imply mechanistic similar-

ity, but there is reason to think that a common mathematical

structure might link the two phenomena.
10

In each case, the

evolving solid structure is enveloped by a thin flowing layer

of fluid which regulates the rate of growth. For stalactites,

this is the coating water film flowing down the surface in

which carbon dioxide is produced and through which it dif-

fuses. In icicles there is a similar water layer, but the con-

trolling fluid is the upward flowing natural convection

boundary layer in the surrounding air through which latent

heat is transported by diffusion and convection.

Recent work
11,12

examining stalactite growth as a free

boundary problem established a novel geometrical growth

law based on the coupling of thin-film fluid dynamics and

calcium carbonate chemistry.
13–15

Numerical studies showed

an attractor in the space of shapes whose analytical form was

determined and found to compare very favorably with that of

natural stalactites. Is there an analogous ideal shape for

icicles? It is tempting to view icicle growth as a classic

Stefan problem, as explored extensively for solidification

from the melt.
16

There, growth is controlled by a quasistatic

diffusive field and the growth rate is determined by a gradi-

ent of that variable. However, such systems generally lack

the previously mentioned thin layer of moving fluid �water or

air� that separates the developing solid from its surroundings,

and thus they do not conceptually match the conditions of

growth. Exceptions occur, for instance, in the presence of

surface premelting.
17

One context in which progress has

been made is the formation of “ice stalactites,” hollow tubu-

lar structures formed below sea ice as salt is rejected during

solidification,
18,19

but these formations are quite distinct from

typical icicles. Here, we suggest an approach to the problem

of icicle growth which synthesizes geometrical principles,

heat flow in the water and atmosphere, and thin-film fluid

dynamics, to arrive at the existence of an ideal growing

shape for icicles. This approach can be viewed as a generali-

zation of the important works mentioned above
3,4

to a true

free-boundary formulation. The ideal growing shape found

here compares well with observations. Interestingly, the

shape far from the tip has the same mathematical form as

that recently derived
11,12

for the growth of stalactites.

We first consider the water layer flowing down the sur-

face of a growing icicle to set some initial scales. The volu-
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metric flow rate Q over icicles is typically
3,20

on the order of

tens of milliliters per hour ��0.01 cm3 / s�, and icicle radii

are usually in the range of 1–10 cm. To understand the es-

sential features of the flow, consider a cylindrical icicle of

radius r, over the surface of which flows an aqueous film of

thickness h �Fig. 2�. Since h�r over nearly the entire icicle

surface, the velocity profile in the layer may be determined

as that flowing on a flat surface. Furthermore, we expect the

Reynolds number to be low enough that the Stokes approxi-

mation is valid. If y is a coordinate normal to the surface and

� is the angle that the tangent vector t̂ makes with respect to

the horizontal, then the Stokes equation for gravity-driven

flow is �wd2u /dy2=g sin �, where g is the gravitational ac-

celeration and �w=0.01 cm2 / s is the kinematic viscosity of

water. Enforcing no-slip and stress-free boundary conditions

at the solid-liquid and liquid-air interfaces, the thickness is

h = � 3Q�w

2�gr sin �
�1/3

. �1�

Using typical flow rates and radii, we deduce a layer

thickness that is tens of microns and surface velocities

us��gh2 /2�w�sin � below several mm/s, consistent with

known values,
3,20

yielding Re=0.01–0.1, well in the laminar

regime as anticipated. At distances from the icicle tip com-

parable to the capillary length �several millimeters�, the com-

plex physics of pendant drop detachment takes over and the

thickness law �1� ceases to hold.

Of course, if the icicle is growing, the volumetric flux Q

must vary along the arc length s of the icicle as water is

converted to ice. With the icicle profile described by r�z�
�Fig. 2� and the growth velocity normal to the ice at any

point being vg, Q varies along the surface as

dQ

ds
= 2�rvg, �2�

the positive sign on the right-hand side reflecting the choice

of origin at the tip, with s increasing upward. We seek to find

a final answer in the form of a uniformly translating

shape,
11,12

for which every point on the icicle must grow at a

rate such that vg=vt cos �, where vt is the growth velocity of

the tip, usually millimeters per hour ��10−4 cm/s�3,20 �given

the complexities of droplet detachment,
3

the tip velocity here

will be considered a parameter of the theory�. Therefore, we

substitute this rule into �2�, using dr=ds cos �, and find that

an exact integration may be performed, yielding

Q = Qt + �r2
vt, �3�

where Qt is the flow rate at the icicle’s tip. This result, which

neglects evaporation, conforms to the obvious fact that, for a

given Q, Qt will eventually approach zero as the icicle be-

comes so long as to allow all of the feeding water to freeze

before it reaches the tip. For further analysis, we will only

consider the growth of icicles up to this point, and not be-

yond, and only consider growth into a calm environment.

Turning now to heat transport, note that the curvature of

the icicle surface is sufficiently small everywhere that the

Gibbs-Thompson correction
21

to the melting temperature Tm

is negligible. Thus, the temperature of the water at the ice-

water interface is well-approximated as Tm along the entire

icicle, neglecting the tip. Furthermore, since most icicles

possess an unfrozen liquid core,
3–5

heat does not travel radi-

ally outward from the center of the icicle, as it would if the

core were solid and the temperature inside were decreasing

over time. Hence, any flux of heat present at the ice-water

interface consists solely of latent heat being removed as the

water changes phase. The issue of advective heat transport

by the flowing water is addressed by considering the Peclet

number Pe=ush /�w, where �w�10−3 cm2 / s is the thermal

diffusivity of water. Using our previous estimates for the

flow velocity us and thickness, we find Pe�0.1–1, indicat-

ing that energy transport down the icicle is generally subor-

dinate to conduction of heat across the water layer. The heat

flux across the water, then, is Fw=�w�Tm−Ti� /h, where �w is

the thermal conductivity of water and Ti, the temperature at

the air-water interface, is found below.

The rate-limiting, and hence, controlling, step in growth

occurs once the heat has traversed the water layer and must

then be transported through the air surrounding the icicle.

This transport can be greatly influenced by the presence of

FIG. 1. �Color online� Icicles and stalactites. �a� A collection of icicles �Ref.

23�. �b� Stalactites in Kartchner Caverns, Benson, AZ.

FIG. 2. Features of a hanging axisymmetric shape used in development of

the theory. The flowing water layer, not to scale, is much thinner than the

rising thermal boundary layer.
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forced convection, as considered in previous works,
3,4

but we

shall ignore this in the present study, assuming a calm envi-

ronment for growth. Instead, we will consider natural con-

vection, such as found in the study by Makkonen.
3

As is well

known, objects warmer than their surroundings create rising

thermal boundary layers in the adjacent atmosphere due to

the buoyancy of the heated surrounding air. Similarity solu-

tions for the coupled Navier-Stokes and heat transport equa-

tions in the Boussinesq approximation can provide the basis

for understanding this boundary layer. For instance, for a flat,

vertical, isothermal plate, solutions show that the rising

warm air is confined to a boundary layer whose thickness �
as a function of the vertical coordinate z is

22

� = C�� z

�
�1/4

, with � 	 � �a
2

g�	T
�1/3

, �4�

where C is a dimensionless constant that depends on the

Prandtl number of air �0.68� and is of order unity,

�a�0.13 cm2 / s is the kinematic viscosity of air, ��3.7


10−3 K−1 is the volumetric coefficient of expansion for air,

and 	T is the temperature difference between the plate and

the ambient temperature Ta far away. For a temperature

difference of 10 K the characteristic length scale

�
0.01–0.1 cm.

To justify our future use of �4� to approximate the

boundary layer thickness for our icicle, we submit the fol-

lowing. First, using a temperature difference of 10 K, one

finds a boundary layer thickness on the order of a few mil-

limeters to a centimeter, much greater than the thickness of

the water layer on a typical icicle, but less than a typical

icicle radius, so that flatness is approximated. Second, the

peak velocity of the warm air in the layer is

up �
2

3
�g	T�z , �5�

around 5–10 cm/s, much greater than the downward water

velocity, so the no slip condition used in the flat plate analy-

sis is nearly attained. Third, the atmospheric heat flux can be

written as Fa=�a�Ti−Ta� /�, where �a is the thermal conduc-

tivity of air, differing from the exact form only by the mul-

tiplication of an order one constant. If we equate this heat

flux with that through the water layer, which we previously

described, one finds that Ti is given by

Ti = Tm − �Tm − Ta�
h�a/��w

1 + h�a/��w

. �6�

On account of the vast difference in scale between h and �
mentioned above, the ratio h�a /��w�0.01, so Ti is lower

than Tm by only 10−3–10−2 K. Hence, from the view of at-

mospheric heat transport, the icicle walls are essentially iso-

thermal at Tm �although the tip is cooler
3�. Finally, we note

that �4� can be used to describe a slightly nonvertical plate by

simply replacing g with g cos � and z with z / cos � �the arc

length along the plate�. Since, barring the tip region, an ici-

cle’s surface is nearly vertical and has a very slowly varying

slope, this is a valid approximation in our case; we treat the

order one factor of cos � as a constant and fold it into the

parameter C. A more sophisticated treatment would account

for the effects of wall curvature.
3

At this point, we are in a position to derive a formula for

the growth velocity vg of the icicle’s surface. We divide the

heat flux as calculated through the atmospheric boundary

layer by the latent heat of fusion per volume L of water

�334 J /cm3� to obtain the velocity

vg = vc��

z
�1/4

, �7�

where vc is a characteristic velocity given by

vc 	
�a	T

LC�
, �8�

and is, with 	T=10 K, around 10−4 cm/s, which is in good

agreement with the known velocities cited earlier. To find

the equation governing the icicle profile, we enforce the

condition for uniformly translating shapes, vg=vt sin �, upon

�7� and scale the variables r and z both by the factor

a=��vc /vt�
4, thereby defining the new dimensionless vari-

ables � and 
. After rewriting trigonometric functions in

terms of the slope of the profile ��, one finds the equation

�� =
1

�
1/2 − 1
, �9�

which can be exactly integrated to yield the final expression

for our ideal icicle shape,

� =
4

3
�
1/2 + 2��
1/2 − 1. �10�

This shape is shown in Fig. 3�a�. Note that this shape at

large 
 goes as ��
3/4 and therefore the thickness of the

thermal boundary layer relative to the icicle radius scales as

� /r�
−1/2 and the two-dimensional boundary layer calcula-

tion becomes ever more satisfactory further up the icicle,

albeit slowly.

As promised, this asymptotic power law is identical to

that found in the case of stalactites,
11,12

finally explaining

their strikingly similar appearances. Furthermore, if we

evaluate this asymptotic form at some point on the surface

��* ,
*� where the aspect ratio �length/width� is A=
* /�*,

then the shape can be rewritten as 
 /
*��� /�*�4/3, a univer-

sal, self-similar form. Hence, we can compare our ideal

shape to natural icicles by simply finding the correct aspect

ratio, or, equivalently, the correct scaling factor a, that best

equates the two forms. The results of such comparisons are

seen in Figs. 3 and 4. Figures 3�b�–3�d� show overlays of the

appropriately scaled theoretical shape with three images of

natural icicles. To find the appropriate scaling, each image

was passed through an edge-detection algorithm to extract

the profile r�z�. Each profile was then compared to the ideal

form through a least-squares analysis to determine the best fit

a. For the more quantitative analysis of Fig. 4, we first found

a for each of the eight icicle images, then scaled the image

profiles by this best-fit factor. All eight of the now-

dimensionless profiles were then averaged together, forming

the data points and associated error bars seen in the graph in

Fig. 4, which are to be compared with the theoretical shape

083101-3 Free-boundary theory Phys. Fluids 18, 083101 �2006�



shown. Clearly, there is good agreement between the two,

with no obvious systematic deviations present. On the far

right, possible ripples can be seen as the data oscillates

around the theoretical curve. Moreover, the shape is quite

distinct from a conical geometry; indeed, an analogous least-

squares fit of the data to a conical shape displays quite sig-

nificant systematic deviations. Of course, controlled experi-

ments on the growth of icicles are needed to check in detail

various aspects of the theory, such as the assumption that a

traveling shape is indeed an attractor of the dynamics.

As a final interesting side note, we now calculate the

ideal shape by analyzing the growth velocity using the heat

flux through the thin water layer rather than the air. First, let

us look at the thickness law �1� in conjunction with the

depletion predicted in �3�. Clearly, at large �, the fluid layer

thickness will grow as

h � �3vta�w�

2g sin �
�1/3

. �11�

Using this and the ideal shape we have calculated, the ratio

of h to � in this regime must then look like

h

�
� �2�wavt

4

g
�1/3

L

�a	T
. �12�

So, if we substitute this ratio into �6�, we see that, asymp-

totically, the temperature drop across the water layer goes to

a fixed value of

	Tw → �2�wavt
4

g
�1/3

L

�w

, �13�

which is on the order of 10−3 K, as previously indicated. It is

curious that this factor turns out as it does; for a different

thickness law �1�, as could be the case for a non-Newtonian

fluid, the temperature drop could either approach zero or

even increase at large 
. In any case, we can now use this

	Tw, along with the heat flux through the water layer, to find

that, asymptotically, the profile 
� should follow the scaling

law


� � �3

4
��1/3

. �14�

Equation �14� is another interesting result, as it shows that

the shape obtained by a method that focuses on the liquid

film yields the same shape as that found from the foregoing

analysis of the natural convection boundary layer. We are

unsure at this point whether it is mere happenstance that

these two methods agree as they do, or perhaps this four-

thirds scaling law has a deeper underlying significance in this

class of problems.

Clearly, the scenario presented here, by which a free

boundary dynamics for icicle growth is derived, contains a

number of simplifications and approximations whose quanti-

tative accuracy merits further study. Chief among these is the

use of a boundary layer theory which assumes a flat and

vertical surface. Both of these assumptions are justifiable

only far away from the icicle’s tip. A full numerical study

would likely prove most illuminating. We expect the analysis

presented here to serve as a basis for further understanding of

ice structures, including axisymmetric perturbations such as

the ripples so commonly found on icicles, as well as strongly

nonaxisymmetric forms such as the sheets which are analo-

gous to “draperies” in limestone caves. In this regard, recent

work on solidification on surfaces of arbitrary curvature
24

may prove quite relevant.

The authors thank J. G. Dash, S. R. Morris, J. S.

Wettlaufer, and M. G. Worster for important discussions, and

FIG. 3. �Color online� Ideal shape of an icicle and comparison with natural

icicles. �a� Ideal shape in dimensionless units of radius and height. �b�–�d� A

selection of natural icicles �Ref. 23� each with the appropriately scaled ideal

form overlaid.

FIG. 4. �Color online� A comparison between the theoretical shape and

natural icicles. The solid line represents the shape as calculated in the text,

while the data points and error bars represent the averaging of the scaled

profiles of eight icicles. In order to perform this averaging, each icicle’s

profile was scaled by the appropriate factor a through a least squares analy-

sis. Error bars generally increase with 
 due to the fact that there are fewer

icicles with appropriate aspect ratios at those points. After 
=5
106 only

one icicle is represented, and the displayed error bars represent discretiza-

tion uncertainties.
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an anonymous referee who emphasized the importance of
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